1
|
Vindenes Y, Mysterud A. A seasonal matrix population model for ixodid ticks with complex life histories and limited host availability. Ecology 2025; 106:e4511. [PMID: 39814590 PMCID: PMC11735348 DOI: 10.1002/ecy.4511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/22/2024] [Indexed: 01/18/2025]
Abstract
Many vector-borne diseases are sensitive to changes in land use and climate; hence, it is important to understand the factors that govern the vector populations. Ixodid ticks, which serve as vectors for multiple diseases, have a slow life cycle compared with many of their hosts. The observable questing population represents only a fraction of the total tick population and may include overlapping cohorts in each stage. The duration of each life stage (larvae, nymph, and adult) is variable and depends on factors such as the seasonal timing of questing, development, and host availability. Mathematical models are therefore essential to mediate how complex life cycle transitions and host interactions underpin the seasonal dynamics of the questing tick population. In this study, we develop a seasonal matrix population model for ixodid ticks feeding on a small and large host. The model has 17 stages representing the main life history stages (eggs, larvae, nymphs, and adults) combined with status of feeding, seasonal timing of feeding, and overwintering. The probability of finding a host depends on tick instar and host type, and density regulation is incorporated through limited host capacity. Using a life history representing Ixodes ricinus in Northern Europe as a baseline, we extract seasonal numbers of different parts of the tick population and calculate life history outcomes such as generation time and mean and variance of lifespan and of lifetime reproductive output. These results are compared with an alternative scenario of a southern life history. Secondly, we investigate (1) effects of seasonality in the small host availability on the seasonal numbers of tick stages and (2) effects of varying host availability and utilization of small versus large hosts by larvae and nymphs, on the seasonal numbers of questing ticks. Our results suggest that the small host availability is an important regulating factor through the feeding of larvae. Our model incorporates complex mechanisms underlying the seasonal composition of the tick population. It can be applied to different ixodid tick species and provides a framework for future investigations into intra- and interspecific variation in life history and population dynamics.
Collapse
Affiliation(s)
- Yngvild Vindenes
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of BiosciencesUniversity of OsloOsloNorway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of BiosciencesUniversity of OsloOsloNorway
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
| |
Collapse
|
2
|
Sirén APK, Berube J, Clarfeld LA, Sullivan CF, Simpson B, Wilson TL. Accounting for missing ticks: Use (or lack thereof) of hierarchical models in tick ecology studies. Ticks Tick Borne Dis 2024; 15:102342. [PMID: 38613901 DOI: 10.1016/j.ttbdis.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
Ixodid (hard) ticks play important ecosystem roles and have significant impacts on animal and human health via tick-borne diseases and physiological stress from parasitism. Tick occurrence, abundance, activity, and key life-history traits are highly influenced by host availability, weather, microclimate, and landscape features. As such, changes in the environment can have profound impacts on ticks, their hosts, and the spread of diseases. Researchers recognize that spatial and temporal factors influence activity and abundance and attempt to account for both by conducting replicate sampling bouts spread over the tick questing period. However, common field methods notoriously underestimate abundance, and it is unclear how (or if) tick studies model the confounding effects of factors influencing activity and abundance. This step is critical as unaccounted variance in detection can lead to biased estimates of occurrence and abundance. We performed a descriptive review to evaluate the extent to which studies account for the detection process while modeling tick data. We also categorized the types of analyses that are commonly used to model tick data. We used hierarchical models (HMs) that account for imperfect detection to analyze simulated and empirical tick data, demonstrating that inference is muddled when detection probability is not accounted for in the modeling process. Our review indicates that only 5 of 412 (1 %) papers explicitly accounted for imperfect detection while modeling ticks. By comparing HMs with the most common approaches used for modeling tick data (e.g., ANOVA), we show that population estimates are biased low for simulated and empirical data when using non-HMs, and that confounding occurs due to not explicitly modeling factors that influenced both detection and abundance. Our review and analysis of simulated and empirical data shows that it is important to account for our ability to detect ticks using field methods with imperfect detection. Not doing so leads to biased estimates of occurrence and abundance which could complicate our understanding of parasite-host relationships and the spread of tick-borne diseases. We highlight the resources available for learning HM approaches and applying them to analyzing tick data.
Collapse
Affiliation(s)
- Alexej P K Sirén
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA; Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA; Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA.
| | - Juliana Berube
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Laurence A Clarfeld
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| | - Cheryl F Sullivan
- Entomology Research Laboratory, University of Vermont, Burlington, VT, USA
| | - Benjamin Simpson
- Penobscot Nation Department of Natural Resources, Indian Island, ME, USA
| | - Tammy L Wilson
- U.S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
3
|
Rousseau R, Mori M, Kabamba B, Vanwambeke SO. Tick abundance and infection with three zoonotic bacteria are heterogeneous in a Belgian peri-urban forest. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:49-69. [PMID: 38869724 DOI: 10.1007/s10493-024-00919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Ixodes ricinus is a vector of several pathogens of public health interest. While forests are the primary habitat for I. ricinus, its abundance and infection prevalence are expected to vary within forest stands. This study assesses the spatio-temporal variations in tick abundance and infection prevalence with three pathogens in and around a peri-urban forest where human exposure is high. Ticks were sampled multiple times in 2016 and 2018 in multiple locations with a diversity of undergrowth, using the consecutive drags method. Three zoonotic pathogens were screened for, Borrelia burgdorferi s.l., Coxiella burnetii, and Francisella tularensis. The influence of season, type of site and micro-environmental factors on tick abundance were assessed with negative binomial generalized linear mixed-effects models. We collected 1642 nymphs and 181 adult ticks. Ticks were most abundant in the spring, in warmer temperatures, and where undergrowth was higher. Sites with vegetation unaffected by human presence had higher abundance of ticks. Forest undergrowth type and height were significant predictors of the level of tick abundance in a forest. The consecutive drags method is expected to provide more precise estimates of tick abundance, presumably through more varied contacts with foliage. Borrelia burgdorferi s.l. prevalence was estimated from pooled ticks at 5.33%, C. burnetii was detected in six pools and F. tularensis was not detected. Borrelia afzelii was the dominant B. burgdorferi genospecies. Tick abundance and B. burgdorferi s.l. infection prevalence were lower than other estimates in Belgian forests.
Collapse
Affiliation(s)
- Raphaël Rousseau
- Earth and Life Institute (ELI), Earth and Climate pole (ELIC), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Marcella Mori
- Bacterial zoonoses unit, Veterinary bacteriology, Sciensano, Ukkel/Uccle, Belgium
| | - Benoît Kabamba
- Institute of Clinical and Experimental Research (IREC), Pôle de Microbiologie Médicale, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Sophie O Vanwambeke
- Earth and Life Institute (ELI), Earth and Climate pole (ELIC), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium.
| |
Collapse
|
4
|
Noll M, Wall R, Makepeace BL, Newbury H, Adaszek L, Bødker R, Estrada-Peña A, Guillot J, da Fonseca IP, Probst J, Overgaauw P, Strube C, Zakham F, Zanet S, Rose Vineer H. Predicting the distribution of Ixodes ricinus and Dermacentor reticulatus in Europe: a comparison of climate niche modelling approaches. Parasit Vectors 2023; 16:384. [PMID: 37880680 PMCID: PMC10601327 DOI: 10.1186/s13071-023-05959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/01/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The ticks Ixodes ricinus and Dermacentor reticulatus are two of the most important vectors in Europe. Climate niche modelling has been used in many studies to attempt to explain their distribution and to predict changes under a range of climate change scenarios. The aim of this study was to assess the ability of different climate niche modelling approaches to explain the known distribution of I. ricinus and D. reticulatus in Europe. METHODS A series of climate niche models, using different combinations of input data, were constructed and assessed. Species occurrence records obtained from systematic literature searches and Global Biodiversity Information Facility data were thinned to different degrees to remove sampling spatial bias. Four sources of climate data were used: bioclimatic variables, WorldClim, TerraClimate and MODIS satellite-derived data. Eight different model training extents were examined and three modelling frameworks were used: maximum entropy, generalised additive models and random forest models. The results were validated through internal cross-validation, comparison with an external independent dataset and expert opinion. RESULTS The performance metrics and predictive ability of the different modelling approaches varied significantly within and between each species. Different combinations were better able to define the distribution of each of the two species. However, no single approach was considered fully able to capture the known distribution of the species. When considering the mean of the performance metrics of internal and external validation, 24 models for I. ricinus and 11 models for D. reticulatus of the 96 constructed were considered adequate according to the following criteria: area under the receiver-operating characteristic curve > 0.7; true skill statistic > 0.4; Miller's calibration slope 0.25 above or below 1; Boyce index > 0.9; omission rate < 0.15. CONCLUSIONS This comprehensive analysis suggests that there is no single 'best practice' climate modelling approach to account for the distribution of these tick species. This has important implications for attempts to predict climate-mediated impacts on future tick distribution. It is suggested here that climate variables alone are not sufficient; habitat type, host availability and anthropogenic impacts, not included in current modelling approaches, could contribute to determining tick presence or absence at the local or regional scale.
Collapse
Affiliation(s)
- Madeleine Noll
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - Richard Wall
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Benjamin L Makepeace
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - Lukasz Adaszek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - René Bødker
- Section of Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Saragossa, Spain
- Instituto Agroalimentario de Aragón (IA2), Saragossa, Spain
| | - Jacques Guillot
- Department of Dermatology-Parasitology-Mycology, École Nationale Vétérinaire, Oniris, Nantes, France
| | - Isabel Pereira da Fonseca
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
| | - Julia Probst
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Paul Overgaauw
- Department Population Health Sciences, Division of Veterinary Public Health, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Fathiah Zakham
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Stefania Zanet
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Hannah Rose Vineer
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Zakham F, Korhonen EM, Puonti PT, Castrén RS, Uusitalo R, Smura T, Kant R, Vapalahti O, Sironen T, Kinnunen PM. Molecular detection of pathogens from ticks collected from dogs and cats at veterinary clinics in Finland. Parasit Vectors 2023; 16:327. [PMID: 37704990 PMCID: PMC10498522 DOI: 10.1186/s13071-023-05864-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/04/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Ticks carry microbes, some of which are pathogenic for humans and animals. To assess this One Health challenge, 342 ticks were collected from pet dogs and cats at 10 veterinary clinics in Finland as part of the European project "Protect Our Future Too". METHODS The tick species were identified, and ticks were screened with quantitative PCR (qPCR) for tick-borne pathogens, including Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Ehrlichia canis, Anaplasma spp., Candidatus Neoehrlichia mikurensis, tick-borne encephalitis virus (TBEV), and Babesia spp. For comparison, a subset of tick DNA (20 qPCR-positive samples) was analysed with 16S next-generation sequencing (NGS). RESULTS Most ticks were Ixodes ricinus (289, 84.5%), followed by Ixodes persulcatus (51, 14.9%). One hybrid tick (I. ricinus/I. persulcatus, 0.3%) and one Rhipicephalus sanguineus tick (0.3%) were identified. We found one or more of the analysed pathogens in 17% (59/342) of the ticks. The most prevalent pathogen was B. burgdorferi s.l. (36, 10.5%), followed by Anaplasma phagocytophilum (12, 3.5%), B. miyamotoi (5, 1.5%), Babesia venatorum (4, 1.2%), and TBEV (1, 0.3%). Candidatus Neoehrlichia mikurensis DNA was amplified from three (0.9%) ticks. Ehrlichia canis was not detected. In the 16S NGS, six samples produced enough reads for the analysis. In these six samples, we confirmed all the positive qPCR findings of Borrelia spp. and Ca. N. mikurensis. CONCLUSIONS The high prevalence of pathogenic microorganisms in the ticks of this study emphasizes the importance of awareness of ticks and tick-borne diseases and prevention. Furthermore, the results show that veterinary surveillance can facilitate early detection of tick-borne pathogens and new tick species and draw attention to possible co-infections that should be considered both in symptomatic humans and animals after tick bites.
Collapse
Affiliation(s)
- Fathiah Zakham
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Essi M Korhonen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Petteri T Puonti
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Robert S Castrén
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ruut Uusitalo
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Teemu Smura
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Clinical Microbiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Clinical Microbiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Paula M Kinnunen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
- Companion Animal Business Unit, Nordic Cluster, MSD Animal Health, Espoo, Finland.
| |
Collapse
|
6
|
Snow AA, Pearson P, Xu G, Allen DN, Santamaria R, Rich SM. Tick Densities and Infection Prevalence on Coastal Islands in Massachusetts, USA: Establishing a Baseline. INSECTS 2023; 14:628. [PMID: 37504634 PMCID: PMC10380421 DOI: 10.3390/insects14070628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Tick-borne diseases and a tick-induced red meat allergy have become increasingly common in the northeastern USA and elsewhere. At the scale of local communities, few studies have documented tick densities or infection levels to characterize current conditions and provide a baseline for further monitoring. Using the town of Nantucket, MA, as a case study, we recorded tick densities by drag sampling along hiking trails in nature preserves on two islands. Nymphal blacklegged ticks (Ixodes scapularis Say) were most abundant at shadier sites and least common in grasslands and scrub oak thickets (Quercus ilicifolia). Lone star ticks (Amblyomma americanum L.) were common on Tuckernuck Island and rare on Nantucket Island, while both tick species were more numerous in 2021 compared to 2020 and 2022. We tested for pathogens in blacklegged nymphs at five sites over two years. In 2020 and 2021, infection levels among the four Nantucket Island sites averaged 10% vs. 19% for Borrelia burgdorferi, 11% vs. 15% for Babesia microti, and 17% (both years) for Anaplasma phagocytophilum, while corresponding levels were significantly greater on Tuckernuck in 2021. Our site-specific, quantitative approach represents a practical example of how potential exposure to tick-borne diseases can be monitored on a local scale.
Collapse
Affiliation(s)
- Allison A. Snow
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Patrick Pearson
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (P.P.); (G.X.); (S.M.R.)
| | - Guang Xu
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (P.P.); (G.X.); (S.M.R.)
| | - David N. Allen
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA;
| | | | - Stephen M. Rich
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (P.P.); (G.X.); (S.M.R.)
| |
Collapse
|
7
|
Price KJ, Khalil N, Witmier BJ, Coder BL, Boyer CN, Foster E, Eisen RJ, Molaei G. EVIDENCE OF PROTOZOAN AND BACTERIAL INFECTION AND CO-INFECTION AND PARTIAL BLOOD FEEDING IN THE INVASIVE TICK HAEMAPHYSALIS LONGICORNIS IN PENNSYLVANIA. J Parasitol 2023; 109:265-273. [PMID: 37436911 PMCID: PMC10658867 DOI: 10.1645/22-122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
The Asian longhorned tick, Haemaphysalis longicornis, an invasive tick species in the United States, has been found actively host-seeking while infected with several human pathogens. Recent work has recovered large numbers of partially engorged, host-seeking H. longicornis, which together with infection findings raises the question of whether such ticks can reattach to a host and transmit pathogens while taking additional bloodmeals. Here we conducted molecular blood meal analysis in tandem with pathogen screening of partially engorged, host-seeking H. longicornis to identify feeding sources and more inclusively characterize acarological risk. Active, statewide surveillance in Pennsylvania from 2020 to 2021 resulted in the recovery of 22/1,425 (1.5%) partially engorged, host-seeking nymphal and 5/163 (3.1%) female H. longicornis. Pathogen testing of engorged nymphs detected 2 specimens positive for Borrelia burgdorferi sensu lato, 2 for Babesia microti, and 1 co-infected with Bo. burgdorferi s.l. and Ba. microti. No female specimens tested positive for pathogens. Conventional PCR blood meal analysis of H. longicornis nymphs detected avian and mammalian hosts in 3 and 18 specimens, respectively. Mammalian blood was detected in all H. longicornis female specimens. Only 2 H. longicornis nymphs produced viable sequencing results and were determined to have fed on black-crowned night heron, Nycticorax nycticorax. These data are the first to molecularly confirm H. longicornis partial blood meals from vertebrate hosts and Ba. microti infection and co-infection with Bo. burgdorferi s.l. in host-seeking specimens in the United States, and the data help characterize important determinants indirectly affecting vectorial capacity. Repeated blood meals within a life stage by pathogen-infected ticks suggest that an understanding of the vector potential of invasive H. longicornis populations may be incomplete without data on their natural host-seeking behaviors and blood-feeding patterns in nature.
Collapse
Affiliation(s)
- Keith J Price
- Division of Vector Management, Pennsylvania Department of Environmental Protection, 2575 Interstate Drive, Harrisburg, Pennsylvania 17110
| | - Noelle Khalil
- Center for Vector Biology and Zoonotic Diseases and Northeast Regional Center for Excellence in Vector-Borne Diseases, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511
- Department of Entomology, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511
| | - Bryn J Witmier
- Division of Vector Management, Pennsylvania Department of Environmental Protection, 2575 Interstate Drive, Harrisburg, Pennsylvania 17110
| | - Brooke L Coder
- Division of Vector Management, Pennsylvania Department of Environmental Protection, 2575 Interstate Drive, Harrisburg, Pennsylvania 17110
| | - Christian N Boyer
- Division of Vector Management, Pennsylvania Department of Environmental Protection, 2575 Interstate Drive, Harrisburg, Pennsylvania 17110
| | - Erik Foster
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, Colorado 80521
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, Colorado 80521
| | - Goudarz Molaei
- Center for Vector Biology and Zoonotic Diseases and Northeast Regional Center for Excellence in Vector-Borne Diseases, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511
- Department of Entomology, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06510
| |
Collapse
|
8
|
Noll M, Wall R, Makepeace BL, Vineer HR. Distribution of ticks in the Western Palearctic: an updated systematic review (2015-2021). Parasit Vectors 2023; 16:141. [PMID: 37095583 PMCID: PMC10127368 DOI: 10.1186/s13071-023-05773-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The distributions of ticks and tick-borne pathogens are thought to have changed rapidly over the last two decades, with their ranges expanding into new regions. This expansion has been driven by a range of environmental and socio-economic factors, including climate change. Spatial modelling is being increasingly used to track the current and future distributions of ticks and tick-borne pathogens and to assess the associated disease risk. However, such analysis is dependent on high-resolution occurrence data for each species. To facilitate such analysis, in this review we have compiled georeferenced tick locations in the Western Palearctic, with a resolution accuracy under 10 km, that were reported between 2015 and 2021 METHODS: The PubMed and Web of Science databases were searched for peer-reviewed papers documenting the distribution of ticks that were published between 2015 and 2021, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The papers were then screened and excluded in accordance with the PRISMA flow chart. Coordinate-referenced tick locations along with information on identification and collection methods were extracted from each eligible publication. Spatial analysis was conducted using R software (version 4.1.2). RESULTS From the 1491 papers identified during the initial search, 124 met the inclusion criteria, and from these, 2267 coordinate-referenced tick records from 33 tick species were included in the final dataset. Over 30% of articles did not record the tick location adequately to meet inclusion criteria, only providing a location name or general location. Among the tick records, Ixodes ricinus had the highest representation (55%), followed by Dermacentor reticulatus (22.1%) and Ixodes frontalis (4.8%). The majority of ticks were collected from vegetation, with only 19.1% collected from hosts. CONCLUSIONS The data presented provides a collection of recent high-resolution, coordinate-referenced tick locations for use in spatial analyses, which in turn can be used in combination with previously collated datasets to analyse the changes in tick distribution and research in the Western Palearctic. In the future it is recommended that, where data privacy rules allow, high-resolution methods are routinely used by researchers to geolocate tick samples and ensure their work can be used to its full potential.
Collapse
Affiliation(s)
- Madeleine Noll
- Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Richard Wall
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Benjamin L. Makepeace
- Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Hannah Rose Vineer
- Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
9
|
Köhler CF, Holding ML, Sprong H, Jansen PA, Esser HJ. Biodiversity in the Lyme-light: ecological restoration and tick-borne diseases in Europe. Trends Parasitol 2023; 39:373-385. [PMID: 36890021 DOI: 10.1016/j.pt.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
Biodiversity loss and the emergence of zoonotic diseases are two major global challenges. An urgent question is how ecosystems and wildlife communities can be restored whilst minimizing the risk of zoonotic diseases carried by wildlife. Here, we evaluate how current ambitions to restore Europe's natural ecosystems may affect the hazard of diseases vectored by the tick Ixodes ricinus at different scales. We find that effects of restoration efforts on tick abundance are relatively straightforward but that the interacting effects of vertebrate diversity and abundance on pathogen transmission are insufficiently known. Long-term integrated surveillance of wildlife communities, ticks, and their pathogens is needed to understand their interactions and to prevent nature restoration from increasing tick-borne disease (TBD) hazard.
Collapse
Affiliation(s)
- Clara Florentine Köhler
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Maya Louise Holding
- Virology and Pathogenesis Group, UK Health Security Agency, Porton Down, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Hein Sprong
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Patrick A Jansen
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Helen J Esser
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Bugmyrin SV, Gorbach VV. Mark-release-recapture of ticks: A case study of estimating the abundance of Ixodes persulcatus (Acari, Ixodidae). MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:185-193. [PMID: 35122695 DOI: 10.1111/mve.12565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
In this study, we tested the applicability of three common methods of absolute abundance estimation-Peterson, Bailey and Jolly-Seber-to Ixodes persulcatus ticks based on mark-release-recapture data. The ticks were collected by flagging during the seasonal activity peak of the ticks in the mid-taiga zone of Karelia (62.0697°N, 33.9614°E). In total, 108 females and 92 males of I. persulcatus were marked. The marked individuals were captured 161 times before the end of the study period with their proportion in the samples reaching 50%. Females were recaptured more often than males, 105 versus 56 times. Estimates of adult tick abundance ranged from 0.4 to 2 specimens per m2 depending on the calculation method. The obtained estimates of absolute abundance varied unpredictably depending on the length of the intervals between capture sessions and showed no significant correlations with the number of ticks collected by flagging. The choice of the method of tick abundance estimation mainly depends on the study aims. The Petersen method may be useful for quick estimates of local tick abundance, whereas the Jolly-Seber method allows an estimation of the absolute abundance during the entire period of the tick activity. Individual marking of ticks may improve the accuracy of the estimates.
Collapse
Affiliation(s)
- Sergey V Bugmyrin
- Laboratory for Animal and Plant Parasitology, Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | - Vyacheslav V Gorbach
- Department of Zoology and Ecology, Petrozavodsk State University, Petrozavodsk, Russia
| |
Collapse
|
11
|
Wongnak P, Bord S, Jacquot M, Agoulon A, Beugnet F, Bournez L, Cèbe N, Chevalier A, Cosson JF, Dambrine N, Hoch T, Huard F, Korboulewsky N, Lebert I, Madouasse A, Mårell A, Moutailler S, Plantard O, Pollet T, Poux V, René-Martellet M, Vayssier-Taussat M, Verheyden H, Vourc'h G, Chalvet-Monfray K. Meteorological and climatic variables predict the phenology of Ixodes ricinus nymph activity in France, accounting for habitat heterogeneity. Sci Rep 2022; 12:7833. [PMID: 35552424 PMCID: PMC9098447 DOI: 10.1038/s41598-022-11479-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Ixodes ricinus ticks (Acari: Ixodidae) are the most important vector for Lyme borreliosis in Europe. As climate change might affect their distributions and activities, this study aimed to determine the effects of environmental factors, i.e., meteorological, bioclimatic, and habitat characteristics on host-seeking (questing) activity of I. ricinus nymphs, an important stage in disease transmissions, across diverse climatic types in France over 8 years. Questing activity was observed using a repeated removal sampling with a cloth-dragging technique in 11 sampling sites from 7 tick observatories from 2014 to 2021 at approximately 1-month intervals, involving 631 sampling campaigns. Three phenological patterns were observed, potentially following a climatic gradient. The mixed-effects negative binomial regression revealed that observed nymph counts were driven by different interval-average meteorological variables, including 1-month moving average temperature, previous 3-to-6-month moving average temperature, and 6-month moving average minimum relative humidity. The interaction effects indicated that the phenology in colder climates peaked differently from that of warmer climates. Also, land cover characteristics that support the highest baseline abundance were moderate forest fragmentation with transition borders with agricultural areas. Finally, our model could potentially be used to predict seasonal human-tick exposure risks in France that could contribute to mitigating Lyme borreliosis risk.
Collapse
Affiliation(s)
- Phrutsamon Wongnak
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France
| | - Séverine Bord
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris, 75005, Paris, France
| | - Maude Jacquot
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France
- Ifremer, RBE-SGMM-LGPMM, 17390, La Tremblade, France
| | | | - Frédéric Beugnet
- Global Technical Services, Boehringer-Ingelheim Animal Health, 69007, Lyon, France
| | - Laure Bournez
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 54220, Malzéville, France
| | - Nicolas Cèbe
- Université de Toulouse, INRAE, UR CEFS, 31326, Castanet-Tolosan, France
- LTSER ZA PYRénées GARonne, 31326, Auzeville-Tolosane, France
| | | | | | - Naïma Dambrine
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France
| | - Thierry Hoch
- INRAE, Oniris, UMR BIOEPAR, 44300, Nantes, France
| | | | | | - Isabelle Lebert
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France
| | | | | | - Sara Moutailler
- ANSES, ENVA, INRAE, UMR 956 BIPAR, 94701, Maisons-Alfort, France
| | | | - Thomas Pollet
- ANSES, ENVA, INRAE, UMR 956 BIPAR, 94701, Maisons-Alfort, France
- INRAE, CIRAD, UMR ASTRE, 34398, Montpellier, France
| | - Valérie Poux
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France
| | - Magalie René-Martellet
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France
| | | | - Hélène Verheyden
- Université de Toulouse, INRAE, UR CEFS, 31326, Castanet-Tolosan, France
- LTSER ZA PYRénées GARonne, 31326, Auzeville-Tolosane, France
| | - Gwenaël Vourc'h
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France
| | - Karine Chalvet-Monfray
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, 69280, Marcy l'Etoile, France.
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 63122, Saint-Genès-Champanelle, France.
| |
Collapse
|
12
|
Abstract
We develop a discrete-time tick–host–pathogen model to describe the spread of a disease in a hard-bodied tick species. This model incorporates the developmental stages for a tick, the dependence of the tick life-cycle and disease transmission on host availability, and three sources of pathogen transmission. We first establish the global dynamics of the disease-free system. We then apply the model to two pathogens, Borellia burgdorferi and Anaplasma phagocytophila, using Ixodes ricinus as the tick species to study properties of the invasion and establishment of a disease numerically. In particular, we consider the basic reproduction number, which determines whether a disease can invade the tick-host system, as well as disease prevalence and time to establishment in the case of successful disease invasion. Using Monte Carlo simulations, we calculate the means of each of these disease metrics and their elasticities with respect to various model parameters. We find that increased tick survival may help enable disease invasion, decrease the time to disease establishment, and increase disease prevalence once established. In contrast, though disease invasion is sensitive to tick-to-host transmission and tick searching efficiencies, neither disease prevalence nor time to disease establishment is sensitive to these parameters. These differences emphasize the importance of developing approaches, such as the one highlighted here, that can be used to study disease dynamics beyond just pathogen invasion, including transitional and long-term dynamics.
Collapse
|
13
|
Hansford KM, Wheeler BW, Tschirren B, Medlock JM. Questing Ixodes ricinus ticks and Borrelia spp. in urban green space across Europe: A review. Zoonoses Public Health 2022; 69:153-166. [PMID: 35122422 PMCID: PMC9487987 DOI: 10.1111/zph.12913] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
For more than three decades, it has been recognized that Ixodes ricinus ticks occur in urban green space in Europe and that they harbour multiple pathogens linked to both human and animal diseases. Urban green space use for health and well‐being, climate mitigation or biodiversity goals is promoted, often without consideration for the potential impact on tick encounters or tick‐borne disease outcomes. This review synthesizes the results of over 100 publications on questing I. ricinus and Borrelia spp. infections in ticks in urban green space in 24 European countries. It presents data on several risk indicators for Lyme borreliosis and highlights key research gaps and recommendations for future studies. Across Europe, mean density of I. ricinus in urban green space was 6.9 (range; 0.1–28.8) per 100 m2 and mean Borrelia prevalence was 17.3% (range; 3.1%–38.1%). Similar density estimates were obtained for nymphs, which had a Borrelia prevalence of 14.2% (range; 0.5%–86.7%). Few studies provided data on both questing nymph density and Borrelia prevalence, but those that did found an average of 1.7 (range; 0–5.6) Borrelia‐infected nymphs per 100 m2 of urban green space. Although a wide range of genospecies were reported, Borrelia afzelii was the most common in most parts of Europe, except for England where B. garinii was more common. The emerging pathogen Borrelia miyamotoi was also found in several countries, but with a much lower prevalence (1.5%). Our review highlights that I. ricinus and tick‐borne Borrelia pathogens are found in a wide range of urban green space habitats and across several seasons. The impact of human exposure to I. ricinus and subsequent Lyme borreliosis incidence in urban green space has not been quantified. There is also a need to standardize sampling protocols to generate better baseline data for the density of ticks and Borrelia prevalence in urban areas.
Collapse
Affiliation(s)
- Kayleigh M Hansford
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK.,European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK.,Health Protection Research Unit in Environmental Change & Health, Public Health England, Porton Down, UK
| | - Benedict W Wheeler
- European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK.,Health Protection Research Unit in Environmental Change & Health, Public Health England, Porton Down, UK
| | | | - Jolyon M Medlock
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK.,Health Protection Research Unit in Environmental Change & Health, Public Health England, Porton Down, UK.,Health Protection Research Unit in Emerging & Zoonotic Infections, Public Health England, Porton Down, UK
| |
Collapse
|
14
|
Urban woodland habitat is important for tick presence and density in a city in England. Ticks Tick Borne Dis 2021; 13:101857. [PMID: 34763308 DOI: 10.1016/j.ttbdis.2021.101857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/30/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Urban green spaces provide an opportunity for contact between members of the public and ticks infected with pathogens. Understanding tick distribution within these areas and the drivers for increased tick density or Borrelia infection are important from a risk management perspective. This study aimed to generate data on tick presence, nymph density and Borrelia infection across a range of urban green space habitats, in order to identify those that may potentially present a higher risk of Lyme borreliosis to members of the public. Several sites were visited across the English city of Bath during 2015 and 2016. Tick presence was confirmed in all habitats surveyed, with increased likelihood in woodland and woodland edge. Highest nymph densities were also reported in these habitats, along with grassland during one of the sampling years. Adult ticks were more likely to be infected compared to nymphs, and the highest densities of infected nymphs were associated with woodland edge habitat. In addition to Lyme borreliosis causing Borrelia genospecies, Borrelia miyamotoi was also detected at several sites. This study adds to the growing evidence that urban green space habitats present a public health risk from tick bites, and this has implications for many policy areas including health and wellbeing, climate adaptation and urban green space planning.
Collapse
|
15
|
Gray J, Kahl O, Zintl A. What do we still need to know about Ixodes ricinus? Ticks Tick Borne Dis 2021; 12:101682. [PMID: 33571753 DOI: 10.1016/j.ttbdis.2021.101682] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
In spite of many decades of intensive research on Ixodes ricinus, the castor bean tick of Europe, several important aspects of its basic biology remain elusive, such as the factors determining seasonal development, tick abundance and host specificity, and the importance of water management. Additionally, there are more recent questions about the geographical diversity of tick genotypes and phenotypes, the role of migratory birds in the ecoepidemiology of I. ricinus, the importance of protective immune responses against I. ricinus, particularly in the context of vaccination, and the role of the microbiome in pathogen transmission. Without more detailed knowledge of these issues, it is difficult to assess the likely effects of changes in climate and biodiversity on tick distribution and activity, to predict potential risks arising from new and established tick populations and I. ricinus-borne pathogens, and to improve prevention and control measures. This review aims to discuss the most important outstanding questions against the backdrop of the current state of knowledge of this important tick species.
Collapse
Affiliation(s)
- Jeremy Gray
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - Annetta Zintl
- UCD School of Veterinary Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|