1
|
Chen Y, Deng J, Yu C. Isolation of Sphingopyxis kveilinensis sp. nov., a Potential Antibiotic-Degrading Bacterium, from a Karst Wetland. Curr Microbiol 2024; 81:414. [PMID: 39417856 DOI: 10.1007/s00284-024-03941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
A Gram-stain-negative, aerobic, mesophilic, motile, rod-shaped bacterium, designated strain TUF1T, was isolated from a karst wetland in south-west China. It was demonstrated to be capable of growing on plates containing oxytetracycline, streptomycin, or ofloxacin as the sole carbon source. Phylogenetic analysis of the 16S rRNA gene sequence revealed that this organism belongs to the genus Sphingopyxis and is closely related to S. chilensis S37T (99.17%) and S. alaskensis RB2256T (99.12%). The orthologous average nucleotide identity values (OrthoANIu, 84.42% and 87.53%) and digital DNA-DNA hybridization values (dDDH, 41.7% and 48.9%) between strain TUF1T and its close relatives were all below the standard recommended threshold values for species discrimination. The genomic DNA G + C content was determined to be 64.7%. The predominant cellular fatty acids were identified as summed feature 8 (C18:1ω7c and/or C18:1ω6c) and summed feature 3 (C16:1ω7c and/or C16:1ω6c). The major polar lipids found to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, and sphingoglycolipid. The sole respiratory quinone present was ubiquinone Q10. Based on the phylogenetic, biochemical, physiological, and chemotaxonomic analyses, strain TUF1T represents a novel species of the genus Sphingopyxis. The designation "Sphingopyxis kveilinensis sp. nov." is proposed as the name for this novel species, and the strain TUF1T (= CGMCC1.62043 T = JCM36394T) is designated as the type strain.
Collapse
Affiliation(s)
- Ying Chen
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China.
- Key Laboratory of Molecular Medical Engineering, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China.
- Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China.
| | - Jie Deng
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
- Key Laboratory of Molecular Medical Engineering, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Chengjian Yu
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, China
- Key Laboratory of Molecular Medical Engineering, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| |
Collapse
|
2
|
Zhang X, Xu J, Dai J, Zhang L, Feng L, Tian X, Yang Q. Taxonomic, Phylogenomic and Bioactivity Profiling of Novel Phycosphere Bacterium from Model Cyanobacterium Synechococcus elongatus PCC 7942. Mar Drugs 2024; 22:36. [PMID: 38248661 PMCID: PMC10817584 DOI: 10.3390/md22010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Phycosphere niches host rich microbial consortia that harbor dynamic algae-bacteria interactions with fundamental significance in varied natural ecosystems. Hence, culturing the uncultured microbial majority of the phycosphere microbiota is vital for deep understanding of the intricate mechanisms governing the dynamic interactions, and also to provide novel and rich microbial resources, and to discover new natural bioactive metabolites. Synechococcus elongatus PCC 7942 is a robust model cyanobacterium widely used in environment, synthesis biology, and biotechnology research. To expand the number of novel phycosphere species that were brought into culture and to discover the natural bioactivities, we presented a new yellow-pigmented bacterium named ABI-127-1, which was recovered from the phycosphere of PCC 7942, using an optimized bacterial isolation procedure. Combined polyphasic taxonomic and phylogenomic characterization was performed to confidently identify the new isolate as a potential novel species belonging to the genus Qipengyuania. The observed bioactivity of strain ABI-127-1 with promoting potential towards the growth and CO2 fixation efficiency of the host microalgae was measured. Additionally, the bacterial production of active bioflocculant exopolysaccharides was evaluated after culture optimization. Thus, these findings revealed the potential environmental and biotechnological implications of this new microalgae growth-promoting bacterium isolated from the phycosphere microenvironment.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- ABI Group, Laboratory of Phycosphere Microbiology, Zhejiang Ocean University, Zhoushan 316021, China
| | - Jiaquan Xu
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
- Donghai Laboratory, Zhoushan 316022, China
| | - Jun Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Lei Zhang
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lijuan Feng
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaoqing Tian
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Qiao Yang
- ABI Group, Laboratory of Phycosphere Microbiology, Zhejiang Ocean University, Zhoushan 316021, China
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
- Donghai Laboratory, Zhoushan 316022, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
3
|
Le VV, Srivastava A, Ko SR, Ahn CY, Oh HM. Microcystis colony formation: Extracellular polymeric substance, associated microorganisms, and its application. BIORESOURCE TECHNOLOGY 2022; 360:127610. [PMID: 35840029 DOI: 10.1016/j.biortech.2022.127610] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Microcystis sp., amongst the most prevalent bloom-forming cyanobacteria, is typically found as a colonial form with multiple microorganisms embedded in the mucilage known as extracellular polymeric substance. The colony-forming ability of Microcystis has been thoroughly investigated, as has the connection between Microcystis and other microorganisms, which is crucial for colony development. The following are the key subjects to comprehend Microcystis bloom in depth: 1) key issues related to the Microcystis bloom, 2) features and functions of extracellular polymeric substance, as well as diversity of associated microorganisms, and 3) applications of Microcystis-microorganisms interaction including bloom control, polluted water bioremediation, and bioactive compound production. Future research possibilities and recommendations regarding Microcystis-microorganism interactions and their significance in Microcystis colony formation are also explored. More information on such interactions, as well as the mechanism of Microcystis colony formation, can bring new insights into cyanobacterial bloom regulation and a better understanding of the aquatic ecosystem.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Ankita Srivastava
- Department of Botany, Siddharth University, Kapilvastu, Siddharth Nagar 272202, Uttar Pradesh, India
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Sphingopyxis lutea sp. nov., a novel moderately halotolerant bacterium isolated from pebbles. Arch Microbiol 2022; 204:406. [PMID: 35723741 DOI: 10.1007/s00203-022-03042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
A Gram-stain-negative, aerobic, motile and rod-shaped bacterium was isolated from pebbles collected from the coast near Taejongdae Park, Busan, South Korea. Phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that strain DHUNG17T belonged to the family Sphingomonadaceae, and it showed the highest sequence similarity found with Sphingopyxis panaciterrulae DCY34T (98.4%) and Sphingopyxis granuli TFAT (98.4%). The strain grew at 10-45 °C, at pH 5.0-9.0 and with 0-12% (w/v) NaCl. Chemotaxonomic data revealed that strain DHUNG17T possessed ubiquinone Q-10 as the predominant respiratory lipoquinone. The predominant fatty acids were C16: 0, C18: 0, summed feature 4 (C16: 1 ω7c and/or C15: 0 iso 2-OH) and summed feature 8 (C19: 1 ω6c and/or unknown 18.864). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and a sphingoglycolipid and spermidine were detected as the major polyamines. Strain DHUNG17T was able to produce carotenoid-type pigment. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values with its closest neighbors were 79.3-81.7% and 22.0-24.4%, respectively. The genome of strain DHUNG17T is 3,129,415 bp long with a DNA G + C content of 64.7% and encodes 2,951 predicted proteins, 3 rRNAs and 47 tRNAs. Gene related to transportation of polycyclic aromatic hydrocarbons (PAHs) was found in the genome of strain DHUNG17T. According to the genotypic, phylogenetic and chemotaxonomic data, strain DHUNG17T represents a novel species within the genus Sphingopyxis, for which the name Sphingopyxis lutea sp. nov. is proposed. The type strain is DHUNG17T (= KACC 21746T = NBRC 114643T).
Collapse
|
5
|
Taxonomic and Bioactivity Characterizations of Mameliella alba Strain LZ-28 Isolated from Highly Toxic Marine Dinoflagellate Alexandrium catenella LZT09. Mar Drugs 2022; 20:md20050321. [PMID: 35621971 PMCID: PMC9147911 DOI: 10.3390/md20050321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 01/15/2023] Open
Abstract
Microalgae host varied microbial consortium harboring cross-kingdom interactions with fundamental ecological significance in aquatic ecosystems. Revealing the complex biofunctions of the cultivable bacteria of phycosphere microbiota is one vital basis for deeply understanding the mechanisms governing these dynamic associations. In this study, a new light-yellow pigmented bacterial strain LZ-28 was isolated from the highly-toxic and harmful algal bloom-forming dinoflagellate Alexandrium catenella LZT09. Collective phenotypic and genotypic profiles were obtained to confidently identify this strain as a new Mameliellaalba member. Comparative genomic analysis showed that strain LZ-28 shared highly similar functional features with other four marine algae-derived M. alba strains in spite of their distinctive isolation sources. Based on the bioactivity assaying, the mutual growth-promoting effects between bacterial strain LZ-28 and algal strain LZT09 were observed. After the culture conditions were optimized, strain LZ-28 demonstrated an extraordinary production ability for its bioflocculanting exopolysaccharides (EPS). Moreover, the portions of two monosaccharides glucose and fucose of the EPS were found to positively contribute to the bioflocculanting capacity. Therefore, the present study sheds light on the similar genomic features among the selected M. alba strains, and it also reveals the potential pharmaceutical, environmental and biotechnological implications of active EPS produced by this new Mameliella alba strain LZ-28 recovered from toxic bloom-forming marine dinoflagellate.
Collapse
|
6
|
Zhu WZ, Gao HM, Ge YM, Dai J, Yang X, Zhang XL, Yang Q. Alexandriicola marinus gen. nov., sp. nov., a new member of the family Rhodobacteraceae isolated from marine phycosphere. Antonie van Leeuwenhoek 2022; 115:473-486. [PMID: 35119545 DOI: 10.1007/s10482-022-01710-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 11/27/2022]
Abstract
Two yellow-pigmented bacterial strains, LZ-14 T and ABI-LZ29, were isolated from the cultivable phycosphere microbiota of the highly toxic marine dinoflagellate Alexandrium catenella LZT09 and demonstrated obvious microalgae growth-promoting potentials toward the algal host. To elucidate the taxonomic status of the two bioactive bacterial strains, they were subjected to a polyphasic taxonomic characterization. Both strains were found to be Gram-negative, aerobic, rod-shaped and motile; to contain Q-10 as the predominant ubiquinone; summed feature 8, C16:0, C18:1 ω7c 11-methyl and summed feature 3 as the major fatty acids; and diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and two unidentified phospholipids as the predominant polar lipids. Based on the phylogenetic analysis, phylogenomic inferences and phenotypic characteristics, the strains could be clearly distinguished from phylogenetically closely related species and formed a distinct monophyletic lineage in the family Rhodobacteraceae. The size of the draft genome of strain LZ-14 T is 4.615 Mb, with a DNA G + C content of 63.3 mol%. It contains ten predicted secondary metabolite biosynthetic gene clusters and core genes for bacterial exopolysaccharide biosynthesis. Therefore, strain LZ-14 T (= CCTCC AB 2017230 T = KCTC 62342 T) represents a novel species of a new genus, for which the name Alexandriicola marinus gen. nov., sp. nov., is proposed.
Collapse
Affiliation(s)
- Wen-Zhuo Zhu
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Hui-Min Gao
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Ya-Ming Ge
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, China
| | - Jun Dai
- Key Laboratory of Fermentation Engineering, Natural "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Ministry of Education, Wuhan, China
| | - Xi Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiao-Ling Zhang
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China. .,ABI Group, Zhejiang Ocean University, Zhoushan, China.
| | - Qiao Yang
- ABI Group, Zhejiang Ocean University, Zhoushan, China.
| |
Collapse
|
7
|
Zhu WZ, Wang SH, Gao HM, Ge YM, Dai J, Zhang XL, Yang Q. Characterization of Bioactivities and Biosynthesis of Angucycline/Angucyclinone Derivatives Derived from Gephyromycinifex aptenodytis gen. nov., sp. nov. Mar Drugs 2021; 20:md20010034. [PMID: 35049888 PMCID: PMC8779670 DOI: 10.3390/md20010034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
Strain NJES-13T is the type strain and currently the only species of the newly established actinobacteria genera Aptenodytes in the family Dermatophilaceae isolated from the gut microbiota of the Antarctic emperor penguin. This strain demonstrated excellent bioflocculation activity with bacteria-derived exopolysaccharides (EPSs). Moreover, it produced bioactive angucycline/angucyclinone derivatives (ADs) and contained one type III polyketide synthase (T3PKS), thus demonstrating great potential to produce novel bioactive compounds. However, the low productivity of the potential new AD metabolite was the main obstacle for its chemical structure elucidation. In this study, to increase the concentration of targeted metabolites, the influence of cellular morphology on AD metabolism in strain NJES-13T was determined using glass bead-enhanced fermentation. Based on the cellular ultra-structural observation driven by bacterial EPSs, and quantitative analysis of the targeted metabolites, the successful increasing of the productivity of three AD metabolites was achieved. Afterward, a new frigocyclinone analogue was isolated and then identified as 2-hydroxy-frigocyclinone, as well as two other known ADs named 2-hydroxy-tetrangomycin (2-HT) and gephyromycin (GPM). Three AD metabolites were found to demonstrate different bioactivities. Both C-2 hydroxyl substitutes, 2-hydroxy-tetrangomycin and 2-hydroxy-frigocyclinone, exhibited variable inhibitory activities against Staphylococcus aureus, Bacillus subtilis and Candida albicans. Moreover, the newly identified 2-hydroxy-frigocyclinone also showed significant cytotoxicity against three tested human-derived cancerous cell lines (HL-60, Bel-7402 and A549), with all obtained IC50 values less than 10 µM. Based on the genetic analysis after genomic mining, the plausible biogenetic pathway of the three bioactive ADs in strain NJES-13T was also proposed.
Collapse
Affiliation(s)
- Wen-Zhuo Zhu
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (W.-Z.Z.); (S.-H.W.); (H.-M.G.)
| | - Shu-Heng Wang
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (W.-Z.Z.); (S.-H.W.); (H.-M.G.)
| | - Hui-Min Gao
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (W.-Z.Z.); (S.-H.W.); (H.-M.G.)
| | - Ya-Ming Ge
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316021, China;
| | - Jun Dai
- Natural “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan 430068, China;
| | - Xiao-Ling Zhang
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (W.-Z.Z.); (S.-H.W.); (H.-M.G.)
- ABI Group, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: (X.-L.Z.); (Q.Y.)
| | - Qiao Yang
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (W.-Z.Z.); (S.-H.W.); (H.-M.G.)
- ABI Group, Zhejiang Ocean University, Zhoushan 316022, China
- Department of Environment Science and Engineering, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: (X.-L.Z.); (Q.Y.)
| |
Collapse
|
8
|
Gephyromycinifex aptenodytis gen. nov., sp. nov., isolated from gut of Antarctic emperor penguin Aptenodytes forsteri. Antonie van Leeuwenhoek 2021; 114:2003-2017. [PMID: 34532778 DOI: 10.1007/s10482-021-01657-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
A novel actinobacterium NJES-13T was isolated from the gut of Antarctic emperor penguin Aptenodytes forsteri. The new isolate produces bioactive gephyromycin metabolites and exopolysaccharides (EPS). Cells were Gram-negative, motile with the peritrichous flagella, and with a faint layer of extracellular slime. Colonies were yellow when grown on marine agar, ISP1, 2, 4 and TSA media. The strain developed clusters of coccoid, and divided by binary fission in the early phase of growth. The cell clusters were gradually disrupted during the stationary phase and formed short rod-shape cells which were interconnected by viscous EPS showing a three-dimensional net-like morphology, and contained polyhydroxyalkanoates (PHA) granules inside the cells. Growth of strain NJES-13T was observed at 15-45 °C, at pH 6.0-9.0 with 0.5-9.0% (w/v) NaCl. The complete genomic size of strain NJES-13T was 3.45 Mb with a DNA G + C content of 67.0 mol%. The combined polyphasic taxonomic characterizations presented in this study unequivocally separated strain NJES-13T from all known genera in the family Dermatophilaceae. Thus, strain NJES-13T represents a novel species of a new genus, for which the name Gephyromycinifex aptenodytis gen. nov., and sp. nov. is proposed. The type strain is NJES-13T (= CCTCC 2019007T = KCTC 49281T). Genetic prediction of secondary metabolite biosynthesis revealed a 44.5 kb-long biosynthetic gene cluster (BGC) of type III polyketide synthase (PKS) as well as four other BGCs, indicating its great potential to produce novel bioactive metabolites derived from the gut microbiota of animals living in the extreme habitats in the Antarctica.
Collapse
|
9
|
Wang X, Ye Y, Xu FF, Duan YH, Xie PF, Yang Q, Zhang XL. Maritimibacter alexandrii sp. nov., a New Member of Rhodobacteraceae Isolated from Marine Phycosphere. Curr Microbiol 2021; 78:3996-4003. [PMID: 34522978 DOI: 10.1007/s00284-021-02645-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Marine phycosphere hosts cross-kingdom algae-bacteria interactions playing a variety of crucial roles in aquatic ecosystems especially for the prevention and control of harmful algal blooms (HABs). During the investigation of structural composition of phycosphere microbiota (PM) of diverse marine HAB dinoflagellates, a Gram-negative, strictly aerobic, non-motile and rod-shaped bacterium designated LZ-17T was isolated from the phycosphere of highly toxic Alexandrium catenella LZT09. The 16S rRNA gene sequence analysis and the multilocus sequence analysis (MLSA) based on five protein-coding housekeeping genes (atpD, gyrB, mutL, topA and rpoD) indicated that strain LZ-17T was affiliated to the genus Maritimibacter within the family Rhodobacteraceae, and closely related to Maritimibacter alkaliphilus HTCC2654T (99.1%), 'Maritimibacter harenae' DP07T (97.9%) and M. lacisalsi X12M-4T (95.7%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain LZ-17T and the type strain of M. alkaliphilus were 96.9% and 74.7%. However, strain LZ-17T could be clearly distinguished from its closest by the phenotypical and phenotypical characteristics. Strain LZ-17T contained Q-10 as its major isoprenoid quinone, and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), C16:0 and C16:0 2-OH as the predominant fatty acids (>10%). The major polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine. The DNA G + C content was 64.3 mol%. Based on the polyphasic taxonomic characterization, strain LZ-17T represents a novel species of the genus Maritimibacter, for which the name Maritimibacter alexandrii sp. nov. is proposed, with the type strain LZ-17T (=CCTCC 2019005T = KCTC 72193T).
Collapse
Affiliation(s)
- Xing Wang
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Yun Ye
- Zhoushan Natural Resources Surveying and Mapping Design Center, Zhoushan, China
| | - Fei-Fei Xu
- Zhejiang Yimeiyuan Testing Technology Co., Ltd, Zhoushan, China
| | - Yu-Han Duan
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Peng-Fei Xie
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Qiao Yang
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China. .,ABI Group, Zhejiang Ocean University, Zhoushan, China.
| | - Xiao-Ling Zhang
- Department of Marine Chemistry, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China. .,ABI Group, Zhejiang Ocean University, Zhoushan, China.
| |
Collapse
|
10
|
Isolation, Phylogenetic and Gephyromycin Metabolites Characterization of New Exopolysaccharides-Bearing Antarctic Actinobacterium from Feces of Emperor Penguin. Mar Drugs 2021; 19:md19080458. [PMID: 34436297 PMCID: PMC8400323 DOI: 10.3390/md19080458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
A new versatile actinobacterium designated as strain NJES-13 was isolated from the feces of the Antarctic emperor penguin. This new isolate was found to produce two active gephyromycin analogues and bioflocculanting exopolysaccharides (EPS) metabolites. Phylogenetic analysis based on pairwise comparison of 16S rRNA gene sequences showed that strain NJES-13 was closely related to Mobilicoccus pelagius Aji5-31T with a gene similarity of 95.9%, which was lower than the threshold value (98.65%) for novel species delineation. Additional phylogenomic calculations of the average nucleotide identity (ANI, 75.9–79.1%), average amino acid identity (AAI, 52.4–66.9%) and digital DNA–DNA hybridization (dDDH, 18.6–21.9%), along with the constructed phylogenomic tree based on the up-to-date bacterial core gene (UBCG) set from the bacterial genomes, unequivocally separated strain NJES-13 from its close relatives within the family Dermatophilaceae. Hence, it clearly indicated that strain NJES-13 represented a putative new actinobacterial species isolated from the gut microbiota of mammals inhabiting the Antarctic. The obtained complete genome of strain NJES-13 consisted of a circular 3.45 Mb chromosome with a DNA G+C content of 67.0 mol%. Furthering genome mining of strain NJES-13 showed the presence of five biosynthetic gene clusters (BGCs) including one type III PKS responsible for the biosynthesis of the core of gephyromycins, and a series of genes encoding for bacterial EPS biosynthesis. Thus, based on the combined phylogenetic and active metabolites characterization presented in this study, we confidently conclude that strain NJES-13 is a novel, fresh actinobacterial candidate to produce active gephyromycins and microbial bioflocculanting EPS, with potential pharmaceutical, environmental and biotechnological implications.
Collapse
|
11
|
Maricaulis alexandrii sp. nov., a novel active bioflocculants-bearing and dimorphic prosthecate bacterium isolated from marine phycosphere. Antonie van Leeuwenhoek 2021; 114:1195-1203. [PMID: 33945067 DOI: 10.1007/s10482-021-01588-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
An aerobic, Gram-stain-negative, straight or curved rods and dimorphic prosthecate bacterium designated as strain LZ-16-1T was isolated from phycosphere microbiota of routinely laboratory-cultured and highly-toxic marine dinoflagellate Alexandrium catenella LZT09. Strain LZ-16-1T produces active bioflocculanting exopolysaccharides (EPS). Cells were dimorphic with non-motile prostheca, or non-stalked and motile by a single polar flagellum. Growth occurred at 10-40 °C, pH 5-9 and 1-8% (w/v) NaCl, with optimum growth at 25 °C, pH 7-8 in the presence of 2-4% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain LZ-16-1T was affiliated to the genus Maricaulis, and closely related to M. parjimensis MCS 25T (99.5%) and M. virginensis VC-5T (99.0%). However, based on genome sequencing and phylogenomic calculations, the average nucleotide identity (ANI) and digtal DNA-DNA genome hybridization (dDDH) values between strains LZ-16-1T and its closest relative, M. parjimensis MCS 25T were only 85.0 and 20.9%, respectively. The dominant fatty acids of strain LZ-16-1T were summed feature 8, C16:0, C17:0, C18:0, C18:1 ω9c and summed feature 9. Major polar lipids were sulfoquinovosyl diacylglycerol, six glycolipids, one unidentified phospholipid and one unidentified polar lipid. The predominant isoprenoid quinone was Q-10. The DNA G + C content calculated from the genome was 63.6 mol%. Physiological and chemotaxonomic characterizations further confirmed the distinctiveness of strain LZ-16-1T from other Maricaulis members. Thus, strain LZ-16-1T represents a novel species of the genus Maricaulis, for which the name Maricaulis alexandrii sp. nov. (type strain LZ-16-1T = KCTC 72194T = CCTCC AB 2019006T) is proposed.
Collapse
|
12
|
Yang Q, Ge YM, Iqbal NM, Yang X, Zhang XL. Sulfitobacter alexandrii sp. nov., a new microalgae growth-promoting bacterium with exopolysaccharides bioflocculanting potential isolated from marine phycosphere. Antonie van Leeuwenhoek 2021; 114:1091-1106. [PMID: 33895907 DOI: 10.1007/s10482-021-01580-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/13/2021] [Indexed: 02/04/2023]
Abstract
Marine phycosphere harbors unique cross-kingdom associations with enormous ecological significance in aquatic ecosystems as well as relevance for algal biotechnology industry. During our investigating the microbial composition and bioactivity of marine phycosphere microbiota (PM), a novel lightly yellowish and versatile bacterium designated strain AM1-D1T was isolated from cultivable PM of marine dinoflagellate Alexandrium minutum amtk4 that produces high levels of paralytic shellfish poisoning toxins (PSTs). Strain AM1-D1T demonstrates notable bioflocculanting bioactivity with bacterial exopolysaccharides (EPS), and microalgae growth-promoting (MGP) potential toward its algal host. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain AM1-D1T was affiliated to the members of genus Sulfitobacter within the family Rhodobacteraceae, showing the highest sequence similarity of 97.9% with Sulfitobacter noctilucae NB-68T, and below 97.8% with other type strains. The complete genome of strain AM1-D1T consisted of a circular 3.84-Mb chromosome and five circular plasmids (185, 95, 15, 205 and 348 Kb, respectively) with the G+C content of 64.6%. Low values obtained by phylogenomic calculations on the average nucleotide identity (ANI, 77.2%), average amino acid identity (AAI, 74.7%) and digital DNA-DNA hybridization (dDDH, 18.6%) unequivocally separated strain AM1-D1T from its closest relative. The main polar lipids were identified as phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol, one unidentified phospholipid and one unidentified lipid. The predominant fatty acids (> 10%) were C18:1 ω7c, C19:0 cyclo ω8c and C16:0. The respiratory quinone was Q-10. The genome of strain AM1-D1T was predicted to encode series of gene clusters responsible for sulfur oxidation (sox) and utilization of dissolved organic sulfur exometabolites from marine dinoflagellates, taurine (tau) and dimethylsulfoniopropionate (DMSP) (dmd), as well as supplementary vitamin B12 (cob), photosynthesis carotenoids (crt) which are pivotal components during algae-bacteria interactions. Based on the evidences by the polyphasic characterizations, strain AM1-D1T represents a novel species of the genus Sulfitobacter, for which the name Sulfitobacter alexandrii sp. nov. is proposed. The type strain is AM1-D1T (= CCTCC 2017277T = KCTC 62491T).
Collapse
Affiliation(s)
- Qiao Yang
- Department of Marine Chemistry, Zhejiang Ocean University, Zhoushan, China.,ABI Group of GPM Project, Zhejiang Ocean University, Zhoushan, China
| | - Ya-Ming Ge
- National Engineering Research Center for Marine Aquaculture, Zhoushan, China
| | - Nurhezreen Md Iqbal
- Malaysia Genome Institute, National Institute of Biotechnology Malaysia, Kajang, Malaysia
| | - Xi Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiao-Ling Zhang
- Department of Marine Chemistry, Zhejiang Ocean University, Zhoushan, China.
| |
Collapse
|