1
|
Sharma R, Sharma K, Bala M. Efficient feature selection for histopathological image classification with improved multi-objective WOA. Sci Rep 2024; 14:25163. [PMID: 39448704 PMCID: PMC11502702 DOI: 10.1038/s41598-024-75842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
The difficulty of selecting features efficiently in histopathology image analysis remains unresolved. Furthermore, the majority of current approaches have approached feature selection as a single objective issue. This research presents an enhanced multi-objective whale optimisation algorithm-based feature selection technique as a solution. To mine optimal feature sets, the suggested technique makes use of a unique variation known as the enhanced multi-objective whale optimisation algorithm. To verify the optimisation capability, the suggested variation has been evaluated on 10 common multi-objective CEC2009 benchmark functions. Furthermore, by comparing five classifiers in terms of accuracy, mean number of selected features, and calculation time, the effectiveness of the suggested strategy is verified against three other feature-selection techniques already in use. The experimental findings show that, when compared to the other approaches under consideration, the suggested method performed better on the assessed parameters.
Collapse
Affiliation(s)
- Ravi Sharma
- Delhi Technological University, Bawana, New Delhi, 110042, India.
| | - Kapil Sharma
- Delhi Technological University, Bawana, New Delhi, 110042, India
| | - Manju Bala
- Indraprastha College of Women, University of Delhi, Civil Lines, New Delhi, 110054, India
| |
Collapse
|
2
|
Alasmawi H, Bricker L, Yaqub M. FUSC: Fetal Ultrasound Semantic Clustering of Second-Trimester Scans Using Deep Self-Supervised Learning. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:703-711. [PMID: 38350787 DOI: 10.1016/j.ultrasmedbio.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/31/2023] [Accepted: 01/14/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVE The aim of this study was address the challenges posed by the manual labeling of fetal ultrasound images by introducing an unsupervised approach, the fetal ultrasound semantic clustering (FUSC) method. The primary objective was to automatically cluster a large volume of ultrasound images into various fetal views, reducing or eliminating the need for labor-intensive manual labeling. METHODS The FUSC method was developed by using a substantial data set comprising 88,063 images. The methodology involves an unsupervised clustering approach to categorize ultrasound images into diverse fetal views. The method's effectiveness was further evaluated on an additional, unseen data set consisting of 8187 images. The evaluation included assessment of the clustering purity, and the entire process is detailed to provide insights into the method's performance. RESULTS The FUSC method exhibited notable success, achieving >92% clustering purity on the evaluation data set of 8187 images. The results signify the feasibility of automatically clustering fetal ultrasound images without relying on manual labeling. The study showcases the potential of this approach in handling a large volume of ultrasound scans encountered in clinical practice, with implications for improving efficiency and accuracy in fetal ultrasound imaging. CONCLUSION The findings of this investigation suggest that the FUSC method holds significant promise for the field of fetal ultrasound imaging. By automating the clustering of ultrasound images, this approach has the potential to reduce the manual labeling burden, making the process more efficient. The results pave the way for advanced automated labeling solutions, contributing to the enhancement of clinical practices in fetal ultrasound imaging. Our code is available at https://github.com/BioMedIA-MBZUAI/FUSC.
Collapse
Affiliation(s)
- Hussain Alasmawi
- Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates.
| | - Leanne Bricker
- Abu Dhabi Health Services Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Mohammad Yaqub
- Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Díaz-Lozano M, Guijo-Rubio D, Gutiérrez PA, Hervás-Martínez C. Cluster analysis and forecasting of viruses incidence growth curves: Application to SARS-CoV-2. EXPERT SYSTEMS WITH APPLICATIONS 2023; 225:120103. [PMID: 37090447 PMCID: PMC10108563 DOI: 10.1016/j.eswa.2023.120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
The sanitary emergency caused by COVID-19 has compromised countries and generated a worldwide health and economic crisis. To provide support to the countries' responses, numerous lines of research have been developed. The spotlight was put on effectively and rapidly diagnosing and predicting the evolution of the pandemic, one of the most challenging problems of the past months. This work contributes to the existing literature by developing a two-step methodology to analyze the transmission rate, designing models applied to territories with similar pandemic behavior characteristics. Virus transmission is considered as bacterial growth curves to understand the spread of the virus and to make predictions about its future evolution. Hence, an analytical clustering procedure is first applied to create groups of locations where the virus transmission rate behaved similarly in the different outbreaks. A curve decomposition process based on an iterative polynomial process is then applied, obtaining meaningful forecasting features. Information of the territories belonging to the same cluster is merged to build models capable of simultaneously predicting the 14-day incidence in several locations using Evolutionary Artificial Neural Networks. The methodology is applied to Andalusia (Spain), although it is applicable to any region across the world. Individual models trained for a specific territory are carried out for comparison purposes. The results demonstrate that this methodology achieves statistically similar, or even better, performance for most of the locations. In addition to being extremely competitive, the main advantage of the proposal lies in its complexity cost reduction. The total number of parameters to be estimated is reduced up to 93.51% for the short term and 93.31% for the mid-term forecasting, respectively. Moreover, the number of required models is reduced by 73.53% and 58.82% for the short- and mid-term forecasting horizons.
Collapse
Affiliation(s)
- Miguel Díaz-Lozano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain
- Department of Computer Science and Numerical Analysis, University of Cordoba, 14071 Cordoba, Spain
| | - David Guijo-Rubio
- School of Computing Sciences, University of East Anglia, NR4 7TJ Norwich, United Kingdom
- Department of Computer Science and Numerical Analysis, University of Cordoba, 14071 Cordoba, Spain
| | - Pedro Antonio Gutiérrez
- Department of Computer Science and Numerical Analysis, University of Cordoba, 14071 Cordoba, Spain
| | - César Hervás-Martínez
- Department of Computer Science and Numerical Analysis, University of Cordoba, 14071 Cordoba, Spain
| |
Collapse
|
4
|
Vinod DN, Prabaharan SRS. COVID-19-The Role of Artificial Intelligence, Machine Learning, and Deep Learning: A Newfangled. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:2667-2682. [PMID: 36685135 PMCID: PMC9843670 DOI: 10.1007/s11831-023-09882-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/05/2023] [Indexed: 05/29/2023]
Abstract
The absolute previously infected novel coronavirus (COVID-19) was found in Wuhan, China, in December 2019. The COVID-19 epidemic has spread to more than 220 nations and territories globally and has altogether influenced each part of our day-to-day lives. As of 9th March 2022, a total aggregate of 44,78,82,185 (60,07,317) contaminated (dead) COVID-19 cases were accounted for all over the world. The quantities of contaminated cases passing despite everything increment essentially and do not indicate a controlled circumstance. The scope of this paper is to address this issue by presenting a comprehensive and comparative analysis of the existing Machine Learning (ML), Deep Learning (DL) and Artificial Intelligence (AI) based approaches used in significance in reacting to the COVID-19 epidemic and diagnosing the severe impacts. The paper provides, firstly, an overview of COVID-19 infection and highlights of this article; Secondly, an overview of exploring various executive innovations by utilizing different resources to stop the spread of COVID-19; Thirdly, a comparison of existing predicting methods of COVID-19 in the literature, with focus on ML, DL and AI-driven techniques with performance metrics; and finally, a discussion on the results of the work as well as future scope.
Collapse
Affiliation(s)
- Dasari Naga Vinod
- Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu 600062 India
| | - S. R. S. Prabaharan
- Sathyabama Centre for Advanced Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamil Nadu 600119 India
| |
Collapse
|
5
|
Rough sets-based tri-trade for partially labeled data. APPL INTELL 2023. [DOI: 10.1007/s10489-022-04405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Wang J, Luo Y, Wang Z, Hounye AH, Cao C, Hou M, Zhang J. A cell phone app for facial acne severity assessment. APPL INTELL 2023; 53:7614-7633. [PMID: 35919632 PMCID: PMC9336136 DOI: 10.1007/s10489-022-03774-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 11/28/2022]
Abstract
Acne vulgaris, the most common skin disease, can cause substantial economic and psychological impacts to the people it affects, and its accurate grading plays a crucial role in the treatment of patients. In this paper, we firstly proposed an acne grading criterion that considers lesion classifications and a metric for producing accurate severity ratings. Due to similar appearance of acne lesions with comparable severities and difficult-to-count lesions, severity assessment is a challenging task. We cropped facial skin images of several lesion patches and then addressed the acne lesion with a lightweight acne regular network (Acne-RegNet). Acne-RegNet was built by using a median filter and histogram equalization to improve image quality, a channel attention mechanism to boost the representational power of network, a region-based focal loss to handle classification imbalances and a model pruning and feature-based knowledge distillation to reduce model size. After the application of Acne-RegNet, the severity score is calculated, and the acne grading is further optimized by the metadata of the patients. The entire acne assessment procedure was deployed to a mobile device, and a phone app was designed. Compared with state-of-the-art lightweight models, the proposed Acne-RegNet significantly improves the accuracy of lesion classifications. The acne app demonstrated promising results in severity assessments (accuracy: 94.56%) and showed a dermatologist-level diagnosis on the internal clinical dataset.The proposed acne app could be a useful adjunct to assess acne severity in clinical practice and it enables anyone with a smartphone to immediately assess acne, anywhere and anytime.
Collapse
Affiliation(s)
- Jiaoju Wang
- School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan China
| | - Yan Luo
- Department of dermatology of Xiangya hospital, Central South University, Changsha, 410083 Hunan China
| | - Zheng Wang
- School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan China.,Science and Engineering School, Hunan First Normal University, Changsha, 410083 Hunan China
| | - Alphonse Houssou Hounye
- School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan China
| | - Cong Cao
- School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan China
| | - Muzhou Hou
- School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan China
| | - Jianglin Zhang
- Department of Dermatology of Shenzhen People's Hospital The Second Clinical Medical College of Jinan Uninversity, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020 Guangdong China.,Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, 518020 Guangdong China
| |
Collapse
|
7
|
Tiwari T, Saraswat M. A new firefly algorithm-based superpixel clustering method for vehicle segmentation. Soft comput 2022; 27:1-14. [PMID: 35729951 PMCID: PMC9190197 DOI: 10.1007/s00500-022-07206-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
The vehicle segmentation in the images of a crowded and unstructured road traffic, having inconsistent driving patterns and vivid attributes like colour, shapes, and size, is a complex task. For the same, this paper presents a new firefly algorithm-based superpixel clustering method for vehicle segmentation. The proposed method introduces a modified firefly algorithm by incorporating the best solution for enhancing the exploitation behaviour and solution precision. The modified firefly algorithm is further used to obtain the optimal superpixel clusters. The modified firefly algorithm is compared against state-of-the-art meta-heuristic algorithms on IEEE CEC 2015 benchmark problems in terms of mean fitness value, Wilcoxon rank-sum test, convergence behaviour, and box plot. The proposed meta-heuristic algorithm performed superior on more than 80% of the considered benchmark problems. Moreover, the modified firefly algorithm is statistically better on more than 92% of the total problems during Wilcoxon test. Further, the proposed segmentation method is analysed on a traffic dataset to segment the auto-rickshaw. The performance of the proposed method has been compared with kmeans-based superpixel clustering method. The proposed method shows the highest mean value of 0.6242 for Dice coefficient. Both qualitative and quantitative results affirm the efficacy of the proposed method.
Collapse
Affiliation(s)
- Twinkle Tiwari
- Department of Computer Science & Engineering and Information Technology, Jaypee Institute of Information Technology, Noida, India
| | - Mukesh Saraswat
- Department of Computer Science & Engineering and Information Technology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
8
|
Li R, Cai Z. A clustering algorithm based on density decreased chain for data with arbitrary shapes and densities. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
9
|
Riaz M, Bashir M, Younas I. Metaheuristics based COVID-19 detection using medical images: A review. Comput Biol Med 2022; 144:105344. [PMID: 35294913 PMCID: PMC8907145 DOI: 10.1016/j.compbiomed.2022.105344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 01/02/2023]
Abstract
Many countries in the world have been facing the rapid spread of COVID-19 since February 2020. There is a dire need for efficient and cheap automated diagnosis systems that can reduce the pressure on healthcare systems. Extensive research is being done on the use of image classification for the detection of COVID-19 through X-ray and CT-scan images of patients. Deep learning has been the most popular technique for image classification during the last decade. However, the performance of deep learning-based methods heavily depends on the architecture of the deep neural network. Over the last few years, metaheuristics have gained popularity for optimizing the architecture of deep neural networks. Metaheuristics have been widely used to solve different complex non-linear optimization problems due to their flexibility, simplicity, and problem independence. This paper aims to study the different image classification techniques for chest images, including the applications of metaheuristics for optimization and feature selection of deep learning and machine learning models. The motivation of this study is to focus on applications of different types of metaheuristics for COVID-19 detection and to shed some light on future challenges in COVID-19 detection from medical images. The aim is to inspire researchers to focus their research on overlooked aspects of COVID-19 detection.
Collapse
Affiliation(s)
- Mamoona Riaz
- FAST School of Computing, National University of Computer and Emerging Sciences, Lahore, Pakistan
| | - Maryam Bashir
- FAST School of Computing, National University of Computer and Emerging Sciences, Lahore, Pakistan.
| | - Irfan Younas
- FAST School of Computing, National University of Computer and Emerging Sciences, Lahore, Pakistan
| |
Collapse
|
10
|
Zheng B, Zhu Y, Shi Q, Yang D, Shao Y, Xu T. MA-Net:Mutex attention network for COVID-19 diagnosis on CT images. APPL INTELL 2022; 52:18115-18130. [PMID: 35431458 PMCID: PMC8994185 DOI: 10.1007/s10489-022-03431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 12/01/2022]
Abstract
COVID-19 is an infectious pneumonia caused by 2019-nCoV. The number of newly confirmed cases and confirmed deaths continues to remain at a high level. RT–PCR is the gold standard for the COVID-19 diagnosis, but the computed tomography (CT) imaging technique is an important auxiliary diagnostic tool. In this paper, a deep learning network mutex attention network (MA-Net) is proposed for COVID-19 auxiliary diagnosis on CT images. Using positive and negative samples as mutex inputs, the proposed network combines mutex attention block (MAB) and fusion attention block (FAB) for the diagnosis of COVID-19. MAB uses the distance between mutex inputs as a weight to make features more distinguishable for preferable diagnostic results. FAB acts to fuse features to obtain more representative features. Particularly, an adaptive weight multiloss function is proposed for better effect. The accuracy, specificity and sensitivity were reported to be as high as 98.17%, 97.25% and 98.79% on the COVID-19 dataset-A provided by the Affiliated Medical College of Qingdao University, respectively. State-of-the-art results have also been achieved on three other public COVID-19 datasets. The results show that compared with other methods, the proposed network can provide effective auxiliary information for the diagnosis of COVID-19 on CT images.
Collapse
Affiliation(s)
- BingBing Zheng
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Yu Zhu
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200237 China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, Shanghai, 200237 China
| | - Qin Shi
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Dawei Yang
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, Shanghai, 200237 China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Yanmei Shao
- Department of Pulmonary and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000 China
| | - Tao Xu
- Department of Pulmonary and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000 China
| |
Collapse
|
11
|
Optimal keyframe selection-based lossless video-watermarking technique using IGSA in LWT domain for copyright protection. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-021-00569-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractVideo piracy is a challenging issue in the modern world. Approximately $$90\%$$
90
%
of newly released films were illegally distributed around the world via the Internet. To overcome this issue, video watermarking is an effective process that integrates a logo in video frames as a watermark. Therefore, this paper presents an efficient lossless video-watermarking scheme based on optimal keyframe selection using an intelligent gravitational search algorithm in linear wavelet transform. This technique obtains color motion and motionless frames from the cover video by the histogram difference method. One-level linear wavelet transform is performed on the chrominance channel of motion frames and a low-frequency sub-band LL opts for watermark embedding. The performance of the proposed technique has been evaluated against 12 video processing attacks in terms of imperceptibility and robustness. Experiments demonstrate that the proposed technique outperforms five state-of-the-art schemes on the considered attacks.
Collapse
|
12
|
Wang Y, Li K, Lei Y. A general multi-scale image classification based on shared conversion matrix routing. APPL INTELL 2022. [DOI: 10.1007/s10489-021-02558-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Sharma R, Sharma K. An optimal nuclei segmentation method based on enhanced multi-objective GWO. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-021-00547-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractIn breast cancer image analysis, reliable segmentation of the nuclei is still an open-ended research problem. In this paper, a new clustering-based nuclei segmentation method is presented. First, the proposed method pre-processes the histopathology image through SLIC method. Then, a novel variant of multi-objective grey wolf optimizer is employed to group the obtained super-pixels into optimal clusters. Lastly, the optimal cluster with minimum value is segmented as the nuclei region. The experimental results demonstrates that the proposed variant of multi-objective grey wolf algorithm surpasses the existing multi-objective algorithms over ten standard multi-objective benchmark functions belonging to different categories. Particularly, the proposed variant has achieved best fitness value of more than 0.90 on 90% of the considered functions. Further, the nuclei segmentation accuracy of the proposed method is validated on H&E-stained estrogen receptor positive (ER+) breast cancer images. Experimental results illustrates that the proposed method has attained dice-coefficient value of more than 0.52 on 80% of the images. This illustrates that the proposed method is efficient in producing efficacious segmenting over histology images of Breast cancer.
Collapse
|
14
|
Duan Y, Liu C, Li S, Guo X, Yang C. Gradient-based elephant herding optimization for cluster analysis. APPL INTELL 2022; 52:11606-11637. [PMID: 35106027 PMCID: PMC8795968 DOI: 10.1007/s10489-021-03020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Clustering analysis is essential for obtaining valuable information from a predetermined dataset. However, traditional clustering methods suffer from falling into local optima and an overdependence on the quality of the initial solution. Given these defects, a novel clustering method called gradient-based elephant herding optimization for cluster analysis (GBEHO) is proposed. A well-defined set of heuristics is introduced to select the initial centroids instead of selecting random initial points. Specifically, the elephant optimization algorithm (EHO) is combined with the gradient-based algorithm GBO for assigning initial cluster centers across the search space. Second, to overcome the imbalance between the original EHO exploration and exploitation, the initialized population is improved by introducing Gaussian chaos mapping. In addition, two operators, i.e., random wandering and variation operators, are set to adjust the location update strategy of the agents. Nine datasets from synthetic and real-world datasets are adopted to evaluate the effectiveness of the proposed algorithm and the other metaheuristic algorithms. The results show that the proposed algorithm ranks first among the 10 algorithms. It is also extensively compared with state-of-the-art techniques, and four evaluation criteria of accuracy rate, specificity, detection rate, and F-measure are used. The obtained results clearly indicate the excellent performance of GBEHO, while the stability is also more prominent.
Collapse
|
15
|
Gudigar A, Raghavendra U, Nayak S, Ooi CP, Chan WY, Gangavarapu MR, Dharmik C, Samanth J, Kadri NA, Hasikin K, Barua PD, Chakraborty S, Ciaccio EJ, Acharya UR. Role of Artificial Intelligence in COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:8045. [PMID: 34884045 PMCID: PMC8659534 DOI: 10.3390/s21238045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022]
Abstract
The global pandemic of coronavirus disease (COVID-19) has caused millions of deaths and affected the livelihood of many more people. Early and rapid detection of COVID-19 is a challenging task for the medical community, but it is also crucial in stopping the spread of the SARS-CoV-2 virus. Prior substantiation of artificial intelligence (AI) in various fields of science has encouraged researchers to further address this problem. Various medical imaging modalities including X-ray, computed tomography (CT) and ultrasound (US) using AI techniques have greatly helped to curb the COVID-19 outbreak by assisting with early diagnosis. We carried out a systematic review on state-of-the-art AI techniques applied with X-ray, CT, and US images to detect COVID-19. In this paper, we discuss approaches used by various authors and the significance of these research efforts, the potential challenges, and future trends related to the implementation of an AI system for disease detection during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Sneha Nayak
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore;
| | - Wai Yee Chan
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Mokshagna Rohit Gangavarapu
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chinmay Dharmik
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Jyothi Samanth
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Prabal Datta Barua
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia;
- School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Subrata Chakraborty
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - Edward J. Ciaccio
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - U. Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore;
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
16
|
Shome D, Kar T, Mohanty SN, Tiwari P, Muhammad K, AlTameem A, Zhang Y, Saudagar AKJ. COVID-Transformer: Interpretable COVID-19 Detection Using Vision Transformer for Healthcare. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11086. [PMID: 34769600 PMCID: PMC8583247 DOI: 10.3390/ijerph182111086] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 11/18/2022]
Abstract
In the recent pandemic, accurate and rapid testing of patients remained a critical task in the diagnosis and control of COVID-19 disease spread in the healthcare industry. Because of the sudden increase in cases, most countries have faced scarcity and a low rate of testing. Chest X-rays have been shown in the literature to be a potential source of testing for COVID-19 patients, but manually checking X-ray reports is time-consuming and error-prone. Considering these limitations and the advancements in data science, we proposed a Vision Transformer-based deep learning pipeline for COVID-19 detection from chest X-ray-based imaging. Due to the lack of large data sets, we collected data from three open-source data sets of chest X-ray images and aggregated them to form a 30 K image data set, which is the largest publicly available collection of chest X-ray images in this domain to our knowledge. Our proposed transformer model effectively differentiates COVID-19 from normal chest X-rays with an accuracy of 98% along with an AUC score of 99% in the binary classification task. It distinguishes COVID-19, normal, and pneumonia patient's X-rays with an accuracy of 92% and AUC score of 98% in the Multi-class classification task. For evaluation on our data set, we fine-tuned some of the widely used models in literature, namely, EfficientNetB0, InceptionV3, Resnet50, MobileNetV3, Xception, and DenseNet-121, as baselines. Our proposed transformer model outperformed them in terms of all metrics. In addition, a Grad-CAM based visualization is created which makes our approach interpretable by radiologists and can be used to monitor the progression of the disease in the affected lungs, assisting healthcare.
Collapse
Affiliation(s)
- Debaditya Shome
- School of Electronics Engineering, KIIT Deemed to be University, Odisha 751024, India; (D.S.); (T.K.)
| | - T. Kar
- School of Electronics Engineering, KIIT Deemed to be University, Odisha 751024, India; (D.S.); (T.K.)
| | - Sachi Nandan Mohanty
- Department of Computer Science & Engineering, Vardhaman College of Engineering (Autonomous), Hyderabad 501218, India;
| | - Prayag Tiwari
- Department of Computer Science, Aalto University, 02150 Espoo, Finland;
| | - Khan Muhammad
- Visual Analytics for Knowledge Laboratory (VIS2KNOW Lab), School of Convergence, College of Computing and Informatics, Sungkyunkwan University, Seoul 03063, Korea
| | - Abdullah AlTameem
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
| | - Yazhou Zhang
- Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450001, China;
| | - Abdul Khader Jilani Saudagar
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
| |
Collapse
|
17
|
Yin MZ, Zhu QW, Lü X. Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model. NONLINEAR DYNAMICS 2021; 106:1347-1358. [PMID: 34177117 PMCID: PMC8211977 DOI: 10.1007/s11071-021-06587-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/26/2021] [Indexed: 05/09/2023]
Affiliation(s)
- Ming-Ze Yin
- Department of Mathematics, Beijing Jiaotong University, Beijing, 100044 China
| | - Qing-Wen Zhu
- Department of Mathematics, Beijing Jiaotong University, Beijing, 100044 China
| | - Xing Lü
- Department of Mathematics, Beijing Jiaotong University, Beijing, 100044 China
| |
Collapse
|