1
|
Munawar U, Zhou X, Prommersberger S, Nerreter S, Vogt C, Steinhardt MJ, Truger M, Mersi J, Teufel E, Han S, Haertle L, Banholzer N, Eiring P, Danhof S, Navarro-Aguadero MA, Fernandez-Martin A, Ortiz-Ruiz A, Barrio S, Gallardo M, Valeri A, Castellano E, Raab P, Rudert M, Haferlach C, Sauer M, Hudecek M, Martinez-Lopez J, Waldschmidt J, Einsele H, Rasche L, Kortüm KM. Impaired FADD/BID signaling mediates cross-resistance to immunotherapy in Multiple Myeloma. Commun Biol 2023; 6:1299. [PMID: 38129580 PMCID: PMC10739907 DOI: 10.1038/s42003-023-05683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The treatment landscape in multiple myeloma (MM) is shifting from genotoxic drugs to immunotherapies. Monoclonal antibodies, immunoconjugates, T-cell engaging antibodies and CART cells have been incorporated into routine treatment algorithms, resulting in improved response rates. Nevertheless, patients continue to relapse and the underlying mechanisms of resistance remain poorly understood. While Impaired death receptor signaling has been reported to mediate resistance to CART in acute lymphoblastic leukemia, this mechanism yet remains to be elucidated in context of novel immunotherapies for MM. Here, we describe impaired death receptor signaling as a novel mechanism of resistance to T-cell mediated immunotherapies in MM. This resistance seems exclusive to novel immunotherapies while sensitivity to conventional anti-tumor therapies being preserved in vitro. As a proof of concept, we present a confirmatory clinical case indicating that the FADD/BID axis is required for meaningful responses to novel immunotherapies thus we report impaired death receptor signaling as a novel resistance mechanism to T-cell mediated immunotherapy in MM.
Collapse
Affiliation(s)
- Umair Munawar
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Xiang Zhou
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | | | - Silvia Nerreter
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Cornelia Vogt
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | | | | | - Julia Mersi
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Eva Teufel
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Seungbin Han
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Larissa Haertle
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
| | - Nicole Banholzer
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Sophia Danhof
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | | | - Adrian Fernandez-Martin
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
| | - Alejandra Ortiz-Ruiz
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
| | - Santiago Barrio
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Miguel Gallardo
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
| | - Antonio Valeri
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
| | - Eva Castellano
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
| | - Peter Raab
- Department of Orthopaedic Surgery, König Ludwig Haus, University of Würzburg, Würzburg, Germany
| | - Maximilian Rudert
- Department of Orthopaedic Surgery, König Ludwig Haus, University of Würzburg, Würzburg, Germany
| | | | - Markus Sauer
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
| | - Michael Hudecek
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - J Martinez-Lopez
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
- Altum Sequencing Co., Madrid, Spain
| | - Johannes Waldschmidt
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
He M, He Y, Xu J, Zhang Y, Cao X, Wang L, Luo F. Upregulated FADD is associated with poor prognosis, immune exhaustion, tumor malignancy, and immunotherapy resistance in patients with lung adenocarcinoma. Front Oncol 2023; 13:1228889. [PMID: 37671047 PMCID: PMC10476093 DOI: 10.3389/fonc.2023.1228889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
Background FAS-associated death structural domain (FADD) proteins are important proteins that regulate apoptosis and are also involved in many nonapoptotic pathways in tumors. However, how dysregulated FADD affects the development of lung adenocarcinoma (LUAD) remains unknown. Method Transcriptome profiles and corresponding clinical information of LUAD patients were convened from different databases, and the results were validated by qRT-PCR and cell counting kit-8 using LUAD cell lines. Potential associations between FADD and tumor malignancy, the immune microenvironment, genomic stability, and treatment sensitivity in LUAD patients were revealed by systematic bioinformatics analysis. Results FADD was significantly overexpressed in LUAD, and patients with higher expression levels of FADD had a worse prognosis and more advanced tumor stage. Functional analysis revealed that elevated expression of FADD was associated with cell cycle dysregulation, angiogenesis, and metabolic disturbances. In addition, overexpression of FADD was associated with a higher infiltration of suppressive immune cells. From a single-cell perspective, cells with lower FADD expression are more active in immune-related pathways. FADD was associated with more genomic mutations, especially TP53. Patients with high FADD expression are more likely to benefit from conventional chemotherapy, while those with low FADD expression are more suitable for immunotherapy. Conclusions Upregulated FADD is associated with worse prognosis, immune exhaustion, and tumor malignancy in LUAD patients. In addition, FADD can be an efficient indicator for assessing sensitivity to chemotherapy and immunotherapy. Therefore, FADD has the potential to serve as a new target for precision medicine and targeted therapy for LUAD.
Collapse
Affiliation(s)
- Miao He
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Oncology, Deyang People’s Hospital, Chengdu, China
| | - Yingying He
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Oncology, Deyang People’s Hospital, Chengdu, China
| | - Jian Xu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Oncology, Deyang People’s Hospital, Chengdu, China
| | - Youcai Zhang
- Department of Oncology, Deyang People’s Hospital, Chengdu, China
| | - Xiaoyu Cao
- Department of Oncology, Deyang People’s Hospital, Chengdu, China
| | - Li Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Luo
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Zhang B, Fan C, Tan Q, Zhang Y, Jiang Q, Yu Q, Zhang B, Zheng K, Yan C. rCsHscB Derived from Clonorchis sinensis: A Carcinogenic Liver Fluke Ameliorates LPS-Induced Acute Hepatic Injury by Repression of Inflammation. Pathogens 2022; 11:pathogens11121548. [PMID: 36558882 PMCID: PMC9782140 DOI: 10.3390/pathogens11121548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis-associated acute liver injury caused by spillovers of bacteria and endotoxins (lipopolysaccharide, LPS) into the liver remains a public health issue due to the lack of specific therapeutic approaches. Previous studies showed that the recombinant protein HscB (rCsHscB) of Clonorchis sinensis, a carcinogenic liver fluke, had an anti-inflammatory effect and could alleviate inflammatory diseases such as enteritis; however, whether it can prevent sepsis-associated acute liver injury induced by LPS is still unknown. In our current study, the therapeutic effects and the potential mechanisms of rCsHscB on LPS-induced acute liver injury were investigated both in vivo and in vitro. The data showed that rCsHscB prevented LPS-induced liver damage, as demonstrated by histopathological observation and hepatic damage markers (the activities of serum ALT and AST) in a murine model of sepsis-associated acute liver injury. rCsHscB also significantly reversed the high levels of serum IL-6 and MCP-1 induced by LPS. In addition, rCsHscB attenuated the production of LPS-induced proinflammatory cytokines, including IL-6 and TNF-α, in a macrophage cell line-RAW264.7, through possible mediation by the MAPK signaling pathway in vitro. In conclusion, the present study demonstrates that rCsHscB derived from a fluke C. sinensis protects against sepsis-associated acute liver injury induced by LPS, which may be attributed to the inhibition of the MAPK signaling pathway. Our present study provides a potential therapeutic strategy for sepsis-associated acute liver injury.
Collapse
Affiliation(s)
- Bo Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Chunyang Fan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qi Tan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuzhao Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Qing Jiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
| | - Beibei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, China
- National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
- Correspondence:
| |
Collapse
|
4
|
Ferreira-Gonzalez S, Man TY, Esser H, Aird R, Kilpatrick AM, Rodrigo-Torres D, Younger N, Campana L, Gadd VL, Dwyer B, Aleksieva N, Boulter L, Macmillan MT, Wang Y, Mylonas KJ, Ferenbach DA, Kendall TJ, Lu WY, Acosta JC, Kurian D, O'Neill S, Oniscu GC, Banales JM, Krimpenfort PJ, Forbes SJ. Senolytic treatment preserves biliary regenerative capacity lost through cellular senescence during cold storage. Sci Transl Med 2022; 14:eabj4375. [PMID: 36475903 DOI: 10.1126/scitranslmed.abj4375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver transplantation is the only curative option for patients with end-stage liver disease. Despite improvements in surgical techniques, nonanastomotic strictures (characterized by the progressive loss of biliary tract architecture) continue to occur after liver transplantation, negatively affecting liver function and frequently leading to graft loss and retransplantation. To study the biological effects of organ preservation before liver transplantation, we generated murine models that recapitulate liver procurement and static cold storage. In these models, we explored the response of cholangiocytes and hepatocytes to cold storage, focusing on responses that affect liver regeneration, including DNA damage, apoptosis, and cellular senescence. We show that biliary senescence was induced during organ retrieval and exacerbated during static cold storage, resulting in impaired biliary regeneration. We identified decoy receptor 2 (DCR2)-dependent responses in cholangiocytes and hepatocytes, which differentially affected the outcome of those populations during cold storage. Moreover, CRISPR-mediated DCR2 knockdown in vitro increased cholangiocyte proliferation and decreased cellular senescence but had the opposite effect in hepatocytes. Using the p21KO model to inhibit senescence onset, we showed that biliary tract architecture was better preserved during cold storage. Similar results were achieved by administering senolytic ABT737 to mice before procurement. Last, we perfused senolytics into discarded human donor livers and showed that biliary architecture and regenerative capacities were better preserved. Our results indicate that cholangiocytes are susceptible to senescence and identify the use of senolytics and the combination of senotherapies and machine-perfusion preservation to prevent this phenotype and reduce the incidence of biliary injury after transplantation.
Collapse
Affiliation(s)
- Sofia Ferreira-Gonzalez
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Tak Yung Man
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Hannah Esser
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
- Department of Visceral, Transplant and Thoracic Surgery, Centre of Operative Medicine, Innsbruck Medical University, Anichstrasse 35, Innsbruck 6020, Austria
| | - Rhona Aird
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Alastair M Kilpatrick
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Daniel Rodrigo-Torres
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Nicholas Younger
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Lara Campana
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Victoria L Gadd
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Benjamin Dwyer
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Niya Aleksieva
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Mark T Macmillan
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Yinmiao Wang
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Katie J Mylonas
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - David A Ferenbach
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Timothy J Kendall
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Wei-Yu Lu
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Juan Carlos Acosta
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN, C/ Albert Einstein 22, Santander, 39011, Spain
| | - Dominic Kurian
- Proteomic and Metabolomics Unit, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Stephen O'Neill
- Department of Transplant Surgery, Belfast City Hospital, 51 Lisburn Road, Belfast BT9 7AB, UK
- Centre for Public Health, Queen's University Belfast, Institute of Clinical Science, Block A, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | - Gabriel C Oniscu
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
- Department of Clinical Surgery, University of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian 20014, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31009 Pamplona, Spain
| | | | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
5
|
Liu Y, Li X, Zhou X, Wang J, Ao X. FADD as a key molecular player in cancer progression. Mol Med 2022; 28:132. [DOI: 10.1186/s10020-022-00560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractCancer is a leading disease-related cause of death worldwide. Despite advances in therapeutic interventions, cancer remains a major global public health problem. Cancer pathogenesis is extremely intricate and largely unknown. Fas-associated protein with death domain (FADD) was initially identified as an adaptor protein for death receptor-mediated extrinsic apoptosis. Recent evidence suggests that FADD plays a vital role in non-apoptotic cellular processes, such as proliferation, autophagy, and necroptosis. FADD expression and activity of are modulated by a complicated network of processes, such as DNA methylation, non-coding RNA, and post-translational modification. FADD dysregulation has been shown to be closely associated with the pathogenesis of numerous types of cancer. However, the detailed mechanisms of FADD dysregulation involved in cancer progression are still not fully understood. This review mainly summarizes recent findings on the structure, functions, and regulatory mechanisms of FADD and focuses on its role in cancer progression. The clinical implications of FADD as a biomarker and therapeutic target for cancer patients are also discussed. The information reviewed herein may expand researchers’ understanding of FADD and contribute to the development of FADD-based therapeutic strategies for cancer patients.
Collapse
|
6
|
Wang Y, Diao J, Wang B, Xu X, Gui M, Li C, Guo M. A second FADD mediates coelomocyte apoptosis response to Vibrio splendidus infection in sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 127:396-404. [PMID: 35777710 DOI: 10.1016/j.fsi.2022.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Fas-associated protein with death domain (FADD) is a pivotal adaptor protein that functions in mediating cell death, cell cycle regulation, and particular in innate immunity by the main death receptors. In this study, a second FADD gene in sea cucumber Apostichopus japonicus (termed AjFADD-2) was cloned and its potential function in the innate responses was analyzed. The full-length cDNA of AjFADD-2 consists of 2405 bp and contains a 47 bp 5'-untranslated region (UTR), a 1629 bp 3'-UTR, and a 729 bp ORF encoding 242 amino acids. AjFADD-2 possesses two conserved domains of intracellular N-terminal death effector domain and an extracellular C-terminal death domain, which is different from the first cloned FADD gene in A. japonicus that only possesses the death domain. AjFADD-2 was examined in all sampled six tissues and was significantly induced in V. splendidus-challenged sea cucumbers and LPS-exposed coelomocytes. Subcellular localization detection showed that AjFADD-2 was primarily observed in the coelomocyte cytoplasm, and transferred to the nucleus post V. splendidus challenge. Consistently, AjFADD-2 knockdown significantly inhibited apoptosis in V. splendidus-challenged sea cucumbers and LPS-exposed coelomocytes. Taken together, our results provided evidence that AjFADD functioned as a positive regulator of coelomocytes apoptosis in response to pathogen V. splendidus challenge.
Collapse
Affiliation(s)
- Yankai Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, PR China
| | - Jing Diao
- Shandong Key Laboratory of Disease Control in Mariculture, PR China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, PR China
| | - Xi Xu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Minjie Gui
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| | - Ming Guo
- Shandong Key Laboratory of Disease Control in Mariculture, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, PR China; State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
7
|
Ding D, Manohar S, Jiang H, Salvi R. Hydroxypropyl-β-cyclodextrin causes massive damage to the developing auditory and vestibular system. Hear Res 2020; 396:108073. [PMID: 32956992 DOI: 10.1016/j.heares.2020.108073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
2-hydroxypropyl-β-cyclodextrin (HPβCD), a cholesterol chelator used to treat Niemann-Pick C1 (NPC1) lysosomal storage disease, causes hearing loss in mammals by preferentially destroying outer hair cells. Because cholesterol plays an important role in early neural development, we hypothesized that HPβCD would cause more extensive damage to postnatal cochlear and vestibular structures in than adult rats. This hypothesis was tested by administering HPβCD to adult rats and postnatal day 3 (P3) cochlear and vestibular organ cultures. Adult rats treated with HPβCD developed hearing impairment and outer hair cell loss 3-day post-treatment; damage increased with dose from the high frequency base toward the low-frequency apex. The HPβCD-induced histopathologies were more severe and widespread in cochlear and vestibular cultures at P3 than in adults. HPβCD destroyed both outer and inner hair cells, auditory nerve fibers and spiral ganglion neurons as well as type I and type II vestibular hair cells and vestibular ganglion neurons. The early stage of HPβCD damage involved disruption of hair cell mechanotransduction and destruction of stereocilia. HPβCD-mediated apoptosis in P3 cultures was most-strongly initiated by activation of the extrinsic caspase-8 cell death pathway in cochlear and vestibular hair cells and neurons followed by activation of executioner caspase-3. Thus, HPβCD is toxic to all types of postnatal cochlear and vestibular hair cells and neurons in vitro whereas in vivo it only appears to destroy outer hair cells in adult cochleae. The more severe HPβCD-induced damage in postnatal cultures could be due to greater drug bioavailability in vitro and/or greater vulnerability of the developing inner ear.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, United States
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, United States
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, United States
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, United States.
| |
Collapse
|
8
|
Zhang JX, Li N, Xu QY, Yang Y, Xie HB, Shen T, Zhu QX. Kupffer cell depletion attenuates IL-6/STAT3 mediates hepatocyte apoptosis in immunological liver injury of trichloroethylene sensitized mice. Int Immunopharmacol 2020; 88:106897. [PMID: 32822909 DOI: 10.1016/j.intimp.2020.106897] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
Trichloroethylene (TCE) induced TCE hypersensitivity syndrome which makes immune injuries in multi-system. The multiple organ damage included skin, liver, kidney and so on. The main manifestations of liver injuries were apoptosis and edema of hepatocytes. In our previous research, we found the activation of Kupffer cells (KCs) which increased IL-6 can aggravate liver cell apoptosis in TCE sensitized mice. However, the mechanism of IL-6 in liver damages induced by TCE was not clear. This study explored the function of IL-6/STAT3 signal pathway on the TCE induced apoptosis of liver cell. We established a TCE sensitized BALB/c mouse model with a KCs inhibitor GdCl3, we found that the expressions of ALT and AST in TCE sensitization positive mice were higher than other mice, and the expressions of apoptosis-related proteins were up-regulated in TCE sensitization positive mice, GdCl3 could alleviate this process. Meanwhile, GdCl3 could significantly decrease the expressions of IL-6/STAT3 proteins. All in all, the activation of KCs can increase the expression of IL-6, IL-6R and phosphorylate STAT3, induces hepatocyte apoptosis, and participates in immunity damage of liver which induced by TCE.
Collapse
Affiliation(s)
- Jia-Xiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
| | - Na Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qiong-Ying Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yi Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hai-Bo Xie
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tong Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China.
| | - Qi-Xing Zhu
- Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China; Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
9
|
FADD in Cancer: Mechanisms of Altered Expression and Function, and Clinical Implications. Cancers (Basel) 2019; 11:cancers11101462. [PMID: 31569512 PMCID: PMC6826683 DOI: 10.3390/cancers11101462] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
FADD was initially described as an adaptor molecule for death receptor-mediated apoptosis, but subsequently it has been implicated in nonapoptotic cellular processes such as proliferation and cell cycle control. During the last decade, FADD has been shown to play a pivotal role in most of the signalosome complexes, such as the necroptosome and the inflammasome. Interestingly, various mechanisms involved in regulating FADD functions have been identified, essentially posttranslational modifications and secretion. All these aspects have been thoroughly addressed in previous reviews. However, FADD implication in cancer is complex, due to pleiotropic effects. It has been reported either as anti- or protumorigenic, depending on the cell type. Regulation of FADD expression in cancer is a complex issue since both overexpression and downregulation have been reported, but the mechanisms underlying such alterations have not been fully unveiled. Posttranslational modifications also constitute a relevant mechanism controlling FADD levels and functions in tumor cells. In this review, we aim to provide detailed, updated information on alterations leading to changes in FADD expression and function in cancer. The participation of FADD in various biological processes is recapitulated, with a mention of interesting novel functions recently proposed for FADD, such as regulation of gene expression and control of metabolic pathways. Finally, we gather all the available evidence regarding the clinical implications of FADD alterations in cancer, especially as it has been proposed as a potential biomarker with prognostic value.
Collapse
|
10
|
Relationship between gut microbiota and type 2 diabetic erectile dysfunction in Sprague-Dawley rats. ACTA ACUST UNITED AC 2017; 37:523-530. [PMID: 28786059 DOI: 10.1007/s11596-017-1767-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/20/2017] [Indexed: 12/29/2022]
Abstract
In order to investigate the relationship between gut microbiota and type 2 diabetic erectile dysfunction (T2DED), we analyzed the characteristics of gut microbiota in the Sprague-Dawley (SD) rats with T2DED. Thirty-five SD rats were randomly divided into two groups: control group (n=15) with normal diet, and experimental group (n=20) with construction of T2D model. Faecal and serum samples were collected at 2nd and 8th week after establishment of T2D model, respectively. Faecal samples were used for analysis of gut microbiota, and serum samples for detection of trimethylamine N-oxide (TMAO), lipopolysaccharide (LPS), and inflammatory factors like interleukin-1 (IL-1), IL-2, IL-10, and monocyte chemoattractantprotein-1 (MCP-1). The main compositions of gut microbiota were Bacteroidetes, Proteobacteria and Firmicutes at the phylum level, and Oscillospira, Allobaculum, Bacteroides, Ruminococcus, SMB53, Prevotella, Coprococcus, Sutterella and Blautia at the genus level with relatively higher abundance in all SD rats. The relative abundance of Enterococcus, Corynebacterium, Aerococcus, Facklamia (opportunistic pathogens in most case) increased, and that of Allobaculum, Bifidobacterium, Eubacterium, Anaerotruncus (beneficial bacteria) decreased in T2DED group as compared with that at 2nd week after establishment of T2D model (T2D2 group). The serum contents of TMAO, LPS, IL-1, IL-2, IL-10 and MCP-1 in T2DED group were significantly higher than those in control group. The gut microbiota of T2DED rats was inhibited. The gut microbiota of T2DED rats had changed, as the relative abundance of beneficial bacterium was decreased while that of opportunistic pathogens was increased. The variations of gut microbiota might lead to inflammation and prompt the emergence of erectile dysfunction in the rats with T2D. TMAO might play an important role in the formation of T2DED.
Collapse
|
11
|
Ragusa MA, Costa S, Cuttitta A, Gianguzza F, Nicosia A. Coexposure to sulfamethoxazole and cadmium impairs development and attenuates transcriptional response in sea urchin embryo. CHEMOSPHERE 2017; 180:275-284. [PMID: 28411544 DOI: 10.1016/j.chemosphere.2017.04.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Among sulfonamides, sulfamethoxazole represents one of the most widely employed. A considerable amount of sulfamethoxazole is introduced into the marine environment after utilization in aquaculture. The cytotoxicity of sulfamethoxazole relies mainly on arylhydroxylamine metabolites and it is associated with the production of reactive oxygen species. Cadmium represents a metal largely employed in several anthropic activities and it is toxic for all living organisms even at low concentrations. Since it is not degraded, cadmium irreversibly accumulates into cells. In order to understand the mechanisms of response to changes in the chemical environment, we investigated by light microscopy observations and RT-qPCR assays the impact of sulfamethoxazole and cadmium in P. lividus sea urchin embryos. During development, embryos were exposed to sulfamethoxazole amount comparable to that usually used in aquaculture procedures and/or sublethal levels of cadmium chloride. Impairment of development and biomarkers for inflammation, detoxification, metal scavenging and cell death were inspected. Even though treatment with sulfamethoxazole apparently did not affect development, it stimulated a remarkable molecular response to oxidative stress. Moreover, combined exposure seriously compromised development and the defense mechanisms to cadmium were blocked. This study leads to the conclusion that coexposure to sulfamethoxazole and cadmium induces neutralizing effects on sea urchin embryos. Thus, in marine areas nearby aquaculture farms, where sulfamethoxazole discharge represents an important environmental contaminant, cadmium occurrence may alter population dynamics of P. lividus.
Collapse
Affiliation(s)
- Maria Antonietta Ragusa
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy.
| | - Salvatore Costa
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy.
| | - Angela Cuttitta
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy.
| | - Fabrizio Gianguzza
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy.
| | - Aldo Nicosia
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy.
| |
Collapse
|
12
|
Park CH, Lee JY, Kim MY, Shin SH, Roh SS, Choi JS, Chung HY, Song YO, Shin YS, Yokozawa T. Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, protects the pancreas from apoptosis and proliferation via oxidative stress in streptozotocin-induced diabetic rats. Food Funct 2016; 7:3056-3063. [DOI: 10.1039/c6fo00088f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have identified the pancreato-protective effects of Lychee Fruit-Derived Polyphenol Mixture, Oligonol, on diabetes.
Collapse
Affiliation(s)
- Chan Hum Park
- Department of Medicinal Crop Research
- National Institute of Horticultural and Herbal Science
- Rural Development Administration
- Eumseong 369-873
- Republic of Korea
| | - Joo Young Lee
- College of Korean Medicine
- Daegu Haany University
- Gyeongsan 712-715
- Republic of Korea
| | - Min Yeong Kim
- College of Korean Medicine
- Daegu Haany University
- Gyeongsan 712-715
- Republic of Korea
| | - Sung Ho Shin
- College of Korean Medicine
- Daegu Haany University
- Gyeongsan 712-715
- Republic of Korea
| | - Seong-Soo Roh
- College of Korean Medicine
- Daegu Haany University
- Gyeongsan 712-715
- Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science
- Pukyong National University
- Busan 608-737
- Republic of Korea
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA)
- College of Pharmacy
- Pusan National University
- Busan 609-735
- Republic of Korea
| | - Yeong-Ok Song
- Department of Food Science and Nutrition
- Pusan National University
- Busan 609-735
- Republic of Korea
| | - Yu Su Shin
- Department of Medicinal Crop Research
- National Institute of Horticultural and Herbal Science
- Rural Development Administration
- Eumseong 369-873
- Republic of Korea
| | - Takako Yokozawa
- Graduate School of Science and Engineering for Research
- University of Toyama
- Toyama 930-8555
- Japan
| |
Collapse
|
13
|
Chang LC, Yu YL, Liu CY, Cheng YY, Chou RH, Hsieh MT, Lin HY, Hung HY, Huang LJ, Wu YC, Kuo SC. The newly synthesized 2-arylnaphthyridin-4-one, CSC-3436, induces apoptosis of non-small cell lung cancer cells by inhibiting tubulin dynamics and activating CDK1. Cancer Chemother Pharmacol 2015; 75:1303-15. [PMID: 25947085 DOI: 10.1007/s00280-015-2765-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/29/2015] [Indexed: 01/06/2023]
Abstract
PURPOSE To investigate the anticancer therapeutic potential of a new synthetic compound, 2-(3-hydroxyphenyl)-5-methylnaphthyridin-4-one (CSC-3436), on non-small cell lung cancer (NSCLC) cells. METHODS Cell viability was determined by MTT assay. Cell cycle distribution was assessed by propidium iodide staining and subjected to flow cytometry analysis. Protein expression was detected by western blot analysis. Pharmacological inhibitors and shRNAs were applied to examine the possible pathways involved CSC-3436-inhibited viability of NSCLC cells. RESULTS CSC-3436 decreased NSCLC cell viability by inducing apoptosis. In vivo and in vitro tubulin polymerization assays revealed that CSC-3463 caused tubulin depolymerization by directly binding to the colchicine-binding site. Furthermore, CSC-3436 caused the mitotic arrest with a marked activation of cyclin-dependent kinase 1 (CDK1) and increased the expression of phospho-Ser/Thr-Pro mitotic protein monoclonal 2. The CDK1 inhibitor, roscovitine, reversed the CSC-3436-induced upregulation of CDK1 activity as well as the mitotic arrest. DNA damage response kinases, including ataxia telangiectasia mutated (ATM), ATM and Rad3-related, DNA-dependent protein kinase, checkpoint kinase 1, and checkpoint kinase 2, were phosphorylated and activated by CSC-3436. c-Jun N-terminal kinase was activated by CSC-3436 and involved in the regulation of mitotic arrest and apoptosis. CSC-3436-induced apoptosis was accompanied by the activation of pro-apoptotic factors FADD, TRADD, and RIP and the inactivation of anti-apoptotic proteins Bcl-2 and Bcl-xL, resulting in the cleavage and subsequent activation of caspases. CONCLUSIONS Our results reveal the cellular events in which CSC-3436 induces tumor cell death and demonstrate that CSC-3436 is a potential tubulin-disrupting agent for antitumor therapy against NSCLC.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Chinese Medicinal Research and Development Center, China Medical University Hospital, No. 2, Yude Road, Taichung, 404, Taiwan, ROC,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shen H, Liu J, Wang Y, Lian H, Wang J, Xing L, Yan X, Wang J, Zhang X. Aflatoxin G1-induced oxidative stress causes DNA damage and triggers apoptosis through MAPK signaling pathway in A549 cells. Food Chem Toxicol 2013; 62:661-9. [DOI: 10.1016/j.fct.2013.09.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/30/2013] [Accepted: 09/24/2013] [Indexed: 11/16/2022]
|
15
|
Natarajan SK, Becker DF. Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress. ACTA ACUST UNITED AC 2012; 2012:11-27. [PMID: 22593641 DOI: 10.2147/chc.s4955] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Flavoproteins catalyze a variety of reactions utilizing flavin mononucleotide or flavin adenine dinucleotide as cofactors. The oxidoreductase properties of flavoenzymes implicate them in redox homeostasis, oxidative stress, and various cellular processes, including programmed cell death. Here we explore three critical flavoproteins involved in apoptosis and redox signaling, ie, apoptosis-inducing factor (AIF), proline dehydrogenase, and NADPH oxidase. These proteins have diverse biochemical functions and influence apoptotic signaling by unique mechanisms. The role of AIF in apoptotic signaling is two-fold, with AIF changing intracellular location from the inner mitochondrial membrane space to the nucleus upon exposure of cells to apoptotic stimuli. In the mitochondria, AIF enhances mitochondrial bioenergetics and complex I activity/assembly to help maintain proper cellular redox homeostasis. After translocating to the nucleus, AIF forms a chromatin degrading complex with other proteins, such as cyclophilin A. AIF translocation from the mitochondria to the nucleus is triggered by oxidative stress, implicating AIF as a mitochondrial redox sensor. Proline dehydrogenase is a membrane-associated flavoenzyme in the mitochondrion that catalyzes the rate-limiting step of proline oxidation. Upregulation of proline dehydrogenase by the tumor suppressor, p53, leads to enhanced mitochondrial reactive oxygen species that induce the intrinsic apoptotic pathway. NADPH oxidases are a group of enzymes that generate reactive oxygen species for oxidative stress and signaling purposes. Upon activation, NADPH oxidase 2 generates a burst of superoxide in neutrophils that leads to killing of microbes during phagocytosis. NADPH oxidases also participate in redox signaling that involves hydrogen peroxide-mediated activation of different pathways regulating cell proliferation and cell death. Potential therapeutic strategies for each enzyme are also highlighted.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE
| | | |
Collapse
|
16
|
Eum HA, Billiar TR. TNF/TNF receptor 1-mediated apoptosis in hepatocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:617-24. [PMID: 21153368 DOI: 10.1007/978-1-4419-6612-4_65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hyun-Ae Eum
- Department of Surgery, F-1200 PUH, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15217, USA
| | | |
Collapse
|
17
|
Lu TH, Chen CH, Lee MJ, Ho TJ, Leung YM, Hung DZ, Yen CC, He TY, Chen YW. Methylmercury chloride induces alveolar type II epithelial cell damage through an oxidative stress-related mitochondrial cell death pathway. Toxicol Lett 2010; 194:70-8. [PMID: 20153410 DOI: 10.1016/j.toxlet.2010.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 11/16/2022]
Abstract
Mercury, one of the widespread pollutants in the world, induces oxidative stress and dysfunction in many cell types. Alveolar type II epithelial cells are known to be vulnerable to oxidative stress. Alveolar type II epithelial cells produce and secrete surfactants to maintain morphological organization, biophysical functions, biochemical composition, and immunity in lung tissues. However, the precise action and mechanism of mercury on alveolar type II epithelial cell damage remains unclear. In this study, we investigate the effect and possible mechanism of methylmercury chloride (MeHgCl) on the human lung invasive carcinoma cell line (Cl1-0) and mouse lung tissue. Cl1-0 cells were exposed to MeHgCl (2.5-10 microM) for 24-72 h. The results showed a decrease in cell viability and an increase in malondialdehyde (MDA) level and ROS production at 72 h after MeHgCl exposure in a dose-dependent manner. Caspase-3 activity, sub-G1 contents and annexin-V binding were dramatically enhanced in Cl1-0 cells treated with MeHgCl. MeHgCl could also activate Bax, release cytochrome c, and cleave poly(ADP-Ribose) polymerase (PARP), and decrease surfactant proteins mRNA levels. Moreover, in vivo study showed that mercury contents of blood and lung tissues were significantly increased after MeHgCl treatment in mice. The MDA levels in plasma and lung tissues were also dramatically raised after MeHgCl treatment. Lung tissue sections of MeHgCl-treated mice showed pathological fibrosis as compared with vehicle control. The mRNA levels of proteins in apoptotic signaling, including p53, mdm-2, Bax, Bad, and caspase-3 were increased in mice after exposure to MeHgCl. In addition, the mRNA levels of surfactant proteins (SPs), namely, SP-A, SP-B, SP-C, and SP-D (alveolar epithelial cell functional markers) were significantly decreased. These results suggest that MeHgCl activates an oxidative stress-induced mitochondrial cell death in alveolar epithelial cells.
Collapse
Affiliation(s)
- Tien Hui Lu
- Department of Nutrition, College of Health Care, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yao J, Qian C. Over-activated Notch-1 protects gastric carcinoma BGC-823 cells from TNFalpha-induced apoptosis. Dig Liver Dis 2009; 41:867-74. [PMID: 19403345 DOI: 10.1016/j.dld.2009.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 02/08/2009] [Accepted: 03/18/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM The role of Notch-1 in human gastric carcinoma, one of the most common carcinomas of the human digestive tract, remains poorly characterised. Here, we investigated the effect and mechanism of Notch-1 activation on TNFalpha-induced apoptosis of human gastric carcinoma BGC-823 cells. METHODS Cell viabililty was measured by MTT assay. Apoptosis was detected by flow cytometry assay. Notch-1, Hes-1, caspase-3 p20 and NF-kappaB p65 expressions were assayed by Western blotting. NF-kappaB activation was tested by electrophoretic mobility shift assay (EMSA), and caspase-3 activation was tested by colorimetric assay. RESULTS BGC-823 cells underwent apoptosis following stimulation with TNFalpha. We found that Notch-1 was over-activated by overexpressing exogenous intracellular domain of Notch (ICN) via retrovirus-mediated gene transfer, and over-activated Notch-1 reduced the TNFalpha-induced growth suppression and apoptosis in BGC-823 cells. Down-regulation of Notch-1 by siRNA targeting Notch-1 enhanced TNFalpha-induced apoptosis in BGC-823 cells. As the molecular mechanism involved, we showed over-activated Notch-1 partially suppressed TNFalpha-induced activation of caspase-3. However, TNFalpha-induced activation of NF-kappaB was not affected by over-activated Notch-1. CONCLUSIONS Our data indicate that over-activated Notch-1 significantly protects BGC-823 cells from TNFalpha-induced apoptosis, and this effect is mediated, at least in part, by decreasing activation of caspase-3 independent of NF-kappaB.
Collapse
Affiliation(s)
- J Yao
- School of Medicine, Taizhou University, Jiaojiang District, Taizhou, Zhejiang 318000, PR China
| | | |
Collapse
|
19
|
Ding D, Wei–dong Q, Dong–zhen Y, Hai–yan J, Salvi R. Ototoxic effects of mefloquine in cochlear organotypic cultures. J Otol 2009. [DOI: 10.1016/s1672-2930(09)50018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|