1
|
Hong Z, Liu F, Zhang Z. Ubiquitin modification in the regulation of tumor immunotherapy resistance mechanisms and potential therapeutic targets. Exp Hematol Oncol 2024; 13:91. [PMID: 39223632 PMCID: PMC11367865 DOI: 10.1186/s40164-024-00552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Although immune checkpoint-based cancer immunotherapy has shown significant efficacy in various cancers, resistance still limits its therapeutic effects. Ubiquitination modification is a mechanism that adds different types of ubiquitin chains to proteins, mediating protein degradation or altering their function, thereby affecting cellular signal transduction. Increasing evidence suggests that ubiquitination modification plays a crucial role in regulating the mechanisms of resistance to cancer immunotherapy. Drugs targeting ubiquitination modification pathways have been shown to inhibit tumor progression or enhance the efficacy of cancer immunotherapy. This review elaborates on the mechanisms by which tumor cells, immune cells, and the tumor microenvironment mediate resistance to cancer immunotherapy and the details of how ubiquitination modification regulates these mechanisms, providing a foundation for enhancing the efficacy of cancer immunotherapy by intervening in ubiquitination modification.
Collapse
Affiliation(s)
- Zihang Hong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
2
|
Mu L, Hu S, Li G, Wu P, Zheng K, Zhang S. Comprehensive analysis of DNA methylation gene expression profiles in GEO dataset reveals biomarkers related to malignant transformation of sinonasal inverted papilloma. Discov Oncol 2024; 15:53. [PMID: 38427106 PMCID: PMC10907326 DOI: 10.1007/s12672-024-00903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND DNA methylation may be involved in the regulation of malignant transformation from sinonasal inverted papilloma (SNIP) to squamous cell carcinoma (SCC). The study of gene methylation changes and screening of differentially methylated loci (DMLs) are helpful to predict the possible key genes in the malignant transformation of SNIP-SCC. MATERIALS AND METHODS Microarray dataset GSE125399 was downloaded from the Gene Expression Omnibus (GEO) database and differentially methylated loci (DMLs) were analyzed using R language (Limma package). ClusterProfiler R package was used to perform Gene Ontology (GO) analysis on up-methylated genes and draw bubble maps. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and its visualization analysis were analyzed to speculate the possible key Genes in SNIP-SCC malignant transformation. Subsequently, SNIP cases archived in our department were collected, tissue microarray was made, and immunohistochemical staining was performed to analyze the expression levels of UCKL1, GSTT1, HLA-G, MAML2 and NRGN in different grades of sinonasal papilloma tissues. RESULTS Analysis of dataset GSE125399 identified 56 DMLs, including 49 upregulated DMLs and 7 downregulated DMLs. Thirty-one genes containing upregulated DNA methylation loci and three genes containing downregulated DNA methylation loci were obtained by methylation microarray annotation analysis. In addition, KEGG pathway visualization analysis of 31 up-methylated genes showed that there were four significantly up-methylated genes including UCKL1, GSTT1, HLA-G and MAML2, and one significantly down-methylated gene NRGN. Subsequently, compared with non-neoplasia nasal epithelial tissues, the expression of HLA-G and NRGN was upregulated in grade I, II, III and IV tissues, while the expression of MAML2 was lost. The protein expression changes of MAML2 and NRGN were significantly negatively correlated with their gene methylation levels. CONCLUSIONS By analyzing the methylation dataset, we obtained four up-regulated methylation genes UCKL1, GSTT1, HLA-G and MAML2 and one down-regulated gene NRGN. MAML2, a tumor suppressor gene with high methylation modification but loss of protein expression, and NRGN, a tumor gene with low methylation modification but upregulated protein expression, can be used as biological indicators to judge the malignant transformation of SNIP-SCC.
Collapse
Affiliation(s)
- Li Mu
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou, 350212, China
| | - Shun Hu
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou, 350212, China
| | - Guoping Li
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou, 350212, China
| | - Ping Wu
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou, 350212, China
| | - Ke Zheng
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou, 350212, China.
| | - Sheng Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 999 Huashan Road, Fuzhou, 350212, China.
| |
Collapse
|
3
|
Wu W, Zhao Y, Qin B, Jiang X, Wang C, Hu R, Ma R, Lee MH, Liu H, Li K, Yuan P. Non-canonical role of UCKL1 on ferroptosis defence in colorectal cancer. EBioMedicine 2023; 93:104650. [PMID: 37343364 PMCID: PMC10363437 DOI: 10.1016/j.ebiom.2023.104650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Pyrimidine nucleotides fuel the growth of colorectal cancer (CRC), making their associated proteins potential targets for cancer intervention. Uridine-Cytidine Kinase Like-1(UCKL1) is an enzyme involved in the pyrimidine salvage pathway. It is highly expressed in multiple cancers. But the function and underlying mechanism of UCKL1 in CRC are yet to study. METHODS Large-scale genomic analysis was performed to search for potential CRC players related to pyrimidine metabolism. The function of UCKL1 in CRC were examined by RNA interference coupled with in vitro and in vivo assays. GSH/GSSG assay, NADP+ assay, ROS, and Lipid peroxidation assays were performed to check the function of UCKL1 in ferroptosis. Metabolomics analyses, RNA sequencing, western blotting, and rescue assays were done to reveal the underlying mechanisms of UCKL1. Xenograft mouse model was used to examine the therapeutic potential of UCKL1 as a target in combination with other ferroptosis inducers. FINDINGS UCKL1 was identified to repress ferroptosis in CRC cells. It was highly expressed in CRC. It regulated CRC cells proliferation and migration. Downregulation of UCKL1 led to enhanced tumour lipid peroxidation. Intriguingly, UCKL1 reduction-mediated ferroptosis was not related to its role in catalyzing uridine monophosphate (UMP) and cytidine monophosphate (CMP) synthesis. Instead, UCKL1 stabilized Nrf2, which in turn promoted the expression of SLC7A11, a classical repressor of ferroptosis. Moreover, downregulation of UCKL1 sensitized CRC cells to GPX4 inhibitors in vitro and in vivo. INTERPRETATION Our study demonstrates that UCKL1 plays a non-canonical role in repressing ferroptosis through a UCKL1-Nrf2-SLC7A11 axis in CRC cells. Combinatorial strategy in targeting ferroptosis by depletion of UCKL1 and application of GPX4 inhibitors may serve as a new effective method for CRC treatment. FUNDING This study was supported in part by fund from National Natural Science Foundation of China (Grant No. 31970674 to PY), by the Basic and Applied Basic Research Program of Guangdong Province (Grant No. 2023A1515030245 to KL), by the program of Guangdong Provincial Clinical Research Center for Digestive Diseases (2020B1111170004), and by National Key Clinical Discipline.
Collapse
Affiliation(s)
- Weili Wu
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingying Zhao
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baifu Qin
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Jiang
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuyue Wang
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rong Hu
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Ma
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mong-Hong Lee
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huanliang Liu
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Li
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Ping Yuan
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Xiong J, Bao J, Hu W, Shang M, Zhang L. Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat. Front Genet 2023; 13:1044017. [PMID: 36685859 PMCID: PMC9852865 DOI: 10.3389/fgene.2022.1044017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The dairy goat is one of the earliest dairy livestock species, which plays an important role in the economic development, especially for developing countries. With the development of agricultural civilization, dairy goats have been widely distributed across the world. However, few studies have been conducted on the specific characteristics of dairy goat. In this study, we collected the whole-genome data of 89 goat individuals by sequencing 48 goats and employing 41 publicly available goats, including five dairy goat breeds (Saanen, Nubian, Alpine, Toggenburg, and Guanzhong dairy goat; n = 24, 15, 11, 6, 6), and three goat breeds (Guishan goat, Longlin goat, Yunshang Black goat; n = 6, 15, 6). Through compared the genomes of dairy goat and non-dairy goat to analyze genetic diversity and selection characteristics of dairy goat. The results show that the eight goats could be divided into three subgroups of European, African, and Chinese indigenous goat populations, and we also found that Australian Nubian, Toggenburg, and Australian Alpine had the highest linkage disequilibrium, the lowest level of nucleotide diversity, and a higher inbreeding coefficient, indicating that they were strongly artificially selected. In addition, we identified several candidate genes related to the specificity of dairy goat, particularly genes associated with milk production traits (GHR, DGAT2, ELF5, GLYCAM1, ACSBG2, ACSS2), reproduction traits (TSHR, TSHB, PTGS2, ESR2), immunity traits (JAK1, POU2F2, LRRC66). Our results provide not only insights into the evolutionary history and breed characteristics of dairy goat, but also valuable information for the implementation and improvement of dairy goat cross breeding program.
Collapse
|
5
|
Matchett EC, Ambrose EC, Kornbluth J. Characterization of uridine-cytidine kinase like-1 nucleoside kinase activity and its role in tumor growth. Biochem J 2022; 479:1149-1164. [PMID: 35583288 PMCID: PMC9246348 DOI: 10.1042/bcj20210770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022]
Abstract
Uridine-cytidine kinase like-1 (UCKL-1) is a largely uncharacterized protein with high sequence similarity to other uridine-cytidine kinases (UCKs). UCKs play an important role in the pyrimidine salvage pathway, catalyzing the phosphorylation of uridine and cytidine to UMP and CMP, respectively. Only two human UCKs have been identified, UCK1 and UCK2. Previous studies have shown both enzymes phosphorylate uridine and cytidine using ATP as the phosphate donor. No studies have evaluated the kinase potential of UCKL-1. We cloned and purified UCKL-1 and found that it successfully phosphorylated uridine and cytidine using ATP as the phosphate donor. The catalytic efficiency (calculated as kcat/KM) was 1.2 × 104 s-1, M-1 for uridine and 0.7 × 104 s-1, M-1 for cytidine. Our lab has previously shown that UCKL-1 is up-regulated in tumor cells, providing protection against natural killer (NK) cell killing activity. We utilized small interfering RNA (siRNA) to down-regulate UCKL-1 in vitro and in vivo to determine the effect of UCKL-1 on tumor growth and metastasis. The down-regulation of UCKL-1 in YAC-1 lymphoma cells in vitro resulted in decreased cell counts and increased apoptotic activity. Down-regulation of UCKL-1 in K562 leukemia cells in vivo led to decreased primary tumor growth and less tumor cell dissemination and metastasis. These results identify UCKL-1 as a bona fide pyrimidine kinase with the therapeutic potential to be a target for tumor growth inhibition and for diminishing or preventing metastasis.
Collapse
Affiliation(s)
- Emily C. Matchett
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, U.S.A
| | - Elise C. Ambrose
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, U.S.A
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, U.S.A
- VA St. Louis Health Care System, St. Louis, MO, U.S.A
| |
Collapse
|
6
|
Lawrence DW, Willard PA, Cochran AM, Matchett EC, Kornbluth J. Natural Killer Lytic-Associated Molecule (NKLAM): An E3 Ubiquitin Ligase With an Integral Role in Innate Immunity. Front Physiol 2020; 11:573372. [PMID: 33192571 PMCID: PMC7658342 DOI: 10.3389/fphys.2020.573372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Natural Killer Lytic-Associated Molecule (NKLAM), also designated RNF19B, is a unique member of a small family of E3 ubiquitin ligases. This 14-member group of ligases has a characteristic cysteine-rich RING-IBR-RING (RBR) domain that mediates the ubiquitination of multiple substrates. The consequence of substrate ubiquitination varies, depending on the type of ubiquitin linkages formed. The most widely studied effect of ubiquitination of proteins is proteasome-mediated substrate degradation; however, ubiquitination can also alter protein localization and function. Since its discovery in 1999, much has been deciphered about the role of NKLAM in innate immune responses. We have discerned that NKLAM has an integral function in both natural killer (NK) cells and macrophages in vitro and in vivo. NKLAM expression is required for each of these cell types to mediate maximal killing activity and cytokine production. However, much remains to be determined. In this review, we summarize what has been learned about NKLAM expression, structure and function, and discuss new directions for investigation. We hope that this will stimulate interest in further exploration of NKLAM.
Collapse
Affiliation(s)
- Donald W Lawrence
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Paul A Willard
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Allyson M Cochran
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Emily C Matchett
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States.,St. Louis VA Health Care System, St. Louis, MO, United States
| |
Collapse
|
7
|
Wang P, Dai X, Jiang W, Li Y, Wei W. RBR E3 ubiquitin ligases in tumorigenesis. Semin Cancer Biol 2020; 67:131-144. [PMID: 32442483 DOI: 10.1016/j.semcancer.2020.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
RING-in-between-RING (RBR) E3 ligases are one class of E3 ligases that is characterized by the unique RING-HECT hybrid mechanism to function with E2s to transfer ubiquitin to target proteins for degradation. Emerging evidence has demonstrated that RBR E3 ligases play essential roles in neurodegenerative diseases, infection, inflammation and cancer. Accumulated evidence has revealed that RBR E3 ligases exert their biological functions in various types of cancers by modulating the degradation of tumor promoters or suppressors. Hence, we summarize the differential functions of RBR E3 ligases in a variety of human cancers. In general, ARIH1, RNF14, RNF31, RNF144B, RNF216, and RBCK1 exhibit primarily oncogenic roles, whereas ARIH2, PARC and PARK2 mainly have tumor suppressive functions. Moreover, the underlying mechanisms by which different RBR E3 ligases are involved in tumorigenesis and progression are also described. We discuss the further investigation is required to comprehensively understand the critical role of RBR E3 ligases in carcinogenesis. We hope our review can stimulate the researchers to deeper explore the mechanism of RBR E3 ligases-mediated carcinogenesis and to develop useful inhibitors of these oncogenic E3 ligases for cancer therapy.
Collapse
Affiliation(s)
- Peter Wang
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yuyun Li
- School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, USA.
| |
Collapse
|
8
|
Buivydiene A, Liakina V, Kashuba E, Norkuniene J, Jokubauskiene S, Gineikiene E, Valantinas J. Impact of the Uridine⁻Cytidine Kinase Like-1 Protein and IL28B rs12979860 and rs8099917 SNPs on the Development of Hepatocellular Carcinoma in Cirrhotic Chronic Hepatitis C Patients-A Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:67. [PMID: 30344298 PMCID: PMC6262489 DOI: 10.3390/medicina54050067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 12/18/2022]
Abstract
Background and objectives: The hepatitis C virus (HCV) is the major causative agent of hepatocellular carcinoma (HCC) in the western world. The efficacy of surveillance programs for early detection of HCC is not satisfactory: many tumors are diagnosed at the late, incurable stages. Therefore, there is a need in reliable prognostic markers for the proper follow-up of HCV-positive patients. The aim of the present study was to assess the prognostic value of the uridine⁻cytidine kinase-like protein 1 (UCKL-1), a putative oncoprotein, together with genetically determined polymorphisms in the interleukin 28B (IL28B) gene (rs12979860, rs8099917) in the development of HCC in HCV-positive cirrhotic patients. Materials and Methods: We included 32 HCV cirrhotic patients, 21 (65.6%) of whom had HCC. The expression of UCKL-1 was assessed in liver tissue sections, using immunohistochemistry. For IL28B rs12979860 and rs8099917 genotype analysis, the corresponding genomic regions were amplified by polymerase chain reaction (PCR) with appropriate primers. Results: We have found that UCKL-1 expression was significantly increased in HCC (p = 0.003). The presence of rs8099917 TT single-nucleotide polymorphism (SNP) elevated the chances of HCC manifestation more than sevenfold (OR = 7.3, p = 0.0273). The presence of rs12979860 CC SNP also heightened HCC chances more than sevenfold (OR = 7.5, p = 0.0765). Moreover, in the HCC group, a combination of IL28B rs12979860 non-TT and rs8099917 TT genotypes was observed more often, compared with the non-HCC group. Other combinations of IL28B rs12979860 and rs8099917 SNIPs were associated with a reduced risk of HCC development, approximately at the same extent. Conclusions: The presence of IL28B rs8099917 TT and rs12979860 CC SNPs, but not the intensity of UCKL-1 expression, is strongly associated with increased chances of HCC development in HCV-positive cirrhotic patients.
Collapse
Affiliation(s)
- Arida Buivydiene
- Center of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Vilnius University, LT-08661 Vilnius, Lithuania.
| | - Valentina Liakina
- Center of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Vilnius University, LT-08661 Vilnius, Lithuania.
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania.
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
- RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, UA-03022 Kyiv, Ukraine.
| | - Jolita Norkuniene
- Department of Mathematical Statistics, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania.
- Vilniaus Kolegija/University of Applied Sciences, LT-08105 Vilnius, Lithuania.
| | - Skirmante Jokubauskiene
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuanian, .
- National Center of Pathology, LT-08406 Vilnius, Lithuania.
| | - Egle Gineikiene
- Center of Hematology, Oncology and Transfusion Medicine, Vilnius University Hospital Santaros Klinikos, LT-08661 Vilnius, Lithuania.
- Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania.
| | - Jonas Valantinas
- Center of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Vilnius University, LT-08661 Vilnius, Lithuania.
| |
Collapse
|
9
|
Funikov SY, Rezvykh AP, Mazin PV, Morozov AV, Maltsev AV, Chicheva MM, Vikhareva EA, Evgen’ev MB, Ustyugov AA. FUS(1-359) transgenic mice as a model of ALS: pathophysiological and molecular aspects of the proteinopathy. Neurogenetics 2018; 19:189-204. [DOI: 10.1007/s10048-018-0553-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
|
10
|
Jordan PC, Stevens SK, Tam Y, Pemberton RP, Chaudhuri S, Stoycheva AD, Dyatkina N, Wang G, Symons JA, Deval J, Beigelman L. Activation Pathway of a Nucleoside Analog Inhibiting Respiratory Syncytial Virus Polymerase. ACS Chem Biol 2017; 12:83-91. [PMID: 28103684 DOI: 10.1021/acschembio.6b00788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human respiratory syncytial virus (RSV) is a negative-sense RNA virus and a significant cause of respiratory infection in infants and the elderly. No effective vaccines or antiviral therapies are available for the treatment of RSV. ALS-8176 is a first-in-class nucleoside prodrug inhibitor of RSV replication currently under clinical evaluation. ALS-8112, the parent molecule of ALS-8176, undergoes intracellular phosphorylation, yielding the active 5'-triphosphate metabolite. The host kinases responsible for this conversion are not known. Therefore, elucidation of the ALS-8112 activation pathway is key to further understanding its conversion mechanism, particularly given its potent antiviral effects. Here, we have identified the activation pathway of ALS-8112 and show it is unlike other antiviral cytidine analogs. The first step, driven by deoxycytidine kinase (dCK), is highly efficient, while the second step limits the formation of the active 5'-triphosphate species. ALS-8112 is a 2'- and 4'-modified nucleoside analog, prompting us to investigate dCK recognition of other 2'- and 4'-modified nucleosides. Our biochemical approach along with computational modeling contributes to an enhanced structure-activity profile for dCK. These results highlight an exciting potential to optimize nucleoside analogs based on the second activation step and increased attention toward nucleoside diphosphate and triphosphate prodrugs in drug discovery.
Collapse
Affiliation(s)
- Paul C. Jordan
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Sarah K. Stevens
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Yuen Tam
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Ryan P. Pemberton
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Shuvam Chaudhuri
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Antitsa D. Stoycheva
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Natalia Dyatkina
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Guangyi Wang
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Julian A. Symons
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Jerome Deval
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| | - Leo Beigelman
- Alios BioPharma, Inc., part
of the Janssen Pharmaceutical Companies, South
San Francisco, California, United States
| |
Collapse
|
11
|
Gullickson G, Ambrose EC, Hoover RG, Kornbluth J. Uridine Cytidine Kinase Like-1 Enhances Tumor Cell Proliferation and Mediates Protection from Natural Killer-Mediated Killing. ACTA ACUST UNITED AC 2016; 3. [PMID: 32083188 PMCID: PMC7032549 DOI: 10.23937/2378-3672/1410018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Uridine cytidine kinase like-1 (UCKL-1) is a largely uncharacterized protein over-expressed in many tumor cells, especially in highly malignant, aggressive tumors. Sequence analysis indicates that UCKL-1 has homology to uridine kinases, enzymes that play a role in DNA and RNA synthesis and that are often up-regulated in tumor cells. Previous studies have shown that UCKL-1 is a substrate for natural killer lytic-associated molecule (NKLAM), an E3 ubiquitin ligase found in NK cell cytolytic granules. Ubiquitination of UCKL-1 by NKLAM leads to its degradation. Increased expression of NKLAM enhances NK-mediated tumoricidal activity. The fact that UCKL-1 is a substrate for NKLAM suggests that UCKL-1 may provide resistance to NK killing in tumor cells. Here we show that UCKL-1 over-expression protects tumor cells from NK killing and enhances tumor survival in vivo. UCKL-1 also has a much broader role, protecting tumor cells from spontaneous and drug-induced apoptosis and increasing tumor cell proliferation. Nuclear factor-kappa B (NF-κB) activity is higher in tumor cells transfected with UCKL-1 compared to control transfected cells, suggesting at least one possible mechanism by which UCKL-1 influences tumor growth and survival.
Collapse
Affiliation(s)
- Gail Gullickson
- Department of Pathology, Saint Louis University School of Medicine, USA
| | - Elise C Ambrose
- Department of Pathology, Saint Louis University School of Medicine, USA
| | - Richard G Hoover
- Department of Pathology, Saint Louis University School of Medicine, USA
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, USA.,VA, St. Louis Health Care System, St. Louis, USA
| |
Collapse
|
12
|
Smit JJ, Sixma TK. RBR E3-ligases at work. EMBO Rep 2014; 15:142-54. [PMID: 24469331 PMCID: PMC3989860 DOI: 10.1002/embr.201338166] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 11/07/2022] Open
Abstract
The RING-in-between-RING (RBR) E3s are a curious family of ubiquitin E3-ligases, whose mechanism of action is unusual in several ways. Their activities are auto-inhibited, causing a requirement for activation by protein-protein interactions or posttranslational modifications. They catalyse ubiquitin conjugation by a concerted RING/HECT-like mechanism in which the RING1 domain facilitates E2-discharge to directly form a thioester intermediate with a cysteine in RING2. This short-lived, HECT-like intermediate then modifies the target. Uniquely, the RBR ligase HOIP makes use of this mechanism to target the ubiquitin amino-terminus, by presenting the target ubiquitin for modification using its distinctive LDD region.
Collapse
Affiliation(s)
- Judith J Smit
- Division of Biochemistry and Cancer Genomics Centre, The Netherlands Cancer InstituteAmsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Centre, The Netherlands Cancer InstituteAmsterdam, The Netherlands
| |
Collapse
|
13
|
Kuhn E, Wu RC, Guan B, Wu G, Zhang J, Wang Y, Song L, Yuan X, Wei L, Roden RBS, Kuo KT, Nakayama K, Clarke B, Shaw P, Olvera N, Kurman RJ, Levine DA, Wang TL, Shih IM. Identification of molecular pathway aberrations in uterine serous carcinoma by genome-wide analyses. J Natl Cancer Inst 2012; 104:1503-13. [PMID: 22923510 DOI: 10.1093/jnci/djs345] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Uterine cancer is the fourth most common malignancy in women, and uterine serous carcinoma is the most aggressive subtype. However, the molecular pathogenesis of uterine serous carcinoma is largely unknown. We analyzed the genomes of uterine serous carcinoma samples to better understand the molecular genetic characteristics of this cancer. METHODS Whole-exome sequencing was performed on 10 uterine serous carcinomas and the matched normal blood or tissue samples. Somatically acquired sequence mutations were further verified by Sanger sequencing. The most frequent molecular genetic changes were further validated by Sanger sequencing in 66 additional uterine serous carcinomas and in nine serous endometrial intraepithelial carcinomas (the preinvasive precursor of uterine serous carcinoma) that were isolated by laser capture microdissection. In addition, gene copy number was characterized by single-nucleotide polymorphism (SNP) arrays in 23 uterine serous carcinomas, including 10 that were subjected to whole-exome sequencing. RESULTS We found frequent somatic mutations in TP53 (81.6%), PIK3CA (23.7%), FBXW7 (19.7%), and PPP2R1A (18.4%) among the 76 uterine serous carcinomas examined. All nine serous carcinomas that had an associated serous endometrial intraepithelial carcinoma had concordant PIK3CA, PPP2R1A, and TP53 mutation status between uterine serous carcinoma and the concurrent serous endometrial intraepithelial carcinoma component. DNA copy number analysis revealed frequent genomic amplification of the CCNE1 locus (which encodes cyclin E, a known substrate of FBXW7) and deletion of the FBXW7 locus. Among 23 uterine serous carcinomas that were subjected to SNP array analysis, seven tumors with FBXW7 mutations (four tumors with point mutations, three tumors with hemizygous deletions) did not have CCNE1 amplification, and 13 (57%) tumors had either a molecular genetic alteration in FBXW7 or CCNE1 amplification. Nearly half of these uterine serous carcinomas (48%) harbored PIK3CA mutation and/or PIK3CA amplification. CONCLUSION Molecular genetic aberrations involving the p53, cyclin E-FBXW7, and PI3K pathways represent major mechanisms in the development of uterine serous carcinoma.
Collapse
Affiliation(s)
- Elisabetta Kuhn
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|