1
|
Xiao J, Ma J, Khan MZ, Alugongo GM, Chen T, Liu S, Li S, Cao Z. Unlocking the potential of milk whey protein components in colorectal cancer prevention and therapy. Crit Rev Food Sci Nutr 2023; 64:12961-12998. [PMID: 37846905 DOI: 10.1080/10408398.2023.2258970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Extensive research from large prospective cohort studies and meta-analytical investigations over recent decades have consistently indicated that dairy foods have protective effects, reducing the risk of colorectal cancer. Most of the literature has explored the potential role of milk minerals and vitamins in managing colorectal cancer. Yet, there is a paucity of a comprehensive summary of the anticancer attributes of milk protein components and their underlying mechanisms of action. Recent advancements have spotlighted the potential of whey proteins, including β-lactoglobulin, α-lactalbumin, serum albumin, and lactoferrin, as promising candidates for both the prevention and treatment of colorectal cancer. Notably, whey proteins have demonstrated a more pronounced capacity for suppressing carcinogen-induced tumors when compared to casein. Their strong binding affinity enables them to serve as effective carriers for small molecules or drugs targeting colon cancer therapy. Furthermore, numerous studies have underscored the anti-inflammatory and antioxidant prowess of whey proteins in cancer prevention. Additionally, whey proteins have been shown to trigger apoptosis, hinder tumor cell proliferation, and impede metastasis. This comprehensive review, therefore, not only substantiates the significance of incorporating whey protein components into a balanced daily diet but also underscores their potential in safeguarding against the onset and progression of colorectal cancer.
Collapse
Affiliation(s)
- Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- Faculty of Veterinary and Animal Sciences, University of Agriculture Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Žilinskas J, Stukas D, Jasukaitienė A, Šapauskienė J, Banienė R, Trumbeckaitė S, Švagždys S, Cicciu M, Dambrauskas Ž, Gulbinas A, Tamelis A. HAMLET effect on cell death and mitochondrial respiration in colorectal cancer cell lines with KRAS/BRAF mutations. J Cancer Res Clin Oncol 2023; 149:8619-8630. [PMID: 37099199 PMCID: PMC10374481 DOI: 10.1007/s00432-023-04777-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/27/2023]
Abstract
PURPOSE Treatment of advanced colorectal cancer (CRC) depends on the correct selection of personalized strategies. HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a natural proteolipid milk compound that might serve as a novel cancer prevention and therapy candidate. Our purpose was to investigate HAMLET effect on viability, death pathway and mitochondrial bioenergetics of CRC cells with different KRAS/BRAF mutational status in vitro. METHODS We treated three cell lines (Caco-2, LoVo, WiDr) with HAMLET to evaluate cell metabolic activity and viability, flow cytometry of apoptotic and necrotic cells, pro- and anti-apoptotic genes, and protein expressions. Mitochondrial respiration (oxygen consumption) rate was recorded by high-resolution respirometry system Oxygraph-2 k. RESULTS The HAMLET complex was cytotoxic to all investigated CRC cell lines and this effect is irreversible. Flow cytometry revealed that HAMLET induces necrotic cell death with a slight increase in an apoptotic cell population. WiDr cell metabolism, clonogenicity, necrosis/apoptosis level, and mitochondrial respiration were affected significantly less than other cells. CONCLUSION HAMLET exhibits irreversible cytotoxicity on human CRC cells in a dose-dependent manner, leading to necrotic cell death and inhibiting the extrinsic apoptosis pathway. BRAF-mutant cell line is more resistant than other type lines. HAMLET decreased mitochondrial respiration and ATP synthesis in CaCo-2 and LoVo cell lines but did not affect WiDr cells' respiration. Pretreatment of cancer cells with HAMLET has no impact on mitochondrial outer and inner membrane permeability.
Collapse
Affiliation(s)
- Justas Žilinskas
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, Eivenių Street 2, 50161, Kaunas, Lithuania.
| | - Darius Stukas
- Institute of Digestive Research, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Aldona Jasukaitienė
- Institute of Digestive Research, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgita Šapauskienė
- Department of Biochemistry, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Banienė
- Department of Biochemistry, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Sonata Trumbeckaitė
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Saulius Švagždys
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, Eivenių Street 2, 50161, Kaunas, Lithuania
| | - Marco Cicciu
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, School of Dentistry, University of Messina, Messina, Italy
| | - Žilvinas Dambrauskas
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, Eivenių Street 2, 50161, Kaunas, Lithuania
- Institute of Digestive Research, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Antanas Gulbinas
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, Eivenių Street 2, 50161, Kaunas, Lithuania
- Institute of Digestive Research, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Algimantas Tamelis
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, Eivenių Street 2, 50161, Kaunas, Lithuania
| |
Collapse
|
3
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
4
|
Visentini FF, Perez AA, Santiago LG. Bioactive compounds: Application of albumin nanocarriers as delivery systems. Crit Rev Food Sci Nutr 2022; 63:7238-7268. [PMID: 35238254 DOI: 10.1080/10408398.2022.2045471] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enriched products with bioactive compounds (BCs) show the capacity to produce a wide range of possible health effects. Most BCs are essentially hydrophobic and sensitive to environmental factors; so, encapsulation becomes a strategy to solve these problems. Many globular proteins have the intrinsic ability to bind, protect, encapsulate, and introduce BCs into nutraceutical or pharmaceutical matrices. Among them, albumins as human serum albumin (HSA), bovine serum albumin (BSA), ovalbumin (OVA) and α-lactalbumin (ALA) are widely abundant, available, and applied in many industrial sectors, becoming promissory materials to encapsulate BCs. Therefore, this review focuses on researches about the main groups of natural origin BCs (namely phenolic compounds, lipids, vitamins, and carotenoids), the different types of nanostructures based on albumins to encapsulate them and the main fields of application for BCs-loaded albumin systems. In this context, phenolic compounds (catechins, quercetin, and chrysin) are the most extensively BCs studied and encapsulated in albumin-based nanocarriers. Other extensively studied subgroups are stilbenes and curcuminoids. Regarding lipids and vitamins; terpenes, carotenoids (β-carotene), and xanthophylls (astaxanthin) are the most considered. The main application areas of BCs are related to their antitumor, anti-inflammatory, and antioxidant properties. Finally, BSA is the most used albumin to produced BCs-loaded nanocarriers.
Collapse
Affiliation(s)
- Flavia F Visentini
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Adrián A Perez
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Liliana G Santiago
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
5
|
Milk-Derived Proteins and Peptides in Head and Neck Carcinoma Treatment. Biomolecules 2022; 12:biom12020290. [PMID: 35204791 PMCID: PMC8961572 DOI: 10.3390/biom12020290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
Research investigating milk-derived proteins has brought to light the potential for their use as novel anticancer agents. This paper aims to systematically review studies examining the effectiveness of milk-derived proteins in the treatment of head and neck cancer. A systematic literature search of Medline, Evidence-Based Medicine, and Web of Science databases including papers published from all dates was completed. Inter-rater reliability was high during the title, abstract, and full-text screening phases. Inclusion criteria, exclusion criteria, and data extraction were based on the PICOS tool and research questions. Reporting followed the Preferred Reporting Items for Systematic Review and Meta-Analysis criteria. Eligible in vitro and in vivo studies (n = 8/658) evaluated lactoferrin, α-lactalbumin, and its complexes, such as HAMLET, BAMLET and lactalbumin-oleic acid complexes, as well as lactoperoxidase, whey, and casein. Their effectiveness in the treatment of head and neck cancer cells lines found that these compounds can inhibit tumour growth modulate cancer gene expression, and have cytotoxic effects on cancer cells. However, the exact mechanisms by which these effects are achieved are not well understood. Systematically designed, large, optimally controlled, collaborative studies, both in vitro and in vivo, will be required to gain a better understanding of their potential role in the treatment of head and neck cancer.
Collapse
|
6
|
Yao Q, Li H, Fan L, Huang S, Wang J, Zheng N. The combination of lactoferrin and linolenic acid inhibits colorectal tumor growth through activating AMPK/JNK-related apoptosis pathway. PeerJ 2021; 9:e11072. [PMID: 34131514 PMCID: PMC8174148 DOI: 10.7717/peerj.11072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Colorectal cancer is a common cause of death with few available therapeutic strategies, and the preventative complexes in adjunctive therapy are urgently needed. Increasing evidences have shown that natural ingredients, including lactoferrin, oleic acid, docosahexaenoic acid (DHA) and linolenic acid, possess anti-inflammatory and anti-tumor activities. However, investigations and comparisons of their combinations in colorectal tumor model have not been reported, and the mechanism is still unrevealed. In the study, we examined the viability, migration, invasion and apoptosis of HT29 cells to choose the proper doses of these components and to select the effective combination in vitro. BALB/c nude mice bearing colorectal tumor were used to explore the role of selected combination in inhibiting tumor development in vivo. Additionally, metabonomic detection was performed to screen out the specific changed metabolitesand related pathway. The results demonstrated that lactoferrin at 6.25 μM, oleic acid at 0.18 mM, DHA at 0.18 mM, and linolenic acid at 0.15 mM significantly inhibited the viabilities of HT29 cells (p < 0.05). The combination of lactoferrin (6.25 μM) + linolenic acid (0.15 mM) exhibited the strongest activity in inhibiting the migration and invasion of HT29 cells in vivo and suppressing tumor development in vitro (p < 0.05). Furthermore, the lactoferrin + linolenic acid combination activated p-AMPK and p-JNK, thereby inducing apoptosis of HT29 cells (p < 0.05). The present study was the first to show that lactoferrin + linolenic acid combination inhibited HT29 tumor formation by activating AMPK/JNK related pathway.
Collapse
Affiliation(s)
- Qianqian Yao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linlin Fan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengnan Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
α-Lactalbumin, Amazing Calcium-Binding Protein. Biomolecules 2020; 10:biom10091210. [PMID: 32825311 PMCID: PMC7565966 DOI: 10.3390/biom10091210] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
α-Lactalbumin (α-LA) is a small (Mr 14,200), acidic (pI 4–5), Ca2+-binding protein. α-LA is a regulatory component of lactose synthase enzyme system functioning in the lactating mammary gland. The protein possesses a single strong Ca2+-binding site, which can also bind Mg2+, Mn2+, Na+, K+, and some other metal cations. It contains several distinct Zn2+-binding sites. Physical properties of α-LA strongly depend on the occupation of its metal binding sites by metal ions. In the absence of bound metal ions, α-LA is in the molten globule-like state. The binding of metal ions, and especially of Ca2+, increases stability of α-LA against the action of heat, various denaturing agents and proteases, while the binding of Zn2+ to the Ca2+-loaded protein decreases its stability and causes its aggregation. At pH 2, the protein is in the classical molten globule state. α-LA can associate with membranes at neutral or slightly acidic pH at physiological temperatures. Depending on external conditions, α-LA can form amyloid fibrils, amorphous aggregates, nanoparticles, and nanotubes. Some of these aggregated states of α-LA can be used in practical applications such as drug delivery to tissues and organs. α-LA and some of its fragments possess bactericidal and antiviral activities. Complexes of partially unfolded α-LA with oleic acid are cytotoxic to various tumor and bacterial cells. α-LA in the cytotoxic complexes plays a role of a delivery carrier of cytotoxic fatty acid molecules into tumor and bacterial cells across the cell membrane. Perhaps in the future the complexes of α-LA with oleic acid will be used for development of new anti-cancer drugs.
Collapse
|
8
|
The novel therapeutic potential of bovine α-lactalbumin made lethal to tumour cells (BALMET) and oleic acid in oral squamous cell carcinoma (OSCC). Eur J Cancer Prev 2020; 30:178-187. [PMID: 32694279 DOI: 10.1097/cej.0000000000000617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Since the serendipitous discovery of bovine α-lactalbumin made lethal to tumour cells (BAMLET)/human α-lactalbumin made lethal to tumour cells there has been an increased interest in the ability of the two components, oleic acid and α-lactalbumin, to form anti-cancer complexes. Here we have investigated the in-vitro efficacy of the BAMLET complex in killing oral cancer (OC) cells, determined the active component of the complex and investigated possible biological mechanisms. MATERIALS AND METHODS Two OC cell lines (±p53 mutation) and one dysplastic cell line were used as a model of progressive oral carcinogenesis. We performed cell viability assays with increasing BAMLET concentrations to determine the cytotoxic potential of the complex. We further analysed the individual components to determine their respective cytotoxicities. siRNA knockdown of p53 was used to determine its functional role in mediating sensitivity to BAMLET. Cell death mechanisms were investigated by flow cytometry, confocal microscopy and the lactate dehydrogenase assay. RESULTS Our results show that BAMLET is cytotoxic to the OC and dysplastic cell lines in a time and dose-dependent manner. The cytotoxic component was found to be oleic acid, which, can induce cytotoxicity even when not in complex. Our results indicate that the mechanism of cytotoxicity occurs through multiple simultaneous events including cell cycle arrest, autophagy like processes with a minor involvement of necrosis. CONCLUSION Deciphering the mechanism of cytotoxicity will aid treatment modalities for OC. This study highlights the potential of BAMLET as a novel therapeutic strategy in oral dysplastic and cancerous cells.
Collapse
|
9
|
Fang B, Yang ZX, Ren FZ. The self-assembled α-lactalbumin-oleic acid complex inhibits ATP supply from both glycolysis and the TCA cycle in HepG2 cells and HepG2-bearing nude mice. Int J Biol Macromol 2020; 159:258-263. [PMID: 32389653 DOI: 10.1016/j.ijbiomac.2020.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023]
Abstract
Energy metabolism has been a predominant target for anti-cancer drug development. The self-assembled anti-tumor α-lactalbumin-oleic acid complex (α-LA-OA) affects the energy metabolism of tumor cells, however, the role of targeting energy metabolism in its anti-tumor mechanism still needs to be clarified. α-LA assembled with OA to form a complex with an average diameter of 144.1 ± 7.241 nm, which is 10-fold larger than α-LA alone. Furthermore, the self-assembled α-LA-OA inhibited the ATP supply from both glycolysis and oxidative phosphorylation in HepG2 cells and HepG2-bearing nude mice. The gene expression of enzymes involved in glycolysis (HK2, aldose, PKM2, LDHB) and oxidative phosphorylation (CS, ACO2, IDH2, SDHA) was inhibited. This inhibitory effect was also evident by increased phosphorylation of AMPKα. α-LA-OA also suppressed the expression of HIF-1α and increased the expression of activated caspase-3. These findings demonstrate that the anti-tumor mechanism of α-LA-OA may be related to its inhibitory effect on the ATP supply, which then activates programmed cell death pathways. This study also indicated that α-LA-OA is a potent anti-tumor agent that targets the energy metabolism of tumor cells.
Collapse
Affiliation(s)
- Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhi-Xuan Yang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fa-Zheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
10
|
El-Fakharany EM, Redwan EM. Protein-lipid complexes: molecular structure, current scenarios and mechanisms of cytotoxicity. RSC Adv 2019; 9:36890-36906. [PMID: 35539089 PMCID: PMC9075609 DOI: 10.1039/c9ra07127j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 02/04/2023] Open
Abstract
Some natural proteins can be complexed with oleic acid (OA) to form an active protein-lipid formulation that can induce tumor-selective apoptosis. The first explored protein was human milk α-lactalbumin (α-LA), called HAMLET when composed with OA in antitumor form. Several groups have prepared active protein-lipid complexes using a variety of approaches, all of which depend on target protein destabilization or direct OA-protein incubation to alter pH to acid or alkaline condition. In addition to performing vital roles in inflammatory processes and immune responses, fatty acids can disturb different metabolic pathways and cellular signals. Therefore, the tumoricidal action of these complexes is related to OA rather than the protein that keeps OA in solution and acts as a vehicle for transferring OA molecules to tumor cells. However, other studies have suggested that the antitumor efficacy of these complexes was exerted by both protein and OA together. The potential is not limited to the anti-tumor activity of protein-lipid complexes but extends to other functions such as bactericidal activity. The protein shell enhances the solubility and stability of the bound fatty acid. These protein-lipid complexes are promising candidates for fighting various cancer types and managing bacterial and viral infections.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City) New Borg EL-Arab 21934 Alexandria Egypt
| | - Elrashdy M Redwan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City) New Borg EL-Arab 21934 Alexandria Egypt
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University P. O. Box 80203 Jeddah Saudi Arabia
| |
Collapse
|
11
|
Whey protein in cancer therapy: A narrative review. Pharmacol Res 2019; 144:245-256. [PMID: 31005617 DOI: 10.1016/j.phrs.2019.04.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
Cancer remains a public health challenge in the identification and development of ideal pharmacological therapies and dietary strategies. The use of whey protein as a dietary strategy is widespread in the field of oncology. The two types of whey protein, sweet or acid, result from several processing techniques and possess distinct protein subfraction compositions. Mechanistically, whey protein subfractions have specific anti-cancer effects. Alpha-lactalbumin, human α-lactalbumin made lethal to tumor cell, bovine α-lactalbumin made lethal to tumor cell, bovine serum albumin, and lactoferrin are whey protein subfractions with potential to hinder tumor pathways. Such effects, however, are principally supported by studies performed in vitro and/or in vivo. In clinical practice, whey protein intake-induced anti-cancer effects are indiscernible. However, whey protein supplementation represents a practical, feasible, and cost-effective approach to mitigate cancer cachexia syndrome. The usefulness of whey protein is evidenced by a greater leucine content and the potential to modulate IGF-1 concentrations, representing important factors towards musculoskeletal hypertrophy. Further clinical trials are warranted and needed to establish the effects of whey protein supplementation as an adjuvant to cancer therapy.
Collapse
|
12
|
A Protein Complex from Human Milk Enhances the Activity of Antibiotics and Drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.01846-18. [PMID: 30420480 DOI: 10.1128/aac.01846-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), has surpassed HIV/AIDS as the leading cause of death from a single infectious agent. The increasing occurrence of drug-resistant strains has become a major challenge for health care systems and, in some cases, has rendered TB untreatable. However, the development of new TB drugs has been plagued with high failure rates and costs. Alternative strategies to increase the efficacy of current TB treatment regimens include host-directed therapies or agents that make M. tuberculosis more susceptible to existing TB drugs. In this study, we show that HAMLET, an α-lactalbumin-oleic acid complex derived from human milk, has bactericidal activity against M. tuberculosis HAMLET consists of a micellar oleic acid core surrounded by a shell of partially denatured α-lactalbumin molecules and unloads oleic acid into cells upon contact with lipid membranes. At sublethal concentrations, HAMLET potentiated a remarkably broad array of TB drugs and antibiotics against M. tuberculosis For example, the minimal inhibitory concentrations of rifampin, bedaquiline, delamanid, and clarithromycin were decreased by 8- to 16-fold. HAMLET also killed M. tuberculosis and enhanced the efficacy of TB drugs inside macrophages, a natural habitat of M. tuberculosis Previous studies showed that HAMLET is stable after oral delivery in mice and nontoxic in humans and that it is possible to package hydrophobic compounds in the oleic acid core of HAMLET to increase their solubility and metabolic stability. The potential of HAMLET and other liprotides as drug delivery and sensitization agents in TB chemotherapy is discussed here.
Collapse
|
13
|
Rath EM, Cheng YY, Pinese M, Sarun KH, Hudson AL, Weir C, Wang YD, Håkansson AP, Howell VM, Liu GJ, Reid G, Knott RB, Duff AP, Church WB. BAMLET kills chemotherapy-resistant mesothelioma cells, holding oleic acid in an activated cytotoxic state. PLoS One 2018; 13:e0203003. [PMID: 30157247 PMCID: PMC6114908 DOI: 10.1371/journal.pone.0203003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma is an aggressive cancer with poor prognosis. Here we have investigated in vitro efficacy of BAMLET and BLAGLET complexes (anti-cancer complexes consisting of oleic acid and bovine α-lactalbumin or β-lactoglobulin respectively) in killing mesothelioma cells, determined BAMLET and BLAGLET structures, and investigated possible biological mechanisms. We performed cell viability assays on 16 mesothelioma cell lines. BAMLET and BLAGLET having increasing oleic acid content inhibited human and rat mesothelioma cell line proliferation at decreasing doses. Most of the non-cancer primary human fibroblasts were more resistant to BAMLET than were human mesothelioma cells. BAMLET showed similar cytotoxicity to cisplatin-resistant, pemetrexed-resistant, vinorelbine-resistant, and parental rat mesothelioma cells, indicating the BAMLET anti-cancer mechanism may be different to drugs currently used to treat mesothelioma. Cisplatin, pemetrexed, gemcitabine, vinorelbine, and BAMLET, did not demonstrate a therapeutic window for mesothelioma compared with immortalised non-cancer mesothelial cells. We demonstrated by quantitative PCR that ATP synthase is downregulated in mesothelioma cells in response to regular dosing with BAMLET. We sought structural insight for BAMLET and BLAGLET activity by performing small angle X-ray scattering, circular dichroism, and scanning electron microscopy. Our results indicate the structural mechanism by which BAMLET and BLAGLET achieve increased cytotoxicity by holding increasing amounts of oleic acid in an active cytotoxic state encapsulated in increasingly unfolded protein. Our structural studies revealed similarity in the molecular structure of the protein components of these two complexes and in their encapsulation of the fatty acid, and differences in the microscopic structure and structural stability. BAMLET forms rounded aggregates and BLAGLET forms long fibre-like aggregates whose aggregation is more stable than that of BAMLET due to intermolecular disulphide bonds. The results reported here indicate that BAMLET and BLAGLET may be effective second-line treatment options for mesothelioma.
Collapse
Affiliation(s)
- Emma M. Rath
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute (ADRI), Concord, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Mark Pinese
- Kinghorn Cancer Centre and Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Kadir H. Sarun
- Asbestos Diseases Research Institute (ADRI), Concord, NSW, Australia
| | - Amanda L. Hudson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Christopher Weir
- Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Yiwei D. Wang
- Burns Research, ANZAC Research Institute, Concord Hospital, University of Sydney, Concord, NSW, Australia
| | | | - Viive M. Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Guo Jun Liu
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia
- Brain and Mind Centre and Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Asbestos Diseases Research Institute (ADRI), Concord, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Robert B. Knott
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia
| | - Anthony P. Duff
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW, Australia
| | - W. Bret Church
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
El-Fakharany EM, Abu-Serie MM, Litus EA, Permyakov SE, Permyakov EA, Uversky VN, Redwan EM. The Use of Human, Bovine, and Camel Milk Albumins in Anticancer Complexes with Oleic Acid. Protein J 2018; 37:203-215. [PMID: 29691701 DOI: 10.1007/s10930-018-9770-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oleic acid (OA) is a monounsaturated fatty acid that upon binding to milk proteins, such as α-lactalbumin and lactoferrin, forms potent complexes, which exert selective anti-tumor activity against malignant cells but are nontoxic for healthy normal cells. We showed that the interaction of OA with albumins isolated from human, bovine, and camel milk results in the formation of complexes with high antitumor activity against Caco-2, HepG-2, PC-3, and MCF-7 tumor cells. The antitumor effect of the complexes is mostly due to the action of oleic acid, similar to the case of OA complexes with other proteins. Viability of tumor cells is inhibited by the albumin-OA complexes in a dose dependent manner, as evaluated by the MTT assay. Strong induction of apoptosis in tumor cells after their treatment with the complexes was monitored by flow cytometry, cell cycle analysis, nuclear staining, and DNA fragmentation methods. The complex of camel albumin with OA displayed the most pronounced anti-tumor effects in comparison with the complexes of OA with human and bovine albumins. Therefore, these results suggest that albumins have the potential to be used as efficient and low cost means of tumor treatment.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab, 21934, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab, 21934, Alexandria, Egypt
| | - Ekaterina A Litus
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, Moscow Region, Russia, 142290
| | - Sergei E Permyakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, Moscow Region, Russia, 142290
| | - Eugene A Permyakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, Moscow Region, Russia, 142290
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, Moscow Region, Russia, 142290.
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612, USA.
| | - Elrashdy M Redwan
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab, 21934, Alexandria, Egypt.
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| |
Collapse
|
15
|
Fang B, Zhang M, Ge KS, Xing HZ, Ren FZ. α-Lactalbumin-oleic acid complex kills tumor cells by inducing excess energy metabolism but inhibiting mRNA expression of the related enzymes. J Dairy Sci 2018; 101:4853-4863. [PMID: 29550120 DOI: 10.3168/jds.2017-13731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/18/2017] [Indexed: 12/14/2022]
Abstract
Previous studies have demonstrated that the anti-tumor α-lactalbumin-oleic acid complex (α-LA-OA) may target the glycolysis of tumor cells. However, few data are available regarding the effects of α-LA-OA on energy metabolism. In this study, we measured glycolysis and mitochondrial functions in HeLa cells in response to α-LA-OA using the XF flux analyzer (Seahorse Bioscience, North Billerica, MA). The gene expression of enzymes involved in glycolysis, tricarboxylic acid cycle, electron transfer chain, and ATP synthesis were also evaluated. Our results show that α-LA-OA significantly enhanced the basal glycolysis and glycolytic capacity. Mitochondrial oxidative phosphorylation, including the basal respiration, maximal respiration, spare respiratory capacity and ATP production were also improved in response to α-LA-OA. The enhanced mitochondrial functions maybe partly due to the increased capacity of utilizing fatty acids and glutamine as the substrate. However, the gene expressions of pyruvate kinase M2, lactate dehydrogenase A, aconitate hydratase, and isocitrate dehydrogenase 1 were inhibited, suggesting an insufficient ability for the glycolysis process and the tricarboxylic acid cycle. The increased expression of acetyl-coenzyme A acyltransferase 2, a central enzyme involved in the β-oxidation of fatty acids, would enhance the unbalance due to the decreased expression of electron transfer flavoprotein β subunit, which acts as the electron acceptor. These results indicated that α-LA-OA may induce oxidative stress due to conditions in which the ATP production is exceeding the energy demand. Our results may help clarify the mechanism of apoptosis induced by reactive oxygen species and mitochondrial destruction.
Collapse
Affiliation(s)
- B Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - M Zhang
- School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - K S Ge
- Key Laboratory of Functional Dairy, co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China
| | - H Z Xing
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - F Z Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China
| |
Collapse
|
16
|
Sharp JA, Brennan AJ, Polekhina G, Ascher DB, Lefevre C, Nicholas KR. Dimeric but not monomeric α-lactalbumin potentiates apoptosis by up regulation of ATF3 and reduction of histone deacetylase activity in primary and immortalised cells. Cell Signal 2017; 33:86-97. [DOI: 10.1016/j.cellsig.2017.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 11/25/2022]
|
17
|
Augmenting the cytotoxicity of oleic acid-protein complexes: Potential of target-specific antibodies. Biochimie 2017; 137:139-146. [PMID: 28341551 DOI: 10.1016/j.biochi.2017.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/18/2017] [Indexed: 01/16/2023]
Abstract
HAMLET (Human Alpha-Lactalbumin Made LEthal to Tumor cells), a complex of oleic acid (OA) with partially unfolded human α-lactalbumin, shows remarkable toxicity towards a spectrum of tumor cells as well as few differentiated cells including mammalian erythrocytes. Human erythrocytes, for this reason, have been used as convenient model cells to study toxic properties of the OA complexes. The toxicity of HAMLET-like complexes, prepared using immunoglobulin gamma (IgG) isolated from the sera of rabbits immunized with human erythrocytes as well as those unimmunized, towards the red cells was investigated. The OA complex of the IgG prepared by the heat-treatment procedure comprised of protein monomers and oligomers with bound OA. The IgG in the complexes retained most secondary but only partial tertiary structure and complex formation with OA did not abolish the ability of anti-erythrocyte IgG to bind to the erythrocytes. Anti-erythrocyte IgG-OA complexes were remarkably more hemolytic than those prepared using non-specific IgG, while complexes prepared using affinity purified anti-erythrocyte IgG were most effective in hemolyzing the cells. The work suggests that antibodies that exhibit affinity towards target cells may be useful in the preparation of selective and highly toxic OA complexes for the cells.
Collapse
|
18
|
Fang B, Zhang M, Wu H, Fan X, Ren F. Internalization properties of the anti-tumor α-lactalbumin-oleic acid complex. Int J Biol Macromol 2017; 96:44-51. [DOI: 10.1016/j.ijbiomac.2016.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
|
19
|
Ho JC, Nadeem A, Svanborg C. HAMLET – A protein-lipid complex with broad tumoricidal activity. Biochem Biophys Res Commun 2017; 482:454-458. [DOI: 10.1016/j.bbrc.2016.10.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
|
20
|
Zhao G, Neely AM, Schwarzer C, Lu H, Whitt AG, Stivers NS, Burlison JA, White C, Machen TE, Li C. N-(3-oxo-acyl) homoserine lactone inhibits tumor growth independent of Bcl-2 proteins. Oncotarget 2016; 7:5924-42. [PMID: 26758417 PMCID: PMC4868731 DOI: 10.18632/oncotarget.6827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 12/22/2015] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa produces N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule for bacterial communication. C12 has also been reported to induce apoptosis in various types of tumor cells. However, the detailed molecular mechanism of C12-triggerred tumor cell apoptosis is still unclear. In addition, it is completely unknown whether C12 possesses any potential therapeutic effects in vivo. Our data indicate that, unlike most apoptotic inducers, C12 evokes a novel form of apoptosis in tumor cells through inducing mitochondrial membrane permeabilization independent of both pro- and anti-apoptotic Bcl-2 proteins. Importantly, C12 inhibits tumor growth in animals regardless of either pro- or anti-apoptotic Bcl-2 proteins. Furthermore, opposite to conventional chemotherapeutics, C12 requires paraoxonase 2 (PON2) to exert its cytotoxicity on tumor cells in vitro and its inhibitory effects on tumor growth in vivo. Overall, our results demonstrate that C12 inhibits tumor growth independent of both pro- and anti-apoptotic Bcl-2 proteins, and through inducing unique apoptotic signaling mediated by PON2 in tumor cells.
Collapse
Affiliation(s)
- Guoping Zhao
- Molecular Targets Program, University of Louisville, Louisville, KY 40202, USA.,Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province, P.R. China, 230031
| | - Aaron M Neely
- Molecular Targets Program, University of Louisville, Louisville, KY 40202, USA
| | - Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Huayi Lu
- Second Hospital of Jilin University, Changchun, Jilin Province, P.R. China, 130041
| | - Aaron G Whitt
- Molecular Targets Program, University of Louisville, Louisville, KY 40202, USA
| | - Nicole S Stivers
- Molecular Targets Program, University of Louisville, Louisville, KY 40202, USA
| | - Joseph A Burlison
- Structural Biology Program, James Graham Brown Cancer Center, Departments of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Carl White
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Terry E Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Chi Li
- Molecular Targets Program, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
21
|
Fang B, Zhang M, Fan X, Ren F. The targeted proteins in tumor cells treated with the α-lactalbumin–oleic acid complex examined by descriptive and quantitative liquid chromatography–tandem mass spectrometry. J Dairy Sci 2016; 99:5991-6004. [DOI: 10.3168/jds.2016-10971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/14/2016] [Indexed: 01/26/2023]
|
22
|
Protein receptor-independent plasma membrane remodeling by HAMLET: a tumoricidal protein-lipid complex. Sci Rep 2015; 5:16432. [PMID: 26561036 PMCID: PMC4642337 DOI: 10.1038/srep16432] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/06/2015] [Indexed: 01/07/2023] Open
Abstract
A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ‘’protein-centric” view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a ‘’receptor independent” transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death.
Collapse
|
23
|
Delgado Y, Morales-Cruz M, Figueroa CM, Hernández-Román J, Hernández G, Griebenow K. The cytotoxicity of BAMLET complexes is due to oleic acid and independent of the α-lactalbumin component. FEBS Open Bio 2015; 5:397-404. [PMID: 26101738 PMCID: PMC4430638 DOI: 10.1016/j.fob.2015.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/16/2015] [Indexed: 11/17/2022] Open
Abstract
We synthesized three different BAMLET complexes consisting of oleic acid coupled to bovine α-lactalbumin. Oleic acid micelles alone are tumoricidal at equimolar concentrations of oleic acid bound in the BAMLET complexes. α-Lactalbumin is non-toxic to cells even when delivered to their cytoplasm. Both, BAMLET and oleic acid micelles showed no selective cytotoxicity to cancer cells.
Lipid–protein complexes comprised of oleic acid (OA) non-covalently coupled to human/bovine α-lactalbumin, named HAMLET/BAMLET, display cytotoxic properties against cancer cells. However, there is still a substantial debate about the role of the protein in these complexes. To shed light into this, we obtained three different BAMLET complexes using varying synthesis conditions. Our data suggest that to form active BAMLET particles, OA has to reach critical micelle concentration with an approximate diameter of 250 nm. Proteolysis experiments on BAMLET show that OA protects the protein and is probably located on the surface, consistent with a micelle-like structure. Native or unfolded α-lactalbumin without OA lacked any tumoricidal activity. In contrast, OA alone killed cancer cells with the same efficiency at equimolar concentrations as its formulation as BAMLET. Our data show unequivocally that the cytotoxicity of the BAMLET complex is exclusively due to OA and that OA alone, when formulated as a micelle, is as toxic as the BAMLET complex. The contradictory literature results on the cytotoxicity of BAMLET might be explained by our finding that it was imperative to sonicate the samples to obtain toxic OA.
Collapse
Key Words
- BAMLET
- BAMLET, bovine α-lactalbumin made lethal to tumor cells
- Cancer therapy
- DLS, dynamic light scattering
- EPR, enhanced permeability and retention
- FA, fatty acid
- Fatty acid
- FoA, folic acid
- HAMLET
- HAMLET, human α-lactalbumin made lethal to tumor cells
- MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
- NP, nanoparticles
- OA, oleic acid
- Oleic acid
- PMS, phenazine methosulfate
- SEM, scanning electron microscopy
- α-LA, α-lactalbumin
- α-Lactalbumin
Collapse
Affiliation(s)
- Yamixa Delgado
- Department of Biology, University of Puerto Rico, Río Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico
| | - Moraima Morales-Cruz
- Department of Biology, University of Puerto Rico, Río Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico
| | - Cindy M. Figueroa
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico
| | - José Hernández-Román
- Department of Biology, University of Puerto Rico, Río Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico
| | - Glinda Hernández
- Department of Biology, University of Puerto Rico, Río Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico
| | - Kai Griebenow
- Department of Biology, University of Puerto Rico, Río Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico
- Corresponding author at: Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23360, San Juan 00931-3346, Puerto Rico. Tel.: +1 (787) 764 0000x7374; fax: +1 (787) 756 8242.
| |
Collapse
|
24
|
Hoque M, Nanduri R, Gupta J, Mahajan S, Gupta P, Saleemuddin M. Oleic acid complex of bovine α-lactalbumin induces eryptosis in human and other erythrocytes by a Ca(2+)-independent mechanism. Biochim Biophys Acta Gen Subj 2015; 1850:1729-39. [PMID: 25913522 DOI: 10.1016/j.bbagen.2015.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/08/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Complexes of oleic acid (OA) with milk α-lactalbumin, received remarkable attention in view of their selective toxicity towards a spectrum of tumors during the last two decades. OA complexes of some structurally related/unrelated proteins are also tumoricidal. Erythrocytes are among the few differentiated cells that are sensitive and undergo hemolysis when exposed to the complexes. METHODS The effects of OA complex of bovine α-lactalbumin (Bovine Alpha-lactalbumin Made LEthal to Tumor cells, BAMLET) on human, goat and chicken erythrocytes on calcein leakage, phosphatidylserine exposure, morphological changes and hemolysis were studied by confocal microscopy, FACS analysis, scanning electron microscopy and measuring hemoglobin release. RESULTS Erythrocytes exposed to BAMLET undergo eryptosis-like alterations as revealed by calcein leakage, surface phosphatidylserine exposure and transformation to echinocytes at low concentrations and hemolysis when the concentration of the complex was raised. Ca(2+) was not essential and restricted the alterations when included in the medium. The BAMLET-induced alterations in human erythrocytes were prevented by the cation channel inhibitors, amiloride and BaCl2 but not by inhibitors of thiol proteases, sphingomyelinase and by the antioxidant N-acetyl cysteine. CONCLUSIONS The work shows for the first time that low concentrations of BAMLET induces eryptosis in erythrocytes by a novel mechanism not requiring Ca(2+) and hemolysis by detergent-like action by the released OA at higher concentrations. GENERAL SIGNIFICANCE The study points out to the need for a comprehensive evaluation of the toxicity of OA complexes of α-lactalbumin and other proteins towards erythrocytes and other differentiated cells before being considered for therapy.
Collapse
Affiliation(s)
- Mehboob Hoque
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | - Jyoti Gupta
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Sahil Mahajan
- CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Pawan Gupta
- CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - M Saleemuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
25
|
Fang B, Zhang M, Tian M, Ren FZ. Self-assembled β-lactoglobulin-oleic acid and β-lactoglobulin-linoleic acid complexes with antitumor activities. J Dairy Sci 2015; 98:2898-907. [PMID: 25771044 DOI: 10.3168/jds.2014-8993] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/23/2015] [Indexed: 11/19/2022]
Abstract
β-Lactoglobulin (β-LG) can bind to fatty acids such as oleic acid (OA) and linoleic acid (LA). Another whey protein, α-lactalbumin (α-LA), can also bind to OA to give the complex α-LA-OA, which has antitumor properties. Based on reports that the activity of α-LA-OA is highly dependent on OA, as well as the acquisition of similar complexes using other proteins, such as lysozyme and lactoferrin, we speculated whether β-LG could also kill tumor cells after binding to other fatty acids. Therefore, we prepared complexes of β-LG with OA (β-LG-OA) and LA (β-LG-LA) in the current study and evaluated them in terms of antitumor activity and thermostability using the methylene blue method and differential scanning calorimetry, respectively. The structural features of these complexes were also evaluated using fluorescence spectroscopy and circular dichroism. The binding dynamics of OA and LA to β-LG were studied using isothermal titration calorimetry. Cell viability results revealed that β-LG-LA and β-LG-OA exhibited similar antitumor activities. Interestingly, the binding of β-LG to LA led to an increase in its thermostability, whereas its binding to OA had very little effect. The environments of the tryptophan residues in the β-LG-OA and β-LG-LA complexes were very different, with the residues being blue- and red-shifted, respectively. Furthermore, the hydrophobic regions in β-LG were buried after binding of OA, which was slightly changed in β-LG-LA. Circular dichroism results showed that β-LG-OA enhanced the tertiary structure, which was partially lost in β-LG-LA. There were more binding sites for OA than for LA on β-LG, although the binding constants of the 2 fatty acids were similar, with both acids interacting with the protein though van der Waals and hydrogen bonding interactions. This study could help provide a deeper understanding of the structural basis for formation of antitumor protein-fatty acid complexes.
Collapse
Affiliation(s)
- B Fang
- Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100083, China; Academy of State Administration of Grain, Beijing 100037, China
| | - M Zhang
- Beijing Technology and Business University, School of Food Science and Chemical Engineering, Beijing 100048, China
| | - M Tian
- Academy of State Administration of Grain, Beijing 100037, China
| | - F Z Ren
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
26
|
Zhong S, Liu S, Chen S, Liu H, Zhou S, Qin X, Wang W. Cytotoxicity and Apoptosis Induction of Bovine Alpha-lactalbumin-oleic Acid Complex in Human Breast Cancer Cells. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University
| | - Shouchun Liu
- Beijing Academy of Agriculture and Forestry Science
| | - Suhua Chen
- College of Food Science and Technology, Guangdong Ocean University
| | - Hai Liu
- Modern Biochemistry Center, Department of Experimental Teaching, Guangdong Ocean University
| | - Siyi Zhou
- College of Food Science and Technology, Guangdong Ocean University
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University
| | - Weimin Wang
- College of Food Science and Technology, Guangdong Ocean University
| |
Collapse
|
27
|
Fang B, Zhang M, Tian M, Jiang L, Guo HY, Ren FZ. Bovine lactoferrin binds oleic acid to form an anti-tumor complex similar to HAMLET. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:535-43. [DOI: 10.1016/j.bbalip.2013.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/08/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022]
|
28
|
The biological activities of protein/oleic acid complexes reside in the fatty acid. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1125-43. [DOI: 10.1016/j.bbapap.2013.02.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/12/2022]
|
29
|
Brinkmann CR, Brodkorb A, Thiel S, Kehoe JJ. The cytotoxicity of fatty acid/α-lactalbumin complexes depends on the amount and type of fatty acid. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201200165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Zhang YB, Gong JL, Xing TY, Zheng SP, Ding W. Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells. Cell Death Dis 2013; 4:e550. [PMID: 23519119 PMCID: PMC3615731 DOI: 10.1038/cddis.2013.77] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
HAMLET is a complex of oleic acids and decalcified α-lactalbumin that was discovered to selectively kill tumor cells both in vitro and in vivo. Autophagy is an important cellular process involved in drug-induced cell death of glioma cells. We treated U87MG human glioma cells with HAMLET and found that the cell viability was significantly decreased and accompanied with the activation of autophagy. Interestingly, we observed an increase in p62/SQSTM1, an important substrate of autophagosome enzymes, at the protein level upon HAMLET treatment for short periods. To better understand the functionality of autophagy and p62/SQSTM1 in HAMLET-induced cell death, we modulated the level of autophagy or p62/SQSTM1 with biochemical or genetic methods. The results showed that inhibition of autophagy aggravated HAMLET-induced cell death, whereas activation of authophagy attenuated this process. Meanwhile, we found that overexpression of wild-type p62/SQSTM1 was able to activate caspase-8, and then promote HAMLET-induced apoptosis, whereas knockdown of p62/SQSTM1 manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 following HAMLET treatment required its C-terminus UBA domain. Our results indicated that in addition to being a marker of autophagy activation in HAMLET-treated glioma cells, p62/SQSTM1 could also function as an important mediator for the activation of caspase-8-dependent cell death.
Collapse
Affiliation(s)
- Y-B Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
31
|
Brinkmann CR, Thiel S, Otzen DE. Protein-fatty acid complexes: biochemistry, biophysics and function. FEBS J 2013; 280:1733-49. [DOI: 10.1111/febs.12204] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/29/2012] [Accepted: 02/12/2013] [Indexed: 02/01/2023]
Affiliation(s)
| | - Steffen Thiel
- Department of Biomedicine, Faculty of Health Sciences; Aarhus University; Denmark
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Centre for Insoluble Protein Structures (inSPIN), Department of Molecular Biology and Genetics; Aarhus University; Denmark
| |
Collapse
|
32
|
A unifying mechanism for cancer cell death through ion channel activation by HAMLET. PLoS One 2013; 8:e58578. [PMID: 23505537 PMCID: PMC3591364 DOI: 10.1371/journal.pone.0058578] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 02/06/2013] [Indexed: 01/16/2023] Open
Abstract
Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na+ and K+ concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET’s broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET’s documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.
Collapse
|
33
|
Xiao Z, Mak A, Koch K, Moore RB. A molecular complex of bovine milk protein and oleic acid selectively kills cancer cellsin vitroand inhibits tumour growth in an orthotopic rat bladder tumour model. BJU Int 2013; 112:E201-10. [DOI: 10.1111/j.1464-410x.2012.11737.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
|
35
|
Abstract
HAMLET (human α-lactalbumin made lethal to tumour cells) and its related partially unfolded protein-fatty acid complexes are novel biomolecular nanoparticles that possess relatively selective cytotoxic activities towards tumour cells. One of the key characteristics is the requirement for the protein to be partially unfolded, hence endowing native proteins with additional functions in the alternatively folded states. Beginning with the history of its discovery and development, the cellular targets that appear to be strongly correlated with tumour cell death are introduced in the present article.
Collapse
|
36
|
Ho CS J, Rydström A, Trulsson M, Bålfors J, Storm P, Puthia M, Nadeem A, Svanborg C. HAMLET: functional properties and therapeutic potential. Future Oncol 2012; 8:1301-13. [DOI: 10.2217/fon.12.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human α-lactalbumin made lethal to tumor cells (HAMLET) is the first member in a new family of protein–lipid complexes that kills tumor cells with high selectivity. The protein component of HAMLET is α-lactalbumin, which in its native state acts as a substrate specifier in the lactose synthase complex, thereby defining a function essential for the survival of lactating mammals. In addition, α-lactalbumin acquires tumoricidal activity after partial unfolding and binding to oleic acid. The lipid cofactor serves the dual role as a stabilizer of the altered fold of the protein and a coactivator of specific steps in tumor cell death. HAMLET is broadly tumoricidal, suggesting that the complex identifies conserved death pathways suitable for targeting by novel therapies. Sensitivity to HAMLET is defined by oncogene expression including Ras and c-Myc and by glycolytic enzymes. Cellular targets are located in the cytoplasmic membrane, cytoskeleton, mitochondria, proteasomes, lysosomes and nuclei, and specific signaling pathways are rapidly activated, first by interactions of HAMLET with the cell membrane and subsequently after HAMLET internalization. Therapeutic effects of HAMLET have been demonstrated in human skin papillomas and bladder cancers, and HAMLET limits the progression of human glioblastomas, with no evidence of toxicity for normal brain or bladder tissue. These findings open up new avenues for cancer therapy and the understanding of conserved death responses in tumor cells.
Collapse
Affiliation(s)
- James Ho CS
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Anna Rydström
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Maria Trulsson
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Johannes Bålfors
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Petter Storm
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Manoj Puthia
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Aftab Nadeem
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Catharina Svanborg
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| |
Collapse
|
37
|
Baumann A, Gjerde AU, Ying M, Svanborg C, Holmsen H, Glomm WR, Martinez A, Halskau O. HAMLET forms annular oligomers when deposited with phospholipid monolayers. J Mol Biol 2012; 418:90-102. [PMID: 22343047 DOI: 10.1016/j.jmb.2012.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/28/2012] [Accepted: 02/03/2012] [Indexed: 11/26/2022]
Abstract
Recently, the anticancer activity of human α-lactalbumin made lethal to tumor cells (HAMLET) has been linked to its increased membrane affinity in vitro, at neutral pH, and ability to cause leakage relative to the inactive native bovine α-lactalbumin (BLA) protein. In this study, atomic force microscopy resolved membrane distortions and annular oligomers (AOs) produced by HAMLET when deposited at neutral pH on mica together with a negatively charged lipid monolayer. BLA, BAMLET (HAMLET's bovine counterpart) and membrane-binding Peptide C, corresponding to BLA residues 75-100, also form AO-like structures under these conditions but at higher subphase concentrations than HAMLET. The N-terminal Peptide A, which binds to membranes at acidic but not at neutral pH, did not form AOs. This suggests a correlation between the capacity of the proteins/peptides to integrate into the membrane at neutral pH-as observed by liposome content leakage and circular dichroism experiments-and the formation of AOs, albeit at higher concentrations. Formation of AOs, which might be important to HAMLET's tumor toxic action, appears related to the increased tendency of the protein to populate intermediately folded states compared to the native protein, the formation of which is promoted by, but not uniquely dependent on, the oleic acid molecules associated with HAMLET.
Collapse
Affiliation(s)
- Anne Baumann
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mercer N, Ramakrishnan B, Boeggeman E, Qasba PK. Applications of site-specific labeling to study HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid. PLoS One 2011; 6:e26093. [PMID: 22016817 PMCID: PMC3189925 DOI: 10.1371/journal.pone.0026093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/19/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Alpha-lactalbumin (α-LA) is a calcium-bound mammary gland-specific protein that is found in milk. This protein is a modulator of β1,4-galactosyltransferase enzyme, changing its acceptor specificity from N-acetyl-glucosamine to glucose, to produce lactose, milk's main carbohydrate. When calcium is removed from α-LA, it adopts a molten globule form, and this form, interestingly, when complexed with oleic acid (OA) acquires tumoricidal activity. Such a complex made from human α-LA (hLA) is known as HAMLET (Human A-lactalbumin Made Lethal to Tumor cells), and its tumoricidal activity has been well established. METHODOLOGY/PRINCIPAL FINDINGS In the present work, we have used site-specific labeling, a technique previously developed in our laboratory, to label HAMLET with biotin, or a fluoroprobe for confocal microscopy studies. In addition to full length hLA, the α-domain of hLA (αD-hLA) alone is also included in the present study. We have engineered these proteins with a 17-amino acid C-terminal extension (hLA-ext and αD-hLA-ext). A single Thr residue in this extension is glycosylated with 2-acetonyl-galactose (C2-keto-galactose) using polypeptide-α-N-acetylgalactosaminyltransferase II (ppGalNAc-T2) and further conjugated with aminooxy-derivatives of fluoroprobe or biotin molecules. CONCLUSIONS/SIGNIFICANCE We found that the molten globule form of hLA and αD-hLA proteins, with or without C-terminal extension, and with and without the conjugated fluoroprobe or biotin molecule, readily form a complex with OA and exhibits tumoricidal activity similar to HAMLET made with full-length hLA protein. The confocal microscopy studies with fluoroprobe-labeled samples show that these proteins are internalized into the cells and found even in the nucleus only when they are complexed with OA. The HAMLET conjugated with a single biotin molecule will be a useful tool to identify the cellular components that are involved with it in the tumoricidal activity.
Collapse
Affiliation(s)
- Natalia Mercer
- Structural Glycobiology Section, CCR-Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland, United States of America
| | - Boopathy Ramakrishnan
- Structural Glycobiology Section, CCR-Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland, United States of America
- Basic Science Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
| | - Elizabeth Boeggeman
- Structural Glycobiology Section, CCR-Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland, United States of America
- Basic Science Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
| | - Pradman K. Qasba
- Structural Glycobiology Section, CCR-Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
39
|
|
40
|
Brinkmann C, Thiel S, Larsen M, Petersen T, Jensenius J, Heegaard C. Preparation and comparison of cytotoxic complexes formed between oleic acid and either bovine or human α-lactalbumin. J Dairy Sci 2011; 94:2159-70. [DOI: 10.3168/jds.2010-3622] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 01/24/2011] [Indexed: 11/19/2022]
|
41
|
Brinkmann CR, Heegaard CW, Petersen TE, Jensenius JC, Thiel S. The toxicity of bovine α-lactalbumin made lethal to tumor cells is highly dependent on oleic acid and induces killing in cancer cell lines and noncancer-derived primary cells. FEBS J 2011; 278:1955-67. [DOI: 10.1111/j.1742-4658.2011.08112.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Hakansson AP, Roche-Hakansson H, Mossberg AK, Svanborg C. Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex. PLoS One 2011; 6:e17717. [PMID: 21423701 PMCID: PMC3053380 DOI: 10.1371/journal.pone.0017717] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/11/2011] [Indexed: 11/20/2022] Open
Abstract
Background Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. Methodology/Principal Findings We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Conclusions/Significance Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells.
Collapse
Affiliation(s)
- Anders P Hakansson
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York, United States of America.
| | | | | | | |
Collapse
|
43
|
HAMLET binding to α-actinin facilitates tumor cell detachment. PLoS One 2011; 6:e17179. [PMID: 21408150 PMCID: PMC3050841 DOI: 10.1371/journal.pone.0017179] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/22/2011] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion is tightly regulated by specific molecular interactions and detachment from the extracellular matrix modifies proliferation and survival. HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a protein-lipid complex with tumoricidal activity that also triggers tumor cell detachment in vitro and in vivo, suggesting that molecular interactions defining detachment are perturbed in cancer cells. To identify such interactions, cell membrane extracts were used in Far-western blots and HAMLET was shown to bind α-actinins; major F-actin cross-linking proteins and focal adhesion constituents. Synthetic peptide mapping revealed that HAMLET binds to the N-terminal actin-binding domain as well as the integrin-binding domain of α-actinin-4. By co-immunoprecipitation of extracts from HAMLET-treated cancer cells, an interaction with α-actinin-1 and -4 was observed. Inhibition of α-actinin-1 and α-actinin-4 expression by siRNA transfection increased detachment, while α-actinin-4-GFP over-expression significantly delayed rounding up and detachment of tumor cells in response to HAMLET. In response to HAMLET, adherent tumor cells rounded up and detached, suggesting a loss of the actin cytoskeletal organization. These changes were accompanied by a reduction in β1 integrin staining and a decrease in FAK and ERK1/2 phosphorylation, consistent with a disruption of integrin-dependent cell adhesion signaling. Detachment per se did not increase cell death during the 22 hour experimental period, regardless of α-actinin-4 and α-actinin-1 expression levels but adherent cells with low α-actinin levels showed increased death in response to HAMLET. The results suggest that the interaction between HAMLET and α-actinins promotes tumor cell detachment. As α-actinins also associate with signaling molecules, cytoplasmic domains of transmembrane receptors and ion channels, additional α-actinin-dependent mechanisms are discussed.
Collapse
|
44
|
Mossberg AK, Hun Mok K, Morozova-Roche LA, Svanborg C. Structure and function of human α-lactalbumin made lethal to tumor cells (HAMLET)-type complexes. FEBS J 2010; 277:4614-25. [PMID: 20977665 DOI: 10.1111/j.1742-4658.2010.07890.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human α-lactalbumin made lethal to tumor cells (HAMLET) and equine lysozyme with oleic acid (ELOA) are complexes consisting of protein and fatty acid that exhibit cytotoxic activities, drastically differing from the activity of their respective proteinaceous compounds. Since the discovery of HAMLET in the 1990s, a wealth of information has been accumulated, illuminating the structural, functional and therapeutic properties of protein complexes with oleic acid, which is summarized in this review. In vitro, both HAMLET and ELOA are produced by using ion-exchange columns preconditioned with oleic acid. However, the complex of human α-lactalbumin with oleic acid with the antitumor activity of HAMLET was found to be naturally present in the acidic fraction of human milk, where it was discovered by serendipity. Structural studies have shown that α-lactalbumin in HAMLET and lysozyme in ELOA are partially unfolded, 'molten-globule'-like, thereby rendering the complexes dynamic and in conformational exchange. HAMLET exists in the monomeric form, whereas ELOA mostly exists as oligomers and the fatty acid stoichiometry varies, with HAMLET holding an average of approximately five oleic acid molecules, whereas ELOA contains a considerably larger number (11- 48). Potent tumoricidal activity is found in both HAMLET and ELOA, and HAMLET has also shown strong potential as an antitumor drug in different in vivo animal models and clinical studies. The gain of new, beneficial function upon partial protein unfolding and fatty acid binding is a remarkable phenomenon, and may reflect a significant generic route of functional diversification of proteins via varying their conformational states and associated ligands.
Collapse
Affiliation(s)
- Ann-Kristin Mossberg
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
45
|
Anticancer genes: inducers of tumour-specific cell death signalling. Trends Mol Med 2010; 16:88-96. [PMID: 20138582 DOI: 10.1016/j.molmed.2009.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/14/2009] [Accepted: 12/21/2009] [Indexed: 12/11/2022]
Abstract
Recent studies have revealed a new class of genes encoding proteins with specific anticancer activity. Upon ectopic expression, these factors cause cell death specifically in tumour cells by apoptosis, autophagy or mitotic catastrophe, yet normal cells are spared. Some of these genes or their encoded proteins are in clinical development and show promising results, and their signalling pathways are currently under intense investigation. Defining these genes as anticancer genes, we review what is known about their functions, the specific cell death signals they induce and the status of cancer therapy approaches that emulate their function. Systematic screening for such anticancer genes might lead to the identification of a repertoire of signalling pathways directed against cellular alterations that are specific for tumour cells.
Collapse
|
46
|
|
47
|
Abstract
The activity of human milk on cell growth has been evaluated on two cell lines, MDCK and Caco-2. The proportion of human milk samples that reduced by half the growth of MDCK cells was of 36%. This inhibitory activity was associated with casein and not the whey fraction. Great variability was found in the degree of inhibitory activity depending on the milk sample. The susceptibility of Caco-2 cells to milk inhibitory activity was lower than that of MDCK. Bovine milk did not have any effect on cell growth, either as skimmed milk or as whey or casein. Morphology of cells incubated with active human casein showed abnormal features, such as chromatin condensation, reduced cellular volume and apoptotic bodies, and also fragmented DNA, which are all features of apoptosis.
Collapse
|
48
|
Aits S, Gustafsson L, Hallgren O, Brest P, Gustafsson M, Trulsson M, Mossberg AK, Simon HU, Mograbi B, Svanborg C. HAMLET (human α-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death. Int J Cancer 2009; 124:1008-19. [DOI: 10.1002/ijc.24076] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Pettersson-Kastberg J, Aits S, Gustafsson L, Mossberg A, Storm P, Trulsson M, Persson F, Mok KH, Svanborg C. Can misfolded proteins be beneficial? The HAMLET case. Ann Med 2009; 41:162-76. [PMID: 18985467 DOI: 10.1080/07853890802502614] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
By changing the three-dimensional structure, a protein can attain new functions, distinct from those of the native protein. Amyloid-forming proteins are one example, in which conformational change may lead to fibril formation and, in many cases, neurodegenerative disease. We have proposed that partial unfolding provides a mechanism to generate new and useful functional variants from a given polypeptide chain. Here we present HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) as an example where partial unfolding and the incorporation of cofactor create a complex with new, beneficial properties. Native alpha-lactalbumin functions as a substrate specifier in lactose synthesis, but when partially unfolded the protein binds oleic acid and forms the tumoricidal HAMLET complex. When the properties of HAMLET were first described they were surprising, as protein folding intermediates and especially amyloid-forming protein intermediates had been regarded as toxic conformations, but since then structural studies have supported functional diversity arising from a change in fold. The properties of HAMLET suggest a mechanism of structure-function variation, which might help the limited number of human protein genes to generate sufficient structural diversity to meet the diverse functional demands of complex organisms.
Collapse
Affiliation(s)
- Jenny Pettersson-Kastberg
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The role of native bovine α-lactalbumin in bovine mammary epithelial cell apoptosis and casein expression. J DAIRY RES 2008; 75:319-25. [DOI: 10.1017/s0022029908003403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Folding variants of α-lactalbumin (α-la) are known to induce cell death in a number of cell types, including mammary epithelial cells (MEC). The native conformation of α-la however has not been observed to exhibit this biological activity. Here we report that native bovine α-la reduced the viability of primary bovine mammary epithelial cells (BMEC) and induced caspase activity in mammospheres, which are alveolar-like structures formed by culturing primary BMEC on extracellular matrix in the presence of lactogenic hormones. These observations suggest a possible role for bovine α-la in involution and/or maintaining the luminal space in mammary alveoli during lactation. In addition, co-incubation of bovine α-la in an in-vitro mammosphere model resulted in decreased β-casein mRNA expression and increased αs1- and κ-casein mRNA expression. This differential effect on casein expression levels is unusual and raises the possibility of manipulating expression levels of individual caseins to alter dairy processing properties. Manipulation of α-la levels could be further investigated for its potential to enhance milk protein expression and/or improve lactational persistency by influencing the balance between proliferation and apoptosis of BMEC, which has a major influence on the milk-producing capacity of the mammary gland.
Collapse
|