1
|
Caldwell KA, Thies JL, Caldwell GA. No Country for Old Worms: A Systematic Review of the Application of C. elegans to Investigate a Bacterial Source of Environmental Neurotoxicity in Parkinson's Disease. Metabolites 2018; 8:metabo8040070. [PMID: 30380609 PMCID: PMC6315381 DOI: 10.3390/metabo8040070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
While progress has been made in discerning genetic associations with Parkinson's disease (PD), identifying elusive environmental contributors necessitates the application of unconventional hypotheses and experimental strategies. Here, we provide an overview of studies that we conducted on a neurotoxic metabolite produced by a species of common soil bacteria, Streptomyces venezuelae (S. ven), indicating that the toxicity displayed by this bacterium causes stress in diverse cellular mechanisms, such as the ubiquitin proteasome system and mitochondrial homeostasis. This dysfunction eventually leads to age and dose-dependent neurodegeneration in the nematode Caenorhabditis elegans. Notably, dopaminergic neurons have heightened susceptibility, but all of the neuronal classes eventually degenerate following exposure. Toxicity further extends to human SH-SY5Y cells, which also degenerate following exposure. Additionally, the neurons of nematodes expressing heterologous aggregation-prone proteins display enhanced metabolite vulnerability. These mechanistic analyses collectively reveal a unique metabolomic fingerprint for this bacterially-derived neurotoxin. In considering that epidemiological distinctions in locales influence the incidence of PD, we surveyed soils from diverse regions of Alabama, and found that exposure to ~30% of isolated Streptomyces species caused worm dopaminergic neurons to die. In addition to aging, one of the few established contributors to PD appears to be a rural lifestyle, where exposure to soil on a regular basis might increase the risk of interaction with bacteria producing such toxins. Taken together, these data suggest that a novel toxicant within the Streptomyces genus might represent an environmental contributor to the progressive neurodegeneration that is associated with PD.
Collapse
Affiliation(s)
- Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487, USA.
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center for Research on the Basic Biology of Aging, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA.
| | - Jennifer L Thies
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487, USA.
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487, USA.
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center for Research on the Basic Biology of Aging, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Whang J, Back YW, Lee KI, Fujiwara N, Paik S, Choi CH, Park JK, Kim HJ. Mycobacterium abscessus glycopeptidolipids inhibit macrophage apoptosis and bacterial spreading by targeting mitochondrial cyclophilin D. Cell Death Dis 2017; 8:e3012. [PMID: 28837151 PMCID: PMC5596598 DOI: 10.1038/cddis.2017.420] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/22/2022]
Abstract
Mycobacterium abscessus (MAB) is a species of nontuberculous mycobacteria (NTM) and a major causative pathogen of pulmonary diseases especially in patients with cystic fibrosis. MAB infection is notoriously difficult to treat because of its intrinsic or inducible resistance to most antibiotics. The rough (R) morphotype of MAB, lacking cell surface glycopeptidolipids (GPLs), is associated with more severe and persistent infection than the smooth (S) type; however, the mechanisms underlying the R type's virulence and the relation with GPLs remain unclear. In this study, we found that R-type MAB is much more proapoptotic than the S type, as a result of GPL-mediated inhibition of macrophage apoptosis. Polar GPLs inhibited an apoptotic response (induced by proapoptotic stimuli) by suppressing ROS production and the cytochrome c release and by preserving mitochondrial transmembrane potential. Furthermore, GPLs were found to be targeted to mitochondria and interacted with cyclophilin D; their acetylation was essential for this interaction. Finally, GPLs inhibited the intracellular growth and bacterial spreading of R-type MAB among macrophages via apoptosis inhibition. These findings suggest that GPLs limit MAB virulence by inhibiting apoptosis and the spread of bacteria and therefore provide a novel insight into the mechanism underlying virulence of MAB.
Collapse
Affiliation(s)
- Jake Whang
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Yong Woo Back
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Kang-In Lee
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Tezukayama University, Gakuenminami, Nara, Japan
| | - Seungwha Paik
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chul Hee Choi
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jeong-Kyu Park
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology and Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
3
|
Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4. Apoptosis 2016; 21:459-72. [PMID: 26842846 DOI: 10.1007/s10495-016-1220-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.
Collapse
|
4
|
Lee KI, Whang J, Choi HG, Son YJ, Jeon HS, Back YW, Park HS, Paik S, Park JK, Choi CH, Kim HJ. Mycobacterium avium MAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth. Sci Rep 2016; 6:37804. [PMID: 27901051 PMCID: PMC5129020 DOI: 10.1038/srep37804] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/03/2016] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium avium complex induces macrophage apoptosis. However, the M. avium components that inhibit or trigger apoptosis and their regulating mechanisms remain unclear. We recently identified the immunodominant MAV2054 protein by fractionating M. avium culture filtrate protein by multistep chromatography; this protein showed strong immuno-reactivity in M. avium complex pulmonary disease and in patients with tuberculosis. Here, we investigated the biological effects of MAV2054 on murine macrophages. Recombinant MAV2054 induced caspase-dependent macrophage apoptosis. Enhanced reactive oxygen species production and JNK activation were essential for MAV2054-mediated apoptosis and MAV2054-induced interleukin-6, tumour necrosis factor, and monocyte chemoattractant protein-1 production. MAV2054 was targeted to the mitochondrial compartment of macrophages treated with MAV2054 and infected with M. avium. Dissipation of the mitochondrial transmembrane potential (ΔΨm) and depletion of cytochrome c also occurred in MAV2054-treated macrophages. Apoptotic response, reactive oxygen species production, and ΔΨm collapse were significantly increased in bone marrow-derived macrophages infected with Mycobacterium smegmatis expressing MAV2054, compared to that in M. smegmatis control. Furthermore, MAV2054 expression suppressed intracellular growth of M. smegmatis and increased the survival rate of M. smegmatis-infected mice. Thus, MAV2054 induces apoptosis via a mitochondrial pathway in macrophages, which may be an innate cellular response to limit intracellular M. avium multiplication.
Collapse
Affiliation(s)
- Kang-In Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jake Whang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Yeo-Jin Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Haet Sal Jeon
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Yong Woo Back
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hye-Soo Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seungwha Paik
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jeong-Kyu Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chul Hee Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
5
|
Hsueh YS, Savitha S, Sadhasivam S, Lin FH, Shieh MJ. Design and synthesis of elastin-like polypeptides for an ideal nerve conduit in peripheral nerve regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 38:119-26. [PMID: 24656360 DOI: 10.1016/j.msec.2014.01.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/30/2013] [Accepted: 01/30/2014] [Indexed: 01/26/2023]
Abstract
The study involves design and synthesis of three different elastin like polypeptide (ELP) gene monomers namely ELP1, ELP2 and ELP3 that encode for ELP proteins. The formed ELPs were assessed as an ideal nerve conduit for peripheral nerve regeneration. ELP1 was constructed with a small elongated pentapeptide carrying VPGVG sequence to mimic the natural polypeptide ELP. The ELP2 was designed by the incorporation of 4-penta peptide chains to improve the biocompatibility and mechanical strength. Thus, the third position in unique VPGVG was replaced with alanine to VPAVG and in a similar way modified to VPGKG, VPGEG and VPGIG with the substitution of lysine, glutamic acid and isoleucine. In ELP3, fibronectin C5 domain endowed with REDV sequence was introduced to improve the cell attachment. The ELP1, ELP2 and ELP3 proteins expressed by Escherichia coli were purified by inverse transition cycling (ITC). The purified ELPs were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. The Schwann cell (SC) morphology and cell adhesion were assessed by fabrication of ELP membrane cross-linked with glutaraledhyde. The Schwann cell proliferation was measured by WST-1 assay. Immunofluorostaining of Schwann cells was accomplished with SC specific phenotypic marker, S100.
Collapse
Affiliation(s)
- Yu-Sheng Hsueh
- Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan; Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - S Savitha
- Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan; Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai, India; Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - S Sadhasivam
- Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 350, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan; Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 350, Taiwan; Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan; College of Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
6
|
Sabbadini PS, Assis MC, Trost E, Gomes DLR, Moreira LO, Dos Santos CS, Pereira GA, Nagao PE, Azevedo VADC, Hirata Júnior R, Dos Santos ALS, Tauch A, Mattos-Guaraldi AL. Corynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in HEp-2 cells. Microb Pathog 2012; 52:165-76. [PMID: 22239957 DOI: 10.1016/j.micpath.2011.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 11/25/2022]
Abstract
Although Corynebacterium diphtheriae has been classically described as an exclusively extracellular pathogen, there is growing evidence that it may be internalized by epithelial cells. The aim of the present report was to investigate the nature and involvement of the surface-exposed non-fimbrial 67-72 kDa proteins (67-72p), previously characterized as adhesin/hemagglutinin, in C. diphtheriae internalization by HEp-2 cells. Transmission electron microscopy and bacterial internalization inhibition assays indicated the role of 67-72p as invasin for strains of varied sources. Cytoskeletal changes with accumulation of polymerized actin in HEp-2 cells beneath adherent 67-72p-adsorbed microspheres were observed by the Fluorescent actin staining test. Trypan blue staining method and Methylthiazole tetrazolium reduction assay showed a significant decrease in viability of HEp-2 cells treated with 67-72p. Morphological changes in HEp-2 cells observed after treatment with 67-72p included vacuolization, nuclear fragmentation and the formation of apoptotic bodies. Flow cytometry revealed an apoptotic volume decrease in HEp-2 cells treated with 67-72p. Moreover, a double-staining assay using Propidium Iodide/Annexin V gave information about the numbers of vital vs. early apoptotic cells and late apoptotic or secondary necrotic cells. The comparative analysis of MALDI-TOF MS experiments with the probes provided for 67-72p CDC-E8392 with an in silico proteome deduced from the complete genome sequence of C. diphtheriae identified with significant scores 67-72p as the protein DIP0733. In conclusion, DIP0733 (67-72p) may be directly implicated in bacterial invasion and apoptosis of epithelial cells in the early stages of diphtheria and C. diphtheriae invasive infection.
Collapse
|
7
|
Ryan RCM, O'Sullivan MP, Keane J. Mycobacterium tuberculosis infection induces non-apoptotic cell death of human dendritic cells. BMC Microbiol 2011; 11:237. [PMID: 22024399 PMCID: PMC3229477 DOI: 10.1186/1471-2180-11-237] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 10/24/2011] [Indexed: 01/16/2023] Open
Abstract
Background Dendritic cells (DCs) connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb). We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. Results Infection of DCs with live Mtb (H37Ra or H37Rv) led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. Conclusions Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity.
Collapse
Affiliation(s)
- Ruth C M Ryan
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Ireland
| | | | | |
Collapse
|
8
|
Dorhoi A, Reece ST, Kaufmann SHE. For better or for worse: the immune response against Mycobacterium tuberculosis balances pathology and protection. Immunol Rev 2011; 240:235-51. [PMID: 21349097 DOI: 10.1111/j.1600-065x.2010.00994.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) is a complex disease, and the success of the bacterium as an intracellular pathogen is the outcome of its close and longstanding coevolution with the mammalian host. The dialogue between Mycobacterium tuberculosis and the host is becoming understandable at the molecular, cellular, and tissue level. This has led to the elucidation of the (i) interaction between pattern recognition receptors and pathogen-associated molecular patterns, (ii) cross-talk between immune cells, and (iii) mechanisms underlying granuloma development. Disease as an eventual but not a necessary consequence of infection results from a sensitive balance between protective immunity and destructive pathology. Early events, governed largely by conserved mechanisms of host recognition, impact not only on type and course of adaptive immunity but also on lung parenchymal function. New interpretations of how these responses shape the lung environment and direct granuloma development emphasize that the disease results from pathologic consequences of non-resolving inflammation. We review recent advances in TB research within the context of this ambitious view of TB.
Collapse
Affiliation(s)
- Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | |
Collapse
|
9
|
Sharbati J, Lewin A, Kutz-Lohroff B, Kamal E, Einspanier R, Sharbati S. Integrated microRNA-mRNA-analysis of human monocyte derived macrophages upon Mycobacterium avium subsp. hominissuis infection. PLoS One 2011; 6:e20258. [PMID: 21629653 PMCID: PMC3101234 DOI: 10.1371/journal.pone.0020258] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/22/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Many efforts have been made to understand basal mechanisms of mycobacterial infections. Macrophages are the first line of host immune defence to encounter and eradicate mycobacteria. Pathogenic species have evolved different mechanisms to evade host response, e.g. by influencing macrophage apoptotic pathways. However, the underlying molecular regulation is not fully understood. A new layer of eukaryotic regulation of gene expression is constituted by microRNAs. Therefore, we present a comprehensive study for identification of these key regulators and their targets in the context of host macrophage response to mycobacterial infections. METHODOLOGY/PRINCIPAL FINDINGS We performed microRNA as well as mRNA expression analysis of human monocyte derived macrophages infected with several Mycobacterium avium hominissuis strains by means of microarrays as well as quantitative reverse transcription PCR (qRT-PCR). The data revealed the ability of all strains to inhibit apoptosis by transcriptional regulation of BCL2 family members. Accordingly, at 48 h after infection macrophages infected with all M. avium strains showed significantly decreased caspase 3 and 7 activities compared to the controls. Expression of let-7e, miR-29a and miR-886-5p were increased in response to mycobacterial infection at 48 h. The integrated analysis of microRNA and mRNA expression as well as target prediction pointed out regulative networks identifying caspase 3 and 7 as potential targets of let-7e and miR-29a, respectively. Consecutive reporter assays verified the regulation of caspase 3 and 7 by these microRNAs. CONCLUSIONS/SIGNIFICANCE We show for the first time that mycobacterial infection of human macrophages causes a specific microRNA response. We furthermore outlined a regulatory network of potential interactions between microRNAs and mRNAs. This study provides a theoretical concept for unveiling how distinct mycobacteria could manipulate host cell response. In addition, functional relevance was confirmed by uncovering the control of major caspases 3 and 7 by let-7e and miR-29a, respectively.
Collapse
Affiliation(s)
- Jutta Sharbati
- Institute of Veterinary Biochemistry, Freie Universitaet Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Carmen JC, Sinai AP. The Differential Effect of Toxoplasma Gondii Infection on the Stability of BCL2-Family Members Involves Multiple Activities. Front Microbiol 2011; 2:1. [PMID: 21716958 PMCID: PMC3109420 DOI: 10.3389/fmicb.2011.00001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/02/2011] [Indexed: 11/13/2022] Open
Abstract
The regulation of mitochondrial permeability, a key event in the initiation of apoptosis is governed by the opposing actions of the pro- and anti-apoptotic members of the BCL2-family of proteins. The BCL2-family can be classified further based on the number of BCL-homology (BH) domains they encode. Pathogen mediated modulation of BCL2-family members play a significant role in their ability to affect the apoptotic pathways in the infected host cell. The protozoan parasite Toxoplasma gondii establishes a profound blockade of apoptosis noted by a requirement for host NFκB activity and correlating with the selective degradation of pro-apoptotic BCL2-family members. In this study, we explore the potential activities associated with the inherent stability of the anti-apoptotic BCL2 as well as the selective degradation of the pro-apoptotic proteins BAX, BAD, and BID. We find that multiple activities govern the relative stability of BCL2-family members suggesting a complex and balanced network of stability-enhancing and–destabilizing activities are perturbed by parasite infection. The data leave open the possibility for both parasite induced host activities as well as the direct consequence of parasite effectors in governing the relative levels of BCL2-proteins in the course of infection.
Collapse
Affiliation(s)
- John Cherrington Carmen
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine Lexington, KY, USA
| | | |
Collapse
|
11
|
Caldwell KA, Tucci ML, Armagost J, Hodges TW, Chen J, Memon SB, Blalock JE, DeLeon SM, Findlay RH, Ruan Q, Webber PJ, Standaert DG, Olson JB, Caldwell GA. Investigating bacterial sources of toxicity as an environmental contributor to dopaminergic neurodegeneration. PLoS One 2009; 4:e7227. [PMID: 19806188 PMCID: PMC2751819 DOI: 10.1371/journal.pone.0007227] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 09/03/2009] [Indexed: 01/05/2023] Open
Abstract
Parkinson disease (PD) involves progressive neurodegeneration, including loss of dopamine (DA) neurons from the substantia nigra. Select genes associated with rare familial forms of PD function in cellular pathways, such as the ubiquitin-proteasome system (UPS), involved in protein degradation. The misfolding and accumulation of proteins, such as α-synuclein, into inclusions termed Lewy Bodies represents a clinical hallmark of PD. Given the predominance of sporadic PD among patient populations, environmental toxins may induce the disease, although their nature is largely unknown. Thus, an unmet challenge surrounds the discovery of causal or contributory neurotoxic factors that could account for the prevalence of sporadic PD. Bacteria within the order Actinomycetales are renowned for their robust production of secondary metabolites and might represent unidentified sources of environmental exposures. Among these, the aerobic genera, Streptomyces, produce natural proteasome inhibitors that block protein degradation and may potentially damage DA neurons. Here we demonstrate that a metabolite produced by a common soil bacterium, S. venezuelae, caused DA neurodegeneration in the nematode, Caenorhabditis elegans, which increased as animals aged. This metabolite, which disrupts UPS function, caused gradual degeneration of all neuronal classes examined, however DA neurons were particularly vulnerable to exposure. The presence of DA exacerbated toxicity because neurodegeneration was attenuated in mutant nematodes depleted for tyrosine hydroxylase (TH), the rate-limiting enzyme in DA production. Strikingly, this factor caused dose-dependent death of human SH-SY5Y neuroblastoma cells, a dopaminergic line. Efforts to purify the toxic activity revealed that it is a highly stable, lipophilic, and chemically unique small molecule. Evidence of a robust neurotoxic factor that selectively impacts neuronal survival in a progressive yet moderate manner is consistent with the etiology of age-associated neurodegenerative diseases. Collectively, these data suggest the potential for exposures to the metabolites of specific common soil bacteria to possibly represent a contributory environmental component to PD.
Collapse
Affiliation(s)
- Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (KAC); (GAC)
| | - Michelle L. Tucci
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Jafa Armagost
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Tyler W. Hodges
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Jue Chen
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Shermeen B. Memon
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Jeana E. Blalock
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Susan M. DeLeon
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Robert H. Findlay
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Qingmin Ruan
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Philip J. Webber
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David G. Standaert
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Julie B. Olson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (KAC); (GAC)
| |
Collapse
|
12
|
Silva TPD, Silva ACCD, Baruque MDGA, Oliveira RBD, Machado MP, Sarno EN. Morphological and functional characterizations of Schwann cells stimulated with Mycobacterium leprae. Mem Inst Oswaldo Cruz 2008; 103:363-9. [PMID: 18660991 DOI: 10.1590/s0074-02762008000400009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 06/20/2008] [Indexed: 11/22/2022] Open
Abstract
Nerve damage, a characteristic of leprosy, is the cause of patient deformities and a consequence of Schwann cells (SC) infection by Mycobacterium leprae. Although function/dysfunction of SC in human diseases like leprosy is difficult to study, many in vitro models, including SC lines derived from rat and/or human Schwannomas, have been employed. ST88-14 is one of the cell lineages used by many researchers as a model for M. leprae/SC interaction. However, it is necessary to establish the values and limitations of the generated data on the effects of M. leprae in these SC. After evaluating the cell line phenotype in the present study, it is close to non-myelinating SC, making this lineage an ideal model for M. leprae/SC interaction. It was also observed that both M. leprae and PGL-1, a mycobacterial cell-wall component, induced low levels of apoptosis in ST88-14 by a mechanism independent of Bcl-2 family members.
Collapse
|
13
|
Briken V. Molecular mechanisms of host-pathogen interactions and their potential for the discovery of new drug targets. Curr Drug Targets 2008; 9:150-7. [PMID: 18288966 PMCID: PMC2650272 DOI: 10.2174/138945008783502449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vaccines and chemotherapy have undeniably been the discoveries in the field of biomedical research that have exerted the biggest impact on the improvement of public health. Nevertheless, the development of bacterial resistance to antibiotics has co-evolved over time with the discovery of new drugs. This entails the necessity for continuous research on new anti-infectious agents. The current review highlights recent discoveries in the molecular mechanisms of specific host pathogen interactions and their potential for drug discovery. The focus is on facultative and obligate intracellular pathogens (Mycobacterium, Chlamydia and Legionella) and their manipulation of host cells in regard to inhibition of phagosome maturation and cell death. Furthermore, the composition and role of the SecA2 and the ESX-1 secretion pathways in bacterial virulence and manipulation of infected host cells is discussed. The central hypothesis proposed in this review is that the characterization of bacterial proteins and lipids involved in host cell manipulation (modulins) will provide an abundance of new drug targets. One advantage of targeting such bacterial modulins for drug development is that these anti-modulin drugs will not disrupt the beneficial host microflora and therefore have fewer side effects.
Collapse
Affiliation(s)
- Volker Briken
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, Microbiology Bldg. 231, Room 2201, College Park, MD, 20742, USA.
| |
Collapse
|