1
|
Gulyas L, Glaunsinger BA. The general transcription factor TFIIB is a target for transcriptome control during cellular stress and viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575933. [PMID: 38746429 PMCID: PMC11092454 DOI: 10.1101/2024.01.16.575933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Many stressors, including viral infection, induce a widespread suppression of cellular RNA polymerase II (RNAPII) transcription, yet the mechanisms underlying transcriptional repression are not well understood. Here we find that a crucial component of the RNA polymerase II holoenzyme, general transcription factor IIB (TFIIB), is targeted for post-translational turnover by two pathways, each of which contribute to its depletion during stress. Upon DNA damage, translational stress, apoptosis, or replication of the oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV), TFIIB is cleaved by activated caspase-3, leading to preferential downregulation of pro-survival genes. TFIIB is further targeted for rapid proteasome-mediated turnover by the E3 ubiquitin ligase TRIM28. KSHV counteracts proteasome-mediated turnover of TFIIB, thereby preserving a sufficient pool of TFIIB for transcription of viral genes. Thus, TFIIB may be a lynchpin for transcriptional outcomes during stress and a key target for nuclear replicating DNA viruses that rely on host transcriptional machinery. Significance Statement Transcription by RNA polymerase II (RNAPII) synthesizes all cellular protein-coding mRNA. Many cellular stressors and viral infections dampen RNAPII activity, though the processes underlying this are not fully understood. Here we describe a two-pronged degradation strategy by which cells respond to stress by depleting the abundance of the key RNAPII general transcription factor, TFIIB. We further demonstrate that an oncogenic human gammaherpesvirus antagonizes this process, retaining enough TFIIB to support its own robust viral transcription. Thus, modulation of RNAPII machinery plays a crucial role in dictating the outcome of cellular perturbation.
Collapse
|
2
|
Critical Factors in Human Antizymes that Determine the Differential Binding, Inhibition, and Degradation of Human Ornithine Decarboxylase. Biomolecules 2019; 9:biom9120864. [PMID: 31842334 PMCID: PMC6995573 DOI: 10.3390/biom9120864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 02/04/2023] Open
Abstract
Antizyme (AZ) is a protein that negatively regulates ornithine decarboxylase (ODC). AZ achieves this inhibition by binding to ODC to produce AZ-ODC heterodimers, abolishing enzyme activity and targeting ODC for degradation by the 26S proteasome. In this study, we focused on the biomolecular interactions between the C-terminal domain of AZ (AZ95–228) and ODC to identify the functional elements of AZ that are essential for binding, inhibiting and degrading ODC, and we also identified the crucial factors governing the differential binding and inhibition ability of AZ isoforms toward ODC. Based on the ODC inhibition and AZ-ODC binding studies, we demonstrated that amino acid residues reside within the α1 helix, β5 and β6 strands, and connecting loop between β6 and α2 (residues 142–178), which is the posterior part of AZ95–228, play crucial roles in ODC binding and inhibition. We also identified the essential elements determining the ODC-degradative activity of AZ; amino acid residues within the anterior part of AZ95–228 (residues 120–145) play crucial roles in AZ-mediated ODC degradation. Finally, we identified the crucial factors that govern the differential binding and inhibition of AZ isoforms toward ODC. Mutagenesis studies of AZ1 and AZ3 and their binding and inhibition revealed that the divergence of amino acid residues 124, 150, 166, 171, and 179 results in the differential abilities of AZ1 and AZ3 in the binding and inhibition of ODC.
Collapse
|
3
|
Protein degradation, the main hub in the regulation of cellular polyamines. Biochem J 2017; 473:4551-4558. [PMID: 27941031 DOI: 10.1042/bcj20160519c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022]
Abstract
Ornithine decarboxylase (ODC) is the first and rate-limiting enzyme in the biosynthesis of polyamines, low-molecular-mass aliphatic polycations that are ubiquitously present in all living cells and are essential for fundamental cellular processes. Most cellular polyamines are bound, whereas the free pools, which regulate cellular functions, are subjected to tight regulation. The regulation of the free polyamine pools is manifested by modulation of their synthesis, catabolism, uptake and excretion. A central element that enables this regulation is the rapid degradation of key enzymes and regulators of these processes, particularly that of ODC. ODC degradation is part of an autoregulatory circuit that responds to the intracellular level of the free polyamines. The driving force of this regulatory circuit is a protein termed antizyme (Az). Az stimulates the degradation of ODC and inhibits polyamine uptake. Az acts as a sensor of the free intracellular polyamine pools as it is expressed via a polyamine-stimulated ribosomal frameshifting. Az binds to monomeric ODC subunits to prevent their reassociation into active homodimers and facilitates their ubiquitin-independent degradation by the 26S proteasome. In addition, through a yet unidentified mechanism, Az inhibits polyamine uptake. Interestingly, a protein, termed antizyme inhibitor (AzI) that is highly homologous with ODC, but retains no ornithine decarboxylating activity, seems to regulate cellular polyamines through its ability to negate Az. Overall, the degradation of ODC is a net result of interactions with regulatory proteins and possession of signals that mediate its ubiquitin-independent recognition by the proteasome.
Collapse
|
4
|
Kang B, Jiang D, Ma R, He H, Yi Z, Chen Z. OAZ1 knockdown enhances viability and inhibits ER and LHR transcriptions of granulosa cells in geese. PLoS One 2017; 12:e0175016. [PMID: 28362829 PMCID: PMC5376318 DOI: 10.1371/journal.pone.0175016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/20/2017] [Indexed: 11/18/2022] Open
Abstract
An increasing number of studies suggest that ornithine decarboxylase antizyme 1 (OAZ1), which is regarded as a tumor suppressor gene, regulates follicular development, ovulation, and steroidogenesis. The granulosa cells in the ovary play a critical role in these ovarian functions. However, the action of OAZ1 mediating physiological functions of granulosa cells is obscure. OAZ1 knockdown in granulosa cells of geese was carried out in the current study. The effect of OAZ1 knockdown on polyamine metabolism, cell proliferation, apoptosis, and hormone receptor transcription of primary granulosa cells in geese was measured. The viability of granulosa cells transfected with the shRNA OAZ1 at 48 h was significantly higher than the control (p<0.05). The level of putrescine and spermidine in granulosa cells down-regulating OAZ1 was 7.04- and 2.11- fold higher compared with the control, respectively (p<0.05). The CCND1, SMAD1, and BCL-2 mRNA expression levels in granulosa cells down-regulating OAZ1 were each significantly higher than the control, respectively (p<0.05), whereas the PCNA and CASPASE 3 expression levels were significantly lower than the control (p<0.05). The estradiol concentration, ER and LHR mRNA expression levels were significantly lower in granulosa cells down-regulating OAZ1 compared with the control (p<0.05). Taken together, our results indicated that OAZ1 knockdown elevated the putrescine and spermidine contents and enhanced granulosa cell viability and inhibited ER and LHR transcriptions of granulosa cells in geese.
Collapse
Affiliation(s)
- Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
- * E-mail: (BK); (DMJ)
| | - Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
- * E-mail: (BK); (DMJ)
| | - Rong Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
| | - Hui He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
| | - Zhixin Yi
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
| | - Ziyu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
5
|
Effect of Oaz1 overexpression on goose ovarian granulosa cells. Amino Acids 2017; 49:1123-1132. [DOI: 10.1007/s00726-017-2411-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
|
6
|
Co-Transcriptomes of Initial Interactions In Vitro between Streptococcus Pneumoniae and Human Pleural Mesothelial Cells. PLoS One 2015; 10:e0142773. [PMID: 26566142 PMCID: PMC4643877 DOI: 10.1371/journal.pone.0142773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/27/2015] [Indexed: 01/21/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is a major causative organism of empyema, an inflammatory condition occurring in the pleural sac. In this study, we used human and Spn cDNA microarrays to characterize the transcriptional responses occurring during initial contact between Spn and a human pleural mesothelial cell line (PMC) in vitro. Using stringent filtering criteria, 42 and 23 Spn genes were up-and down-regulated respectively. In particular, genes encoding factors potentially involved in metabolic processes and Spn adherence to eukaryotic cells were up-regulated e.g. glnQ, glnA, aliA, psaB, lytB and nox. After Spn initial contact, 870 human genes were differentially regulated and the largest numbers of significant gene expression changes were found in canonical pathways for eukaryotic initiation factor 2 signaling (60 genes out of 171), oxidative phosphorylation (32/103), mitochondrial dysfunction (37/164), eIF4 and p70S6K signaling (28/142), mTOR signaling (27/182), NRF2-mediated oxidative stress response (20/177), epithelial adherens junction remodeling (11/66) and ubiquitination (22/254). The cellular response appeared to be directed towards host cell survival and defense. Spn did not activate NF-kB or phosphorylate p38 MAPK or induce cytokine production from PMC. Moreover, Spn infection of TNF-α pre-stimulated PMC inhibited production of IL-6 and IL-8 secretion by >50% (p<0.01). In summary, this descriptive study provides datasets and a platform for examining further the molecular mechanisms underlying the pathogenesis of empyema.
Collapse
|
7
|
WANG XING, JIANG LI. Effects of ornithine decarboxylase antizyme 1 on the proliferation and differentiation of human oral cancer cells. Int J Mol Med 2014; 34:1606-12. [DOI: 10.3892/ijmm.2014.1961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/16/2014] [Indexed: 11/06/2022] Open
|
8
|
Zhang CZ, Fang EF, Zhang HT, Liu LL, Yun JP. Momordica charantia lectin exhibits antitumor activity towards hepatocellular carcinoma. Invest New Drugs 2014; 33:1-11. [PMID: 25200916 DOI: 10.1007/s10637-014-0156-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/01/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND The incidence and mortality of hepatocellular carcinoma (HCC) remain high worldwide. Drug screening from natural plants is one of the potential therapeutic approaches on HCC. METHODS The antitumor effect of momordica charantia lectin (MCL) was examined, using MTT, colony formation, AnnexinV/PI staining, western blot and animal model. RESULTS MCL treatment induced G2/M phase arrest, autophagy, DNA fragmentation, mitochondrial injury, and subsequently cell apoptosis in HCC cells. Activation of caspase and MAPK pathway was involved in MCL-induced apoptosis. In vitro and in vivo studies showed that up-regulation of truncated Bid (tBid) upon MCL treatment. Correlation analysis revealed that Bid expression was reversely associated with the IC50 of MCL. Bid suppression using Bid siRNA, BI-6C9 (Bid inhibitor) and Z-IETD-FMK (caspase 8 inhibitor) dramatically attenuated MCL-induced cell proliferation inhibition, caspase 3 activation, ΔΨm depolarization and apoptosis. In addition, combination of MCL and sorafenib exerted stronger lethal activity towards HCC in vitro and in vivo. CONCLUSION Our data show that the natural compound MCL manifests antitumor activities towards HCC and therefore suggest MCL as a promising chemotherapeutic agent.
Collapse
Affiliation(s)
- Chris Zhiyi Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China,
| | | | | | | | | |
Collapse
|
9
|
Systemic overexpression of antizyme 1 in mouse reduces ornithine decarboxylase activity without major changes in tissue polyamine homeostasis. Transgenic Res 2013; 23:153-63. [DOI: 10.1007/s11248-013-9763-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/21/2013] [Indexed: 11/27/2022]
|
10
|
Wu B, Wang X, Ma W, Zheng W, Jiang L. Assay of OAZ1 mRNA levels in chronic myeloid leukemia combined with application of leukemia PCR array identified relevant gene changes affected by antizyme. Acta Haematol 2013; 131:141-7. [PMID: 24192781 DOI: 10.1159/000353406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/19/2013] [Indexed: 11/19/2022]
Abstract
Ornithine decarboxylase antizyme (OAZ) has recently emerged as a potential therapeutic target in various malignant tumors because it plays vital roles in cellular functions including proliferation, differentiation, apoptosis and genomic stability. Therefore, there is a significant interest in discovering its function in chronic myeloid leukemia (CML). Firstly, OAZ1 mRNA was measured by qRT-PCR in 43 cases with CML and 23 controls, and we demonstrated that it is significantly down-regulated in CML patients. To further understand its functions in CML pathogenesis, OAZ1 was overexpressed, and the human leukemia PCR array analysis was used to monitor the expression of key genes commonly involved in leukemia development, classification and therapeutic response. We found several favorable up-regulation factors including CXCL10, DAPK1 and IKZF3. In conclusion, OAZ1 may be a useful therapeutic target in CML due to its potential ability to induce erythroid differentiation and cell apoptosis. These functions were proven to be associated with several gene changes that were directly or indirectly caused by OAZ1. The mechanism of how OAZ1 affects other genes remains to be elucidated.
Collapse
MESH Headings
- Apoptosis/genetics
- Case-Control Studies
- Chemokine CXCL10/genetics
- Down-Regulation
- Erythropoiesis/genetics
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transforming Growth Factor beta/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Bingping Wu
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | | | | | | |
Collapse
|
11
|
López-Contreras AJ, Ramos-Molina B, Cremades A, Peñafiel R. Antizyme inhibitor 2: molecular, cellular and physiological aspects. Amino Acids 2009; 38:603-11. [PMID: 19956990 DOI: 10.1007/s00726-009-0419-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/24/2009] [Indexed: 01/20/2023]
Abstract
Polyamines are small organic polycations essential for cell proliferation and survival. Antizymes (AZs) are small proteins regulated by polyamines that inhibit polyamine biosynthesis and uptake in mammalian cells. In addition, antizyme functions are also regulated by antizyme inhibitors, homologue proteins of ornithine decarboxylase lacking enzymatic activity. There are two antizyme inhibitors (AZIN), known as AZIN1 and AZIN2, that bind to AZs and negate their effects on polyamine metabolism. Here, we review different molecular and cellular properties of the novel AZIN2 with particular emphasis on the role that this protein may have in brain and testis physiology. Whereas AZIN1 is ubiquitously found in mammalian tissues, AZIN2 expression appears to be restricted to brain and testis. In transfected cells, AZIN2 is mainly located in the endoplasmic reticulum-Golgi intermediate compartment and in the cis-Golgi network. AZIN2 is a labile protein that is degraded by the proteasome by a ubiquitin-dependent mechanism. Regarding its physiological role, spatial and temporal analyses of AZIN2 expression in the mouse testis suggest that this protein may have a role in spermiogenesis.
Collapse
Affiliation(s)
- Andrés J López-Contreras
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
12
|
Kahana C. Antizyme and antizyme inhibitor, a regulatory tango. Cell Mol Life Sci 2009; 66:2479-88. [PMID: 19399584 PMCID: PMC11115672 DOI: 10.1007/s00018-009-0033-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/29/2009] [Accepted: 04/07/2009] [Indexed: 12/14/2022]
Abstract
The polyamines are small basic molecules essential for cellular proliferation and viability. An autoregulatory circuit that responds to the intracellular level of polyamines regulates their production. In the center of this circuit is a family of small proteins termed antizymes. Antizymes are themselves regulated at the translational level by the level of polyamines. Antizymes bind ornithine decarboxylase (ODC) subunits and target them to ubiquitin-independent degradation by the 26S proteasome. In addition, antizymes inhibit polyamine transport across the plasma membrane via an as yet unresolved mechanism. Antizymes may also interact with and target degradation of other growth-regulating proteins. An inactive ODC-related protein termed antizyme inhibitor regulates polyamine metabolism by negating antizyme functions. The ability of antizymes to degrade ODC, inhibit polyamine uptake and consequently suppress cellular proliferation suggests that they act as tumor suppressors, while the ability of antizyme inhibitors to negate antizyme function indicates their growth-promoting and oncogenic potential.
Collapse
Affiliation(s)
- Chaim Kahana
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
13
|
Liao CP, Lasbury ME, Wang SH, Zhang C, Durant PJ, Murakami Y, Matsufuji S, Lee CH. Pneumocystis mediates overexpression of antizyme inhibitor resulting in increased polyamine levels and apoptosis in alveolar macrophages. J Biol Chem 2009; 284:8174-84. [PMID: 19158080 DOI: 10.1074/jbc.m805787200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pneumocystis pneumonia (PcP) is the most common opportunistic disease in immunocompromised patients. Alveolar macrophages are responsible for the clearance of Pneumocystis organisms; however, they undergo a high rate of apoptosis during PcP due to increased intracellular polyamine levels. In this study, the sources of polyamines and mechanisms of polyamine increase and polyamine-induced apoptosis were investigated. The level of ornithine decarboxylase (ODC) was elevated in alveolar macrophages, and the number of alveolar macrophages that took up exogenous polyamines was increased 20-fold during PcP. Monocytes, B lymphocytes, and CD8+ T lymphocytes that were recruited into the lung during PcP expressed high levels of ornithine decarboxylase, suggesting that these cells are sources of polyamines. Both protein and mRNA levels of antizyme inhibitor (AZI) were increased in alveolar macrophages during PcP. This AZI overexpression correlated with increased polyamine uptake by alveolar macrophages, because AZI expression knockdown decreased the polyamine uptake ability of these cells. AZI expression knockdown also decreased the apoptosis rate of alveolar macrophages. Pneumocystis organisms and zymosan A were found to induce AZI overexpression in alveolar macrophages, suggesting that beta-glucan, which is the major component of the Pneumocystis cell wall, induces AZI overexpression. The levels of mRNA, protein, and activity of polyamine oxidase were increased in alveolar macrophages during PcP, indicating that the H(2)O(2) generated during polyamine catabolism caused alveolar macrophages to undergo apoptosis. Taken together, results of this study indicate that Pneumocystis organisms induce AZI overexpression in alveolar macrophages, leading to increased polyamine synthesis and uptake and apoptosis rate of these cells.
Collapse
Affiliation(s)
- Chung-Ping Liao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Studies over many years have suggested that increased polyamine synthesis may be necessary for neoplastic growth. This review summarizes recent work on the regulation of putrescine production both de novo and via the degradation of higher polyamines and provides a summary of studies using transgenic mice in which the levels of proteins that regulate these processes (L-ornithine decarboxylase, antizyme and spermidine/spermine-N(1)-acetyltransferase) are altered.
Collapse
Affiliation(s)
- A E Pegg
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | |
Collapse
|
15
|
Ivanov IP, Atkins JF. Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res 2007; 35:1842-58. [PMID: 17332016 PMCID: PMC1874602 DOI: 10.1093/nar/gkm035] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The protein antizyme is a negative regulator of intracellular polyamine levels. Ribosomes synthesizing antizyme start in one ORF and at the codon 5′ adjacent to its stop codon, shift +1 to a second and partially overlapping ORF which encodes most of the protein. The ribosomal frameshifting is a sensor and effector of an autoregulatory circuit which is conserved in animals, fungi and protists. Stimulatory signals encoded 5′ and 3′ of the shift site act to program the frameshifting. Despite overall conservation, many individual branches have evolved specific features surrounding the frameshift site. Among these are RNA pseudoknots, RNA stem-loops, conserved primary RNA sequences, nascent peptide sequences and branch-specific ‘shifty’ codons.
Collapse
Affiliation(s)
- Ivaylo P. Ivanov
- Biosciences Institute, University College Cork, Cork, Ireland and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
- *Correspondence may be addressed to either author at +1-353 21 490 1313+1-353 23 55147 and
| | - John F. Atkins
- Biosciences Institute, University College Cork, Cork, Ireland and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
- *Correspondence may be addressed to either author at +1-353 21 490 1313+1-353 23 55147 and
| |
Collapse
|