1
|
Suthaparan A, Stensvand A. Shedding the Light on Powdery Mildew: The Use of Optical Irradiation in Management of the Disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:289-308. [PMID: 38876113 DOI: 10.1146/annurev-phyto-021622-115201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Ultraviolet (UV) irradiation below 300 nm may control powdery mildew in numerous crops. Depending on disease pressure, wavelength, and crop growth stage, one to three applications of 100-200 J/m2 per week at night are as effective or better than the best fungicides. Higher doses may harm the plants and reduce yields. Although red light alone or in combination with UV has a suppressive effect on powdery mildew, concomitant or subsequent exposure to blue light or UV-A strongly reduces the efficacy of UV treatments. To be effective, direct exposure of the pathogen/infection sites to UV/red light is important, but there are clear indications for the involvement of induced resistance in the host. Other pathogens and pests are susceptible to UV, but the effective dose may be phytotoxic. Although there are certain limitations, this technology is gradually becoming more used in both protected and open-field commercial production systems.
Collapse
Affiliation(s)
- Aruppillai Suthaparan
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway;
| | - Arne Stensvand
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway;
| |
Collapse
|
2
|
Tanaka M, Yase J, Kanto T, Osakabe M. Combined nighttime ultraviolet B irradiation and phytoseiid mite application provide optimal control of the spider mite Tetranychus urticae on greenhouse strawberry plants. PEST MANAGEMENT SCIENCE 2024; 80:698-707. [PMID: 37759371 DOI: 10.1002/ps.7798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Tetranychus urticae is a hard-to-control pest of greenhouse strawberry production. Nighttime ultraviolet B (UV-B) radiation using light reflection sheets (LRS) has been applied as a physical method to control T. urticae through direct ovicidal effects (the UV method). However, because strawberry leaves grow more densely, UV-B radiation fails to reach the lower leaf surfaces inhabited by spider mites; therefore, a complementary method is required. We propose the supplemental application of phytoseiid mites in greenhouse strawberry production. We evaluated the control effects of UV-B irradiation, phytoseiid mite application and their combined use. The effects of UV-B irradiation on the degree of overlap relative to the independent distributions (ω) between predators and prey were also analyzed. RESULTS The UV method alone maintained low T. urticae density levels from November to February; however, mite populations increased from March onward. Phytoseiid mite application in January and February without UV-B irradiation resulted in a temporary increase in spider mites in March and/or April. By contrast, combined application of the UV method and phytoseiid mites had a greater control effect during the strawberry growing season. The ω values were higher for the UV method compared with no UV-B irradiation, suggesting that UV-B irradiation increased phytoseiid mite foraging rates. CONCLUSION The release of phytoseiid mites compensated for the shortcomings of the UV method, and UV-B irradiation promoted predation by phytoseiid mites by increasing the behavioral numerical response. Consequently, combined application of UV-B irradiation and phytoseiid mites is optimal for T. urticae control in greenhouse strawberry production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Masaya Tanaka
- Plant Protection Department, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Hyogo, Japan
| | - Junya Yase
- Plant Protection Department, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Hyogo, Japan
| | - Takeshi Kanto
- Plant Protection Department, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Hyogo, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Barnes PW, Robson TM, Zepp RG, Bornman JF, Jansen MAK, Ossola R, Wang QW, Robinson SA, Foereid B, Klekociuk AR, Martinez-Abaigar J, Hou WC, Mackenzie R, Paul ND. Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochem Photobiol Sci 2023; 22:1049-1091. [PMID: 36723799 PMCID: PMC9889965 DOI: 10.1007/s43630-023-00376-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Terrestrial organisms and ecosystems are being exposed to new and rapidly changing combinations of solar UV radiation and other environmental factors because of ongoing changes in stratospheric ozone and climate. In this Quadrennial Assessment, we examine the interactive effects of changes in stratospheric ozone, UV radiation and climate on terrestrial ecosystems and biogeochemical cycles in the context of the Montreal Protocol. We specifically assess effects on terrestrial organisms, agriculture and food supply, biodiversity, ecosystem services and feedbacks to the climate system. Emphasis is placed on the role of extreme climate events in altering the exposure to UV radiation of organisms and ecosystems and the potential effects on biodiversity. We also address the responses of plants to increased temporal variability in solar UV radiation, the interactive effects of UV radiation and other climate change factors (e.g. drought, temperature) on crops, and the role of UV radiation in driving the breakdown of organic matter from dead plant material (i.e. litter) and biocides (pesticides and herbicides). Our assessment indicates that UV radiation and climate interact in various ways to affect the structure and function of terrestrial ecosystems, and that by protecting the ozone layer, the Montreal Protocol continues to play a vital role in maintaining healthy, diverse ecosystems on land that sustain life on Earth. Furthermore, the Montreal Protocol and its Kigali Amendment are mitigating some of the negative environmental consequences of climate change by limiting the emissions of greenhouse gases and protecting the carbon sequestration potential of vegetation and the terrestrial carbon pool.
Collapse
Affiliation(s)
- P W Barnes
- Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, USA.
| | - T M Robson
- Organismal & Evolutionary Biology (OEB), Faculty of Biological and Environmental Sciences, Viikki Plant Sciences Centre (ViPS), University of Helsinki, Helsinki, Finland.
- National School of Forestry, University of Cumbria, Ambleside, UK.
| | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia
| | | | - R Ossola
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, USA
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
| | - S A Robinson
- Global Challenges Program & School of Earth, Atmospheric and Life Sciences, Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
| | - B Foereid
- Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J Martinez-Abaigar
- Faculty of Science and Technology, University of La Rioja, Logroño (La Rioja), Spain
| | - W-C Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - R Mackenzie
- Cape Horn International Center (CHIC), Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - N D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
4
|
Montemayor JD, Smith HA, Peres NA, Lahiri S. Potential of UV-C for management of two-spotted spider mites and thrips in Florida strawberry. PEST MANAGEMENT SCIENCE 2023; 79:891-898. [PMID: 36309928 DOI: 10.1002/ps.7263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Major pests of Florida strawberry (two-spotted spider mites, Tetranychus urticae Koch; chilli thrips, Scirtothrips dorsalis Hood; and western flower thrips, Frankliniella occidentalis Pergande) are difficult to manage using only conventional chemical control. Previous research has demonstrated high mortality of T. urticae eggs after exposure to ultraviolet B (UV-B) light. Additionally, ultraviolet C (UV-C) light has been shown to suppress powdery mildew in strawberry at doses between 85 and 200 J m-2 with no damage to the plant. Therefore, UV-C may also have the potential to be used as an integrated pest management tool for arthropod pests of strawberry. The objectives of this study were to: (i) determine the effect of UV-C on T. urticae, S. dorsalis, and F. occidentalis natural populations in open-field strawberry; and (ii) determine the effect of UV-C on T. urticae egg hatch after application in open-field strawberry. Field studies were conducted during the 2019-2020 and 2020-2021 strawberry seasons in Florida, USA. Four treatments were compared: (i) foliar application of spinetoram in response to natural pest pressure; (ii) application of UV-C 200 J m-2 twice a week; (iii) application of UV-C 350 J m-2 twice a week; and (iv) a non-treated control. RESULTS In the field trials, suppression of T. urticae was observed at 350 J m-2 in 2020-2021. In the other field trials, no effect was observed due to low natural infestations. No negative impact on yield was observed from UV-C applications. CONCLUSION UV-C shows promise as a component of an integrated pest management program for T. urticae in strawberry. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joseph D Montemayor
- Department of Entomology and Nematology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| | - Hugh A Smith
- Department of Entomology and Nematology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| | - Natalia A Peres
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| | - Sriyanka Lahiri
- Department of Entomology and Nematology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| |
Collapse
|
5
|
Yuan L, Osakabe M. Mechanisms underlying the impact and interaction of temperature and UV-B on the hatching of spider mite and phytoseiid mite eggs. PEST MANAGEMENT SCIENCE 2022; 78:4314-4323. [PMID: 35731693 DOI: 10.1002/ps.7050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND A spider mite control method using night-time ultraviolet (UV)-B irradiation was recently developed for strawberry greenhouses (UV method). The control effect of this UV method is negatively affected by increasing temperature. Tetranychus urticae eggs are more resistant to a single dose of UV-B irradiation than Neoseiulus californicus eggs. By contrast, N. californicus can better survive nightly UV-B irradiation with the UV method compared with T. urticae. To elucidate the mechanism underlying these phenomena, we explored the hypotheses that higher temperature promotes photoenzymatic repair (PER) and that mortality is determined by UV-B susceptibility in the embryonic stage exposed to UV-B. RESULTS PER efficacy was not promoted by increasing temperature. The lowest hatchability (around zero) of T. urticae eggs after a single dose of UV-B irradiation (0.288 and 0.432 kJ m-2 ) without photoreactivation was seen in the morphogenesis stages between "cleavage ended" and "eye points became colored". Based on these results, we developed a linear function of daily UV-B irradiance and deviation of cumulative irradiance during vulnerable embryonic developmental phases from 50% lethal dose (LD50 ) after a single dose of UV-B irradiation. The difference between T. urticae and N. californicus and changes in UV-B vulnerability due to temperature could be explained by this simple relationship. CONCLUSION Slower development in T. urticae than N. californicus in nature and developmental delay under low temperatures increase the ovicidal effects of the UV method. This shows the advantage of the simultaneous use of the UV method and biological control, contributing to the development of integrated pest management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lifeng Yuan
- Laboratory of Ecological Information, Kyoto University, Kyoto, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Yuan L, Mori S, Haruyama N, Hirai N, Osakabe M. Strawberry pollen as a source of UV-B protection ingredients for the phytoseiid mite Neoseiulus californicus (Acari: Phytoseiidae). PEST MANAGEMENT SCIENCE 2021; 77:851-859. [PMID: 32949092 DOI: 10.1002/ps.6089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/01/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND A new physical control method using ultraviolet-B (UV-B) lamps and light-reflecting sheets (UV method) significantly suppressed a spider mite population on greenhouse strawberries. Although UV-B radiation may adversely affect the survival of phytoseiid mites, previous research has suggested that Neoseiulus californicus can improve its survival on exposure to UV-B irradiation by consuming antioxidants contained in tea and peach pollen. In this study, we evaluated strawberry pollen as an alternative food source for N. californicus and examined whether antioxidants in the pollen mitigated UV-B damage to N. californicus. RESULTS The fecundity of N. californicus females reared on Tetranychus urticae decreased on shifting their diet to pollen. By contrast, females reared continuously on strawberry pollen produced as many eggs as females reared continuously on T. urticae. Survival and fecundity after UV-B irradiation were higher in females on the pollen diet. Oxygen radical absorbance capacity analysis revealed that the high antioxidant activity of strawberry pollen was due to four hydroxycinnamoyl spermidine derivatives. CONCLUSION Strawberry pollen was an adequate alternative food source for N. californicus. Feeding on strawberry pollen, which contains spermidine derivatives with high antioxidant activity, mitigated UV-B damage. This shows the potential of combining the UV-method with N. californicus for controlling T. urticae in strawberries.
Collapse
Affiliation(s)
- Lifeng Yuan
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shinnosuke Mori
- Laboratory of Comparative Agricultural Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoto Haruyama
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Japan
| | - Nobuhiro Hirai
- Laboratory of Comparative Agricultural Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Tomimori D, Hosokawa M, Aoki S, Osakabe M. Effects of Growth Phase and Ultraviolet-B Pretreatment in Perilla Leaves on the Two-Spotted Spider Mite. ENVIRONMENTAL ENTOMOLOGY 2020; 49:886-894. [PMID: 32457991 DOI: 10.1093/ee/nvaa055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 06/11/2023]
Abstract
Perilla, Perilla frutescens (L.) Britton var. crispa (Thunb.) H. Deane, is traditionally cultivated as an edible/medicinal crop in East Asia. Its essential oil contains many bioactive compounds that are expected to have high pharmacological functionality, as well as antimicrobial and insecticidal activity. Spider mites are a major pest group for perilla cultivation. The two-spotted spider mite, Tetranychus urticae Koch, possesses divergent detoxification enzymes and has developed resistance against most acaricides. The essential oil content of perilla halves from the pre-flowering phase to the flowering phase, and ultraviolet (UV)-B radiation generally increases defense compounds. To clarify the effects of this change in essential oil content and the effects of UV-B pretreatment, we investigated the developmental success and egg production of T. urticae on leaves from the preflowering and flowering phases cultivated with and without nighttime UV-B irradiation. Both the parameters significantly increased on leaves from the flowering phase in comparison with that from the preflowering phase, suggesting that constitutively produced essential oil provided protection against mite pests in a growth phase-specific manner. The defense system also extended the developmental period of mites on red perilla leaves, but not on green perilla leaves, in preflowering phase. Although egg production was lower on red perilla leaves pretreated with UV-B, no negative effects were caused on the developmental success and duration on red and green perilla and the egg production on green perilla by UV-B pretreatment. Our findings reveal a significant impact of investment allocation of perilla plants and a small contribution of UV-B irradiation to the plant defense system.
Collapse
Affiliation(s)
- Daichi Tomimori
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Munetaka Hosokawa
- Laboratory of Floriculture, Department of Agriculture, Kindai University, Nara, Japan
| | - Shinichi Aoki
- Panasonic Corporation Life Solutions Company, Osaka, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Yuan L, Osakabe M. Dose-Response and Temperature Dependence of the Mortality of Spider Mite and Predatory Mite Eggs Caused by Daily Nighttime Ultraviolet-B Irradiation. Photochem Photobiol 2020; 96:877-882. [PMID: 31886904 DOI: 10.1111/php.13204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023]
Abstract
The two-spotted spider mite, Tetranychus urticae, is an economically important agricultural pest. A novel physical control method involving daily nighttime UV-B irradiation was recently developed for use in strawberry greenhouses. However, the overlapping of leaves after March prevents direct irradiation to T. urticae on the lower leaf surface, decreasing control effect. Excessive UV-B irradiation causes leaf sunscald in winter. Therefore, optimization of UV-B irradiance and a compensatory control agent are desired. Temperature may affect the survival of organisms exposed to UV-B, although the temperature dependence of UV-B damage is controversial. A phytoseiid mite, Neoseiulus californicus, is a prominent predator but vulnerable to a single UV-B irradiation. We compared dose-response and temperature dependence of UV-B damage between T. urticae and N. californicus eggs under daily nighttime UV-B irradiation. Unexpectedly, N. californicus showed greater resistance to UV-B than T. urticae, and the mortality was increased and decreased at low and high temperatures, respectively. This makes possible the application of UV-B doses that are lethal for spider mites but safe for phytoseiid mites. Overall, we concluded that combined use of phytoseiid mites with UV-B lamps is advantageous to spider mite management in strawberry greenhouses.
Collapse
Affiliation(s)
- Lifeng Yuan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
9
|
Sugioka N, Kawakami M, Hirai N, Osakabe M. A Pollen Diet Confers Ultraviolet-B Resistance in Phytoseiid Mites by Providing Antioxidants. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Yoshioka Y, Gotoh T, Suzuki T. UV-B susceptibility and photoreactivation in embryonic development of the two-spotted spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 75:155-166. [PMID: 29761305 DOI: 10.1007/s10493-018-0263-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Developmental errors are often induced in the embryos of many organisms by environmental stress. Ultraviolet-B radiation (UV-B) is one of the most serious environmental stressors in embryonic development. Here, we investigated susceptibility to UV-B (0.5 kJ m-2) in embryos of the two-spotted spider mite, Tetranychus urticae, to examine the potential use of UV-B in control of this important agricultural pest worldwide. Peak susceptibility to UV-B (0% hatchability) was found in T. urticae eggs 36-48 h after oviposition at 25 °C, which coincides with the stages of morphogenesis forming the germ band and initial limb primordia. However, hatchability recovered to ~ 80% when eggs irradiated with UV-B were subsequently exposed to visible radiation (VIS) at 10.2 kJ m-2, driving photoreactivation (the photoenzymatic repair of DNA damage). The recovery effect decreased to 40-70% hatchability, depending on the embryonic developmental stage, when VIS irradiation was delayed for 4 h after the end of exposure to UV-B. Thus UV-B damage to T. urticae embryos is critical, particularly in the early stages of morphogenesis, and photoreactivation functions to mitigate UV-B damage, even in the susceptible stages, but immediate VIS irradiation is needed after exposure to UV-B. These findings suggest that nighttime irradiation with UV-B can effectively kill T. urticae eggs without subsequent photoreactivation and may be useful in the physical control of this species.
Collapse
Affiliation(s)
- Yoshio Yoshioka
- Faculty of Agriculture, Ibaraki University, Ami, Ibaraki, 300-0393, Japan
| | - Tetsuo Gotoh
- Faculty of Agriculture, Ibaraki University, Ami, Ibaraki, 300-0393, Japan
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
11
|
Nakai K, Murata Y, Osakabe M. Effects of Low Temperature on Spider Mite Control by Intermittent Ultraviolet-B Irradiation for Practical Use in Greenhouse Strawberries. ENVIRONMENTAL ENTOMOLOGY 2018; 47:140-147. [PMID: 29186383 DOI: 10.1093/ee/nvx179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 06/07/2023]
Abstract
The application of ultraviolet-B (UVB) radiation to control spider mites is challenging as a key technology for integrated pest management (IPM) in greenhouse strawberries in Japan. To address this, concurrent use of phytoseiid mites and reduced UVB irradiance is desirable to ensure control effects in areas shaded from UVB radiation and to minimize the sunscald in winter, respectively. We designed experiments reproducing the UVB dose on the lower leaf surfaces in strawberry and evaluated the effects of intermittent UVB irradiation at midnight for practical application in the greenhouse and low temperature on the survival of the spider mite Tetranychus urticae Koch (Acari: Tetranychidae) and damage to the phytoseiid mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). The midnight intermittent UVB irradiation effectively suppressed egg hatching and development of larvae of T. urticae, and the control effect was reinforced at 20°C (no eggs hatched at 0.13 kJ m-2 d-1) rather than, at 25°C (70.8% eggs hatched). In contrast, the hatchability of N. californicus eggs was unaffected by intermittent UVB irradiation at 0.27 kJ m-2 d-1 at 25°C and 20°C. However, residual effects of UVB irradiation to N. californicus eggs on survival of hatched larvae were seen, so that reducing the UVB dose is also advantageous for this phytoseiid mite. N. californicus showed a photoreactivation capacity, whereas their UVB tolerance was improved by prey species, suggesting the possibility of the improvement of phytoseiid mites by diet. The reduction of UVB dose and concurrent use of phytoseiid mites increase reliability of the UVB method in IPM strategies in strawberry greenhouse.
Collapse
Affiliation(s)
- Kazuhiro Nakai
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasumasa Murata
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Murata Y, Osakabe M. Developmental Phase-Specific Mortality After Ultraviolet-B Radiation Exposure in the Two-Spotted Spider Mite. ENVIRONMENTAL ENTOMOLOGY 2017; 46:1448-1455. [PMID: 29069313 DOI: 10.1093/ee/nvx169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exposure to ambient ultraviolet-B (UVB) radiation generates DNA lesions, such as cyclobutane pyrimidine dimers and 6-4 pyrimidine-pyrimidine photoproducts in Tetranychus urticae Koch (Acari: Tetranychidae). Larvae appeared normal and healthy after UVB irradiation. Conversely, many mites were trapped in their old epidermis or experienced retarded development and shrunk, thus failing to molt from protochrysalises to protonymphs and died. This suggested that DNA lesions per se were not causing lethality in mites unless damaged genes were expressed. UVB-induced DNA lesions may have interfered with DNA replication and gene expression during the physiological changes of morphogenesis in the chrysalis stage. Comprehensive gene expression analysis by RNA sequencing revealed that gene expression involving epidermal tissue (characteristically cuticular protein genes) and myosin heavy chain muscle-like genes were downregulated in protochrysalises irradiated with UVB at the larval stage. We conclude that the success of protochrysalis molting is determined by whether the DNA lesions of genes, particularly those connected with morphogenesis, are repaired before expression at the protochrysalis stage.
Collapse
Affiliation(s)
- Yasumasa Murata
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Japan
| |
Collapse
|
13
|
Moran PJ, Wibawa MI, Smith L. Tolerance of the eriophyid mite Aceria salsolae to UV-A light and implications for biological control of Russian thistle. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:327-338. [PMID: 29210002 DOI: 10.1007/s10493-017-0205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Aceria salsolae (Acari: Eriophyidae) is being evaluated as a candidate biological control agent of Russian thistle (Salsola tragus, Chenopodiaceae), a major invasive weed of rangelands and dryland crops in the western USA. Prior laboratory host range testing under artificial lighting indicated reproduction on non-native Bassia hyssopifolia and on a native plant, Suaeda calceoliformis. However, in field tests in the native range, mite populations released on these 'nontarget' plants remained low. We hypothesized that UV-A light, which can affect behavior of tetranychid mites, would affect populations of the eriophyid A. salsolae differently on the target and nontarget plant species, decreasing the mite's realized host range. Plants were infested with A. salsolae under lamps that emitted UV-A, along with broad-spectrum lighting, and the size of mite populations and plant growth was compared to infested plants exposed only to broad-spectrum light. Russian thistle supported 3- to 55-fold larger mite populations than nontarget plants regardless of UV-A treatment. UV-A exposure did not affect mite populations on Russian thistle or S. calceoliformis, whereas it increased populations 7-fold on B. hyssopifolia. Main stems on nontarget plants grew 2- to 6-fold faster than did Russian thistle under either light treatment. The two nontarget plants attained greater volume under the control light regime than UV-A, but Russian thistle was unaffected. Although Russian thistle was always the superior host, addition of UV-A light to the artificial lighting regime did not reduce the ability of A. salsolae to reproduce on the two nontarget species, suggesting that UV-B or other environmental factors may be more important in limiting mite populations in the field.
Collapse
Affiliation(s)
- Patrick J Moran
- U.S. Department of Agriculture-Agricultural Research Service, Exotic and Invasive Weeds Research Unit, 800 Buchanan St., Albany, CA, 94710, USA.
| | - M Irene Wibawa
- U.S. Department of Agriculture-Agricultural Research Service, Exotic and Invasive Weeds Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
| | - Lincoln Smith
- U.S. Department of Agriculture-Agricultural Research Service, Exotic and Invasive Weeds Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
- U.S. Department of Agriculture-Agricultural Research Service, European Biological Control Laboratory, Montpellier, France
| |
Collapse
|