1
|
Qiu Y, Bai L, Zhao H, Mei X. Homoharringtonine enhances cytarabine-induced apoptosis in acute myeloid leukaemia by regulating the p38 MAPK/H2AX/Mcl-1 axis. BMC Cancer 2024; 24:520. [PMID: 38658865 PMCID: PMC11044605 DOI: 10.1186/s12885-024-12286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a fatal haematopoietic malignancy and is treated with the conventional combination of cytarabine (Ara-C) and daunorubicin (Dau). The survival rate of AML patients is lower due to the cardiotoxicity of daunorubicin. Clinically, homoharringtonine (HHT) plus Ara-C has been reported to be equally effective as Dau plus Ara-C in some types of AML patients with less toxic effects. We utilized the clinical use of homoharringtonine in combination with Ara-C to test its combination mechanism. We found that the insensitivity of AML cells to cytarabine-induced apoptosis is associated with increased Mcl-1 stability and p38 inactivation. HHT downregulates Mcl-1, phosphorylates H2AX and induces apoptosis by activating p38 MAPK. Inactivation of p38 through inhibitors and siRNA blocks apoptosis, H2AX phosphorylation and Mcl-1 reduction. HHT enhances Ara-C activation of the p38 MAPK signalling pathway, overcoming Ara-C tolerance to cell apoptosis by regulating the p38/H2AX/Mcl-1 axis. The optimal ratio of HHT to Ara-C for synergistic lethality in AML cells is 1:4 (M/M). HHT synergistically induces apoptosis in combination with Ara-C in vitro and prolongs the survival of xenografts. We provide a new mechanism for AML treatment by regulating the p38 MAPK/H2AX/Mcl-1 axis to improve cytarabine therapy.
Collapse
Affiliation(s)
- Yang Qiu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Liaoning Provincial Key Laboratory of Marine Bioactive Substances, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Technological Innovation Center of Liaoning Pharmaceutical Action and Quality Evaluation, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - Lu Bai
- Affiliated Third Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Haosen Zhao
- Affiliated Third Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
2
|
Sazonova EV, Yapryntseva MA, Pervushin NV, Tsvetcov RI, Zhivotovsky B, Kopeina GS. Cancer Drug Resistance: Targeting Proliferation or Programmed Cell Death. Cells 2024; 13:388. [PMID: 38474352 PMCID: PMC10930385 DOI: 10.3390/cells13050388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The development of resistance to chemotherapy is one of the main problems for effective cancer treatment. Drug resistance may result from disturbances in two important physiological processes-cell proliferation and cell death. Importantly, both processes characterize alterations in cell metabolism, the level of which is often measured using MTT/MTS assays. To examine resistance to chemotherapy, different cancer cell lines are usually used for the in vitro modulation of developing resistance. However, after the creation of resistant cell lines, researchers often have difficulty in starting investigations of the mechanisms of insensitivity. In the first stage, researchers should address the question of whether the drug resistance results from a depression of cell proliferation or an inhibition of cell death. To simplify the choice of research strategy, we have suggested a combination of different approaches which reveal the actual mechanism. This combination includes rapid and high-throughput methods such as the MTS test, the LIVE/DEAD assay, real-time cell metabolic analysis, and Western blotting. To create chemoresistant tumor cells, we used four different cancer cell lines of various origins and utilized the most clinically relevant pulse-selection approach. Applying a set of methodological approaches, we demonstrated that three of them were more capable of modulating proliferation to avoid the cytostatic effects of anti-cancer drugs. At the same time, one of the studied cell lines developed resistance to cell death, overcoming the cytotoxic action.
Collapse
Affiliation(s)
- Elena V. Sazonova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (M.A.Y.); (N.V.P.); (R.I.T.)
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maria A. Yapryntseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (M.A.Y.); (N.V.P.); (R.I.T.)
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nikolay V. Pervushin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (M.A.Y.); (N.V.P.); (R.I.T.)
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman I. Tsvetcov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (M.A.Y.); (N.V.P.); (R.I.T.)
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Boris Zhivotovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (M.A.Y.); (N.V.P.); (R.I.T.)
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, P.O. Box 210, 17177 Stockholm, Sweden
| | - Gelina S. Kopeina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.S.); (M.A.Y.); (N.V.P.); (R.I.T.)
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Ketkar M, Dutt S. Epigenetic Regulation Towards Acquired Drug Resistance in Cancer. Subcell Biochem 2022; 100:473-502. [PMID: 36301503 DOI: 10.1007/978-3-031-07634-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapy resistance remains the most challenging obstacle in cancer treatment. Substantial efforts and evidences have accumulated over decades suggesting not only genetic but non-genomic mechanisms underlying this adaptation of tumor cells. Alterations in epigenome can have a fundamental effect on cellular functions and response to stresses like anticancer therapy. This chapter discusses the principal mechanisms by which epigenetic modifications in the genome and transcriptome aid tumor cells toward acquisition of resistance to chemotherapy.
Collapse
Affiliation(s)
- Madhura Ketkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
5
|
H2A.X Phosphorylation in Oxidative Stress and Risk Assessment in Plasma Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2060986. [PMID: 34938381 PMCID: PMC8687853 DOI: 10.1155/2021/2060986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
At serine139-phosphorylated gamma histone H2A.X (γH2A.X) has been established over the decades as sensitive evidence of radiation-induced DNA damage, especially DNA double-strand breaks (DSBs) in radiation biology. Therefore, γH2A.X has been considered a suitable marker for biomedical applications and a general indicator of direct DNA damage with other therapeutic agents, such as cold physical plasma. Medical plasma technology generates a partially ionized gas releasing a plethora of reactive oxygen and nitrogen species (ROS) simultaneously that have been used for therapeutic purposes such as wound healing and cancer treatment. The quantification of γH2A.X as a surrogate parameter of direct DNA damage has often been used to assess genotoxicity in plasma-treated cells, whereas no sustainable mutagenic potential of the medical plasma treatment could be identified despite H2A.X phosphorylation. However, phosphorylated H2A.X occurs during apoptosis, which is associated with exposure to cold plasma and ROS. This review summarizes the current understanding of γH2A.X induction and function in oxidative stress in general and plasma medicine in particular. Due to the progress towards understanding the mechanisms of H2A.X phosphorylation in the absence of DSB and ROS, observations of γH2A.X in medical fields should be carefully interpreted.
Collapse
|
6
|
Kuo YH, Wei SH, Jiang JH, Chang YS, Liu MY, Fu SL, Huang CYF, Lin WJ. Perturbation of p38α MAPK as a Novel Strategy to Effectively Sensitize Chronic Myeloid Leukemia Cells to Therapeutic BCR-ABL Inhibitors. Int J Mol Sci 2021; 22:ijms222212573. [PMID: 34830455 PMCID: PMC8623086 DOI: 10.3390/ijms222212573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by the presence of the BCR-ABL oncogene. Therapeutic regimens with tyrosine kinase inhibitors (TKIs) specifically targeting BCR-ABL have greatly improved overall survival of CML. However, drug intolerance and related toxicity remain. Combined therapy is effective in reducing drug magnitude while increasing therapeutic efficacy and, thus, lowers undesired adverse side effects. The p38 MAPK activity is critically linked to the pathogenesis of a number of diseases including hematopoietic diseases; however, the role of each isozyme in CML and TKI-mediated effects is still elusive. In this study, we used specific gene knockdown to clearly demonstrate that the deficiency of p38α greatly enhanced the therapeutic efficacy in growth suppression and cytotoxicity of TKIs, first-generation imatinib, and second generation dasatinib by approximately 2.5–3.0-fold in BCR-ABL-positive CML-derived leukemia K562 and KMB5 cells. Knockdown of p38β, which displays the most sequence similarity to p38α, exerted distinct and opposite effects on the TKI-mediated therapeutic efficacy. These results show the importance of isotype-specific intervention in enhancing the therapeutic efficacy of TKI. A highly specific p38α inhibitor, TAK715, also significantly enhanced the imatinib- and dasatinib-mediated therapeutic efficacy, supporting the feasibility of p38α deficiency in future clinic application. Taken together, our results demonstrated that p38α is a promising target for combined therapy with BCR-ABL-targeting tyrosine kinase inhibitors for future application to increase therapeutic efficacy.
Collapse
MESH Headings
- Cell Proliferation/drug effects
- Combined Modality Therapy
- Dasatinib/pharmacology
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Gene Knockdown Techniques
- Genetic Therapy
- Humans
- Imatinib Mesylate/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mitogen-Activated Protein Kinase 14/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 14/deficiency
- Mitogen-Activated Protein Kinase 14/genetics
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Yi-Hue Kuo
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.K.); (S.-H.W.); (J.-H.J.); (M.-Y.L.); (C.-Y.F.H.)
| | - Shih-Hsiang Wei
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.K.); (S.-H.W.); (J.-H.J.); (M.-Y.L.); (C.-Y.F.H.)
| | - Jie-Hau Jiang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.K.); (S.-H.W.); (J.-H.J.); (M.-Y.L.); (C.-Y.F.H.)
| | - Yueh-Shih Chang
- Hemato-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, College of Medicine, Keelung & Chang Gung University, Taoyuan City 33302, Taiwan;
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Mei-Yin Liu
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.K.); (S.-H.W.); (J.-H.J.); (M.-Y.L.); (C.-Y.F.H.)
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.K.); (S.-H.W.); (J.-H.J.); (M.-Y.L.); (C.-Y.F.H.)
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wey-Jinq Lin
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-H.K.); (S.-H.W.); (J.-H.J.); (M.-Y.L.); (C.-Y.F.H.)
- Correspondence: ; Tel.: +886-2-2826-7257
| |
Collapse
|
7
|
Liu A, Zhou K, Martínez MA, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Ares I. A "Janus" face of the RASSF4 signal in cell fate. J Cell Physiol 2021; 237:466-479. [PMID: 34553373 DOI: 10.1002/jcp.30592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022]
Abstract
RASSF4 (Ras-association domain family 4) is a protein-coding gene, regarded as a tumor suppressor regulated by DNA methylation. However, RASSF4 acts as a "Janus" in cell fate: death and survival. This review article focuses on the regulatory mechanisms of RASSF4 on cell death and cell survival and puts forward a comprehensive analysis of the relevant signaling pathways. The participation of RASSF4 in the regulation of intracellular store-operated Ca2+ entry also affects cell survival. Moreover, the mechanism of inducing abnormal expression of RASSF4 was summarized. We highlight recent advances in our knowledge of RASSF4 function in the development of cancer and other clinical diseases, which may provide insight into the controversial functions of RASSF4 and its potential application in disease therapy.
Collapse
Affiliation(s)
- Aimei Liu
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - Kaixiang Zhou
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - María Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Xu Wang
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| |
Collapse
|
8
|
Gong CM, Xu YF, Liang XS, Mo JL, Zhuang ZX. PARP-1 overexpression does not protect HaCaT cells from DNA damage induced by SiO 2 nanoparticles. Toxicol Res (Camb) 2021; 10:399-408. [PMID: 34141153 DOI: 10.1093/toxres/tfaa110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 11/12/2022] Open
Abstract
Nano-SiO2 is increasingly used in diagnostic and biomedical research because of its ease of production and relatively low cost and which is generally regarded as safe and has been approved for use as a food or animal feed ingredient. Although recent literature reveals that nano-SiO2 may present toxicity and DNA damage, however, the underlying mechanism remains poorly understood. Since in previous studies, we found that nano-SiO2 treatment down-regulated the expression of the poly(ADP-ribose) polymerases-1 (PARP-1), a pivotal DNA repair gene, in human HaCaT cells and PAPR-1 knockdown can aggravate DNA damage induced by nano-SiO2. Therefore, we speculate whether PARP-1 overexpression can protect DNA from damage induced by nano-SiO2. However, our data demonstrated that overexpression of PARP-1 in HaCaT cells slightly enhanced the cellular proliferation of undamaged cells, when compared with both empty vector control cells and parental cells, but had drastic consequences for cells treated with nano-SiO2. The PARP-1 overtransfected cells were sensitized to the cytotoxic effects and DNA damage of nano-SiO2 compared with control parental cells. Meanwhile, flow cytometric analysis of nano-SiO2 stimulated poly(ADP-ribose) synthesis revealed consistently larger fractions of cells positive for this polymer in the PARP-1 overexpression cells than in control clones. Combining our previous research on PARP-1 knockdown HaCaT cells, we hypothesize that an optimal level of cellular poly(ADP-ribose) accumulation exists for the cellular recovery from DNA damage.
Collapse
Affiliation(s)
- Chun-Mei Gong
- Shenzhen Center for Chronic Disease Control, 2021 Buxin Road, Shenzhen 518020, Luohu, PR China
| | - Yuan-Fei Xu
- Shenzhen Center for Chronic Disease Control, 2021 Buxin Road, Shenzhen 518020, Luohu, PR China
| | - Xiong-Shun Liang
- Shenzhen Center for Chronic Disease Control, 2021 Buxin Road, Shenzhen 518020, Luohu, PR China
| | - Jun-Luan Mo
- Shenzhen Center for Chronic Disease Control, 2021 Buxin Road, Shenzhen 518020, Luohu, PR China
| | - Zhi-Xiong Zhuang
- Shenzhen Center for Disease Control and Prevention, Longyuan Road 8, Shenzhen 518055, Nanshan, PR China
| |
Collapse
|
9
|
Liddle P, Jara-Wilde J, Lafon-Hughes L, Castro I, Härtel S, Folle G. dSTORM microscopy evidences in HeLa cells clustered and scattered γH2AX nanofoci sensitive to ATM, DNA-PK, and ATR kinase inhibitors. Mol Cell Biochem 2020; 473:77-91. [PMID: 32638256 DOI: 10.1007/s11010-020-03809-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
In response to DNA double-strand breaks (DSB), histone H2AX is phosphorylated around the lesion by a feed forward signal amplification loop, originating γH2AX foci detectable by immunofluorescence and confocal microscopy as elliptical areas of uniform intensity. We exploited the significant increase in resolution (~ × 10) provided by single-molecule localization microscopy (SMLM) to investigate at nanometer scale the distribution of γH2AX signals either endogenous (controls) or induced by the radiomimetic bleomycin (BLEO) in HeLa cells. In both conditions, clustered substructures (nanofoci) confined to γH2AX foci and scattered nanofoci throughout the remnant nuclear area were detected. SR-Tesseler software (Voronoï tessellation-based segmentation) was combined with a custom Python script to first separate clustered nanofoci inside γH2AX foci from scattered nanofoci, and then to perform a cluster analysis upon each nanofoci type. Compared to controls, γH2AX foci in BLEO-treated nuclei presented on average larger areas (0.41 versus 0.19 µm2), more nanofoci per focus (22.7 versus 13.2) and comparable nanofoci densities (~ 60 nanofoci/µm2). Scattered γH2AX nanofoci were equally present (~ 3 nanofoci/µm2), suggesting an endogenous origin. BLEO-treated cells were challenged with specific inhibitors of canonical H2AX kinases, namely: KU-55933, VE-821 and NU-7026 for ATM, ATR and DNA-PK, respectively. Under treatment with pooled inhibitors, clustered nanofoci vanished from super-resolution images while scattered nanofoci decreased (~ 50%) in density. Residual scattered nanofoci could reflect, among other alternatives, H2AX phosphorylation mediated by VRK1, a recently described non-canonical H2AX kinase. In addition to H2AX findings, an analytical approach to quantify clusters of highly differing density from SMLM data is put forward.
Collapse
Affiliation(s)
- Pablo Liddle
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Jorge Jara-Wilde
- SCIAN-Lab, Biomedical Neuroscience Institute (BNI), Santiago, Chile.,Departamento de Ciencias de la Computación, Universidad de Chile, Santiago, Chile
| | - Laura Lafon-Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Iván Castro
- SCIAN-Lab, Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | - Steffen Härtel
- SCIAN-Lab, Biomedical Neuroscience Institute (BNI), Santiago, Chile.,Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gustavo Folle
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
10
|
Elevated H2AX Phosphorylation Observed with kINPen Plasma Treatment Is Not Caused by ROS-Mediated DNA Damage but Is the Consequence of Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8535163. [PMID: 31641425 PMCID: PMC6770374 DOI: 10.1155/2019/8535163] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022]
Abstract
Phosphorylated histone 2AX (γH2AX) is a long-standing marker for DNA double-strand breaks (DSBs) from ionizing radiation in the field of radiobiology. This led to the perception of γH2AX being a general marker of direct DNA damage with the treatment of other agents such as low-dose exogenous ROS that unlikely act on cellular DNA directly. Cold physical plasma confers biomedical effects majorly via release of reactive oxygen and nitrogen species (ROS). In vitro, increase of γH2AX has often been observed with plasma treatment, leading to the conclusion that DNA damage is a direct consequence of plasma exposure. However, increase in γH2AX also occurs during apoptosis, which is often observed with plasma treatment as well. Moreover, it must be questioned if plasma-derived ROS can reach into the nucleus and still be reactive enough to damage DNA directly. We investigated γH2AX induction in a lymphocyte cell line upon ROS exposure (plasma, hydrogen peroxide, or hypochlorous acid) or UV-B light. Cytotoxicity and γH2AX induction was abrogated by the use of antioxidants with all types of ROS treatment but not UV radiation. H2AX phosphorylation levels were overall independent of analyzing either all nucleated cells or segmenting γH2AX phosphorylation for each cell cycle phase. SB202190 (p38-MAPK inhibitor) and Z-VAD-FMK (pan-caspase inhibitor) significantly inhibited γH2AX induction upon ROS but not UV treatment. Finally, and despite γH2AX induction, UV but not plasma treatment led to significantly increased micronucleus formation, which is a functional read-out of genotoxic DNA DSBs. We conclude that plasma-mediated and low-ROS γH2AX induction depends on caspase activation and hence is not the cause but consequence of apoptosis induction. Moreover, we could not identify lasting mutagenic effects with plasma treatment despite phosphorylation of H2AX.
Collapse
|
11
|
Li H, Guan K, Li X, Ma Y, Zhou S. MFG-E8 induced differences in proteomic profiles in mouse C2C12 cells and its effect on PI3K/Akt and ERK signal pathways. Int J Biol Macromol 2019; 124:681-688. [DOI: 10.1016/j.ijbiomac.2018.11.265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
|
12
|
Wu J, Xiao S, Yuan M, Li Q, Xiao G, Wu W, Ouyang Y, Huang L, Yao C. PARP inhibitor re‑sensitizes Adriamycin resistant leukemia cells through DNA damage and apoptosis. Mol Med Rep 2018; 19:75-84. [PMID: 30431088 PMCID: PMC6297734 DOI: 10.3892/mmr.2018.9628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/10/2018] [Indexed: 01/09/2023] Open
Abstract
Resistance to Adriamycin (ADR) is an increasing problem in the treatment of leukemia and the development of novel therapeutic strategies is becoming increasingly important. Olaparib is a poly (adenosine diphosphate-ribose) polymerase (PARP) 1 inhibitor, which has promising antitumor activity in patients with metastatic breast cancer and germline BRCA mutations. Previously published studies have indicated that Olaparib is able to overcome drug resistance in cancer; however, its underlying mechanism of action is yet to be elucidated. The aim of the present study was to explore the mechanism underlying re-sensitization. Annexin V-propidium iodide staining indicated that the percentage of apoptotic ADR resistant cells was markedly increased and the cell cycle was blocked at the G2/M-phase following treatment with ADR combined with Olaparib, when compared with the control group. The alkaline comet assay demonstrated that ADR combined with Olaparib significantly upregulated the induction of the DNA damage response in ADR-resistant cells. Western blot analysis revealed that the protein expression of γ-H2A histone family member X, cleaved PARP, caspase 3 and cleaved caspase 3 was markedly enhanced, while the cell cycle-associated protein cyclin B1 was downregulated in K562/ADR cells following treatment with a combination of ADR and Olaparib. Similar synergistic cytotoxicity was observed in blood mononuclear cells, which were isolated from patients with chemotherapy-resistant leukemia. As Olaparib is available for clinical use, the results of the present study provide a rationale for the development of Olaparib combinational therapies for cases of ADR resistant leukemia.
Collapse
Affiliation(s)
- Jie Wu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Sheng Xiao
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Miaomiao Yuan
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Qianyuan Li
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Guangfen Xiao
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wei Wu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yuexian Ouyang
- Center for Medical Experiments, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Lihua Huang
- Center for Medical Experiments, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chenjiao Yao
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
13
|
A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis 2018; 9:443. [PMID: 29670085 PMCID: PMC5906628 DOI: 10.1038/s41419-018-0467-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 01/18/2023]
Abstract
Trib2 pseudokinase is involved in the etiology of a number of cancers including leukaemia, melanoma, ovarian, lung and liver cancer. Both high and low Trib2 expression levels correlate with different types of cancer. Elevated Trib2 expression has oncogenic properties in both leukaemia and lung cancer dependent on interactions with proteasome machinery proteins and degradation of transcription factors. Here, we demonstrated that Trib2 deficiency conferred a growth and survival advantage both at steady state and in stress conditions in leukaemia cells. In response to stress, wild type leukaemia cells exited the cell cycle and underwent apoptosis. In contrast, Trib2 deficient leukaemia cells continued to enter mitosis and survive. We showed that Trib2 deficient leukaemia cells had defective MAPK p38 signalling, which associated with a reduced γ-H2Ax and Chk1 stress signalling response, and continued proliferation following stress, associated with inefficient activation of cell cycle inhibitors p21, p16 and p19. Furthermore, Trib2 deficient leukaemia cells were more resistant to chemotherapy than wild type leukaemia cells, having less apoptosis and continued propagation. Trib2 re-expression or pharmacological activation of p38 in Trib2 deficient leukaemia cells sensitised the cells to chemotherapy-induced apoptosis comparable with wild type leukaemia cells. Our data provide evidence for a tumour suppressor role of Trib2 in myeloid leukaemia via activation of p38 stress signalling. This newly identified role indicates that Trib2 may counteract the propagation and chemotherapy resistance of leukaemia cells.
Collapse
|
14
|
Heckler MM, Zeleke TZ, Divekar SD, Fernandez AI, Tiek DM, Woodrick J, Farzanegan A, Roy R, Üren A, Mueller SC, Riggins RB. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget 2018; 7:47201-47220. [PMID: 27363015 PMCID: PMC5216935 DOI: 10.18632/oncotarget.9719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 05/19/2016] [Indexed: 01/09/2023] Open
Abstract
Breast cancer remains a leading cause of cancer-related death in women, and triple negative breast cancer (TNBC) lacks clinically actionable therapeutic targets. Death in mitosis is a tumor suppressive mechanism that occurs in cancer cells experiencing a defective M phase. The orphan estrogen-related receptor beta (ERRβ) is a key reprogramming factor in murine embryonic and induced pluripotent stem cells. In primates, ERRβ is alternatively spliced to produce several receptor isoforms. In cellular models of glioblastoma, short form (ERRβsf) and beta2 (ERRβ2) splice variants differentially regulate cell cycle progression in response to the synthetic agonist DY131, with ERRβ2 driving arrest in G2/M.The goals of the present study are to determine the cellular function(s) of ligand-activated ERRβ splice variants in breast cancer and evaluate the potential of DY131 to serve as an antimitotic agent, particularly in TNBC. DY131 inhibits growth in a diverse panel of breast cancer cell lines, causing cell death that involves the p38 stress kinase pathway and a bimodal cell cycle arrest. ERRβ2 facilitates the block in G2/M, and DY131 delays progression from prophase to anaphase. Finally, ERRβ2 localizes to centrosomes and DY131 causes mitotic spindle defects. Targeting ERRβ2 may therefore be a promising therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Mary M Heckler
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Tizita Zewde Zeleke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shailaja D Divekar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Aileen I Fernandez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Deanna M Tiek
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jordan Woodrick
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Alexander Farzanegan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Aykut Üren
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Susette C Mueller
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
15
|
Xu C, Zhang L, Duan L, Lu C. MicroRNA-3196 is inhibited by H2AX phosphorylation and attenuates lung cancer cell apoptosis by downregulating PUMA. Oncotarget 2018; 7:77764-77776. [PMID: 27780918 PMCID: PMC5363619 DOI: 10.18632/oncotarget.12794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022] Open
Abstract
Histone H2AX is a tumor suppressor protein that plays an important role in apoptosis. However, the mechanism underlying the association of H2AX with apoptosis in cancer cells remains elusive. Here, we showed that H2AX knockdown in lung cancer A549 cells affected the expression of 16 microRNAs (miRNAs), resulting in the downregulation of 1 and the upregulation of 15 miRNAs. MicroRNA-3196 (miR-3196) was identified as a target of H2AX and shown to inhibit apoptosis in lung cancer cells by targeting p53 upregulated modulator of apoptosis (PUMA). Phosphorylated H2AX (γH2AX) was shown to bind to the promoter of miR-3196 and regulate its expression. In addition, H2AX phosphorylation increased H3K27 trimethylation in the promoter region of miR-3196 and inhibited the binding of RNA polymerase II to the promoter of miR-3196, leading to the inhibition of miR-3196 transcription. Taken together, these results indicated that H2AX phosphorylation regulates apoptosis in lung cancer cells via the miR-3196/PUMA pathway.
Collapse
Affiliation(s)
- Chengshan Xu
- Aviation Medicine Research Laboratory, Air Force General Hospital, PLA, Beijing 100142, China.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Zhang
- Aviation Medicine Research Laboratory, Air Force General Hospital, PLA, Beijing 100142, China
| | - Lianning Duan
- Aviation Medicine Research Laboratory, Air Force General Hospital, PLA, Beijing 100142, China
| | - Chengrong Lu
- Aviation Medicine Research Laboratory, Air Force General Hospital, PLA, Beijing 100142, China
| |
Collapse
|
16
|
Li N, Zhang K, Mu X, Tian Q, Liu W, Gao T, Ma X, Zhang J. Astragalin Attenuates UVB Radiation-induced Actinic Keratosis Formation. Anticancer Agents Med Chem 2018; 18:1001-1008. [PMID: 29298652 PMCID: PMC6327139 DOI: 10.2174/1871520618666171229190835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/27/2017] [Accepted: 12/06/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Actinic Keratosis (AK), is the most common precancerous skin lesion induced by the excessive Ultraviolet B (UVB) and is a significant threat to the public health. UVB exposure causes oxidative DNA damage and is considered to be a significant contributor to AK and subsequent development of skin cancer. Besides, activation of p38 MAPK also plays a significant role in the development of AK. OBJECTIVE This study aimed at the development of a nature compound which can inhibit UVB-induced AK. METHOD MTS Cell Proliferation Assay Kit was used to detect the toxicity of astragalin. HE-staining, Immunohistochemical, Western blot and Enzyme Linked Immunosorbent Assay were applied to examine the clinicopathologic feature of AK and the change of p38 MAPK signal pathway treated with astraglin under the condition of UVB in vitro and in vivo. Results:In our clinical findings revealed that p38 MAPK, phospho-MSK1, and γ -H2AX were significantly highly expressed in human AK tissue than the normal healthy skin tissue. Moreover, in vitro studies showed that UVB induced the phospho-MSK1 and γ-H2AX in a time- and dose-dependent manner in HaCaT cells. Further, in vitro kinase assay demonstrated that astragalin could directly bind to p38 MAPK and suppress p38 MAPK activity. Furthermore, astragalin exhibited no toxicity and suppressed the UVB-induced expression of phospho- MSK1 and γ -H2AX by suppressing p38 MAPK activity in a time-dependent and dose-dependent manner in HaCaT cells. The in vivo studies with animal UV model demonstrated that astragalin inhibited UVB-induced expression of phospho-MSK1 and γ-H2AX in Babl/c mice. CONCLUSION These results suggested that p38 MAPK is a direct valid molecular target of astragalin for the attenuation of UVB-induced AK. Furthermore, astragalin could be a potential promising novel natural therapeutic agent for the prevention and management of UVB-induced AK with high target specificity and low toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaona Ma
- Address correspondence to these authors at the Department of Dematology, the Affiliated Hospital of Yan'an University, Yan'an 716000, Shaanxi, China; Tel: 13991772860; E-mail: and Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710061, Shaanxi, China; Tel:+8613193333210; E-mail:
| | - Jian Zhang
- Address correspondence to these authors at the Department of Dematology, the Affiliated Hospital of Yan'an University, Yan'an 716000, Shaanxi, China; Tel: 13991772860; E-mail: and Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710061, Shaanxi, China; Tel:+8613193333210; E-mail:
| |
Collapse
|
17
|
Koschmieder S, Vetrie D. Epigenetic dysregulation in chronic myeloid leukaemia: A myriad of mechanisms and therapeutic options. Semin Cancer Biol 2017; 51:180-197. [PMID: 28778403 DOI: 10.1016/j.semcancer.2017.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/13/2017] [Accepted: 07/28/2017] [Indexed: 01/08/2023]
Abstract
The onset of global epigenetic changes in chromatin that drive tumor proliferation and heterogeneity is a hallmark of many forms of cancer. Identifying the epigenetic mechanisms that govern these changes and developing therapeutic approaches to modulate them, is a well-established avenue pursued in translational cancer medicine. Chronic myeloid leukemia (CML) arises clonally when a hematopoietic stem cell (HSC) acquires the capacity to produce the constitutively active tyrosine kinase BCR-ABL1 fusion protein which drives tumor development. Treatment with tyrosine kinase inhibitors (TKI) that target BCR-ABL1 has been transformative in CML management but it does not lead to cure in the vast majority of patients. Thus novel therapeutic approaches are required and these must target changes to biological pathways that are aberrant in CML - including those that occur when epigenetic mechanisms are altered. These changes may be due to alterations in DNA or histones, their biochemical modifications and requisite 'writer' proteins, or to dysregulation of various types of non-coding RNAs that collectively function as modulators of transcriptional control and DNA integrity. Here, we review the evidence for subverted epigenetic mechanisms in CML and how these impact on a diverse set of biological pathways, on disease progression, prognosis and drug resistance. We will also discuss recent progress towards developing epigenetic therapies that show promise to improve CML patient care and may lead to improved cure rates.
Collapse
Affiliation(s)
- Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - David Vetrie
- Epigenetics Unit, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
18
|
Takizawa H, Fritsch K, Kovtonyuk LV, Saito Y, Yakkala C, Jacobs K, Ahuja AK, Lopes M, Hausmann A, Hardt WD, Gomariz Á, Nombela-Arrieta C, Manz MG. Pathogen-Induced TLR4-TRIF Innate Immune Signaling in Hematopoietic Stem Cells Promotes Proliferation but Reduces Competitive Fitness. Cell Stem Cell 2017; 21:225-240.e5. [DOI: 10.1016/j.stem.2017.06.013] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/22/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
|
19
|
Gao M, Zhao B, Chen M, Liu Y, Xu M, Wang Z, Liu S, Zhang C. Nrf-2-driven long noncoding RNA ODRUL contributes to modulating silver nanoparticle-induced effects on erythroid cells. Biomaterials 2017; 130:14-27. [DOI: 10.1016/j.biomaterials.2017.03.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
|
20
|
Dankert JF, Rona G, Clijsters L, Geter P, Skaar JR, Bermudez-Hernandez K, Sassani E, Fenyö D, Ueberheide B, Schneider R, Pagano M. Cyclin F-Mediated Degradation of SLBP Limits H2A.X Accumulation and Apoptosis upon Genotoxic Stress in G2. Mol Cell 2016; 64:507-519. [PMID: 27773672 DOI: 10.1016/j.molcel.2016.09.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/01/2016] [Accepted: 09/08/2016] [Indexed: 10/20/2022]
Abstract
SLBP (stem-loop binding protein) is a highly conserved factor necessary for the processing, translation, and degradation of H2AFX and canonical histone mRNAs. We identified the F-box protein cyclin F, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the G2 ubiquitin ligase for SLBP. SLBP interacts with cyclin F via an atypical CY motif, and mutation of this motif prevents SLBP degradation in G2. Expression of an SLBP stable mutant results in increased loading of H2AFX mRNA onto polyribosomes, resulting in increased expression of H2A.X (encoded by H2AFX). Upon genotoxic stress in G2, high levels of H2A.X lead to persistent γH2A.X signaling, high levels of H2A.X phosphorylated on Tyr142, high levels of p53, and induction of apoptosis. We propose that cyclin F co-evolved with the appearance of stem-loops in vertebrate H2AFX mRNA to mediate SLBP degradation, thereby limiting H2A.X synthesis and cell death upon genotoxic stress.
Collapse
Affiliation(s)
- John F Dankert
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Linda Clijsters
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Phillip Geter
- Department of Microbiology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Jeffrey R Skaar
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Keria Bermudez-Hernandez
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Institute for System Genetics, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Elizabeth Sassani
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Institute for System Genetics, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Proteomics Resource Center, Office of Collaborative Science, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Robert Schneider
- Department of Microbiology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Department of Radiation Oncology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Perlmutter NYU Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, NY 10016, USA; Howard Hughes Medical Institute, 522 First Avenue, SRB 1107, New York, NY 10016, USA.
| |
Collapse
|
21
|
Novak M, Žegura B, Baebler Š, Štern A, Rotter A, Stare K, Filipič M. Influence of selected anti-cancer drugs on the induction of DNA double-strand breaks and changes in gene expression in human hepatoma HepG2 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14751-14761. [PMID: 26392091 DOI: 10.1007/s11356-015-5420-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
In chemotherapy, various anti-cancer drugs with different mechanisms of action are used and may represent different risk of undesirable delayed side effects in treated patients as well as in occupationally exposed populations. The aim of the present study was to evaluate genotoxic potential of four widely used anti-cancer drugs with different mechanisms of action: 5-fluorouracil (5-FU), cisplatin (CDDP) and etoposide (ET) that cause cell death by targeting DNA function and imatinib mesylate (IM) that inhibits targeted protein kinases in cancer cells in an experimental model with human hepatoma HepG2 cells. After 24 h of exposure all four anti-cancer drugs at non-cytotoxic concentrations induced significant increase in formation of DNA double strand breaks (DSBs), with IM being the least effective. The analysis of the changes in the expression of genes involved in the response to DNA damage (CDKN1A, GADD45A, MDM2), apoptosis (BAX, BCL2) and oncogenesis (MYC, JUN) showed that 5-FU, CDDP and ET upregulated the genes involved in DNA damage response, while the anti-apoptotic gene BCL2 and oncogene MYC were downregulated. On the contrary, IM did not change the mRNA level of the studied genes, showing different mechanism of action that probably does not involve direct interaction with DNA processing. Genotoxic effects of the tested anti-cancer drugs were observed at their therapeutic concentrations that may consequently lead to increased risk for development of delayed adverse effects in patients. In addition, considering the genotoxic mechanism of action of 5-FU, CDDP and ET an increased risk can also not be excluded in occupationally exposed populations. The results also indicate that exposure to 5-FU, CDDP and ET represent a higher risk for delayed effects such as cancer, reproductive effects and heritable disease than exposure to IM.
Collapse
Affiliation(s)
- Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
- Ecological Engineering Institute, Maribor, Slovenia
- Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Alja Štern
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Ana Rotter
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Katja Stare
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| |
Collapse
|
22
|
Liang X, Liu X, Wang B, Zou F, Wang A, Qi S, Chen C, Zhao Z, Wang W, Qi Z, Lv F, Hu Z, Wang L, Zhang S, Liu Q, Liu J. Discovery of 2-((3-Amino-4-methylphenyl)amino)-N-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-4-(methylamino)pyrimidine-5-carboxamide (CHMFL-ABL-053) as a Potent, Selective, and Orally Available BCR-ABL/SRC/p38 Kinase Inhibitor for Chronic Myeloid Leukemia. J Med Chem 2016; 59:1984-2004. [PMID: 26789553 DOI: 10.1021/acs.jmedchem.5b01618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Starting from a dihydropyrimidopyrimidine core scaffold based compound 27 (GNF-7), we discovered a highly potent (ABL1: IC50 of 70 nM) and selective (S score (1) = 0.02) BCR-ABL inhibitor 18a (CHMFL-ABL-053). Compound 18a did not exhibit apparent inhibitory activity against c-KIT kinase, which is the common target of currently clinically used BCR-ABL inhibitors. Through significant suppression of the BCR-ABL autophosphorylation (EC50 about 100 nM) and downstream mediators such as STAT5, Crkl, and ERK's phosphorylation, 18a inhibited the proliferation of CML cell lines K562 (GI50 = 14 nM), KU812 (GI50 = 25 nM), and MEG-01 (GI50 = 16 nM). A pharmacokinetic study revealed that 18a had over 4 h of half-life and 24% bioavailability in rats. A 50 mg/kg/day dosage treatment could almost completely suppress tumor progression in the K562 cells inoculated xenograft mouse model. As a potential useful drug candidate for CML, 18a is under extensive preclinical safety evaluation now.
Collapse
Affiliation(s)
- Xiaofei Liang
- High Magnetic Field Laboratory, Chinese Academy of Sciences , Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Xiaochuan Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences , Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,Department of Chemistry, University of Science and Technology of China , Hefei, Anhui 230036, P. R. China
| | - Beilei Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences , Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Fengming Zou
- High Magnetic Field Laboratory, Chinese Academy of Sciences , Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Aoli Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences , Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,University of Science and Technology of China, P. R. China , Anhui Hefei 230036, P. R. China
| | - Shuang Qi
- High Magnetic Field Laboratory, Chinese Academy of Sciences , Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Cheng Chen
- High Magnetic Field Laboratory, Chinese Academy of Sciences , Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Zheng Zhao
- High Magnetic Field Laboratory, Chinese Academy of Sciences , Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Wenchao Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences , Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Ziping Qi
- High Magnetic Field Laboratory, Chinese Academy of Sciences , Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Fengchao Lv
- High Magnetic Field Laboratory, Chinese Academy of Sciences , Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,University of Science and Technology of China, P. R. China , Anhui Hefei 230036, P. R. China
| | - Zhenquan Hu
- High Magnetic Field Laboratory, Chinese Academy of Sciences , Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Li Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences , Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Shanchun Zhang
- CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,Hefei Cosource Medicine Technology Co. LTD. , 358 Ganquan Road, Hefei, Anhui 230031, P. R. China
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences , Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,University of Science and Technology of China, P. R. China , Anhui Hefei 230036, P. R. China.,Hefei Science Center, Chinese Academy of Sciences , 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Jing Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences , Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
23
|
Xu C, Li H, Zhang L, Jia T, Duan L, Lu C. MicroRNA‑1915‑3p prevents the apoptosis of lung cancer cells by downregulating DRG2 and PBX2. Mol Med Rep 2015; 13:505-12. [PMID: 26572100 DOI: 10.3892/mmr.2015.4565] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 10/29/2015] [Indexed: 11/05/2022] Open
Abstract
Micro (mi)RNAs are short non‑coding RNA molecules, which post‑transcriptionally regulate gene expression and exert key roles in cell growth, differentiation and apoptosis. In the present study, the mechanism and the function of miR‑1915‑3p in the apoptotic regulation of lung cancer cell lines (NCI‑H441 and NCI‑H1650) were investigated. The expression analysis confirmed that the expression of miR‑1915‑3p was markedly decreased in the apoptotic cells. The overexpression of miR‑1915‑3p in the lung cancer cells prevented apoptosis induced by etoposide. Developmentally regulated GTP‑binding protein 2 (DRG2) and pre‑B cell leukemia homeobox 2 (PBX2) were identified as downstream targets of miR‑1915‑3p, which was shown to bind directly to the 3'‑untranslated region of DRG2 and PBX2, subsequently lowering their mRNA and protein expression levels. Co‑expression of miR‑1915‑3p and DRG2/PBX2 in the NCI‑H441 and NCI‑H1650 cells partly circumvented the effect of miR‑1915‑3p on apoptosis. The results in the present study revealed that miR‑1915‑3p functions as a silencer of apoptosis, which regulates lung cancer apoptosis via targeting DRG2/PBX2, and consequently this miRNA may be a putative therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Chengshan Xu
- Aviation Medicine Research Laboratory, Air Force General Hospital, PLA, Beijing 100142, P.R. China
| | - Hengheng Li
- Graduate Student Ministry of Education, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Ling Zhang
- Aviation Medicine Research Laboratory, Air Force General Hospital, PLA, Beijing 100142, P.R. China
| | - Tianjun Jia
- College of Medical Laboratory, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Lianning Duan
- Aviation Medicine Research Laboratory, Air Force General Hospital, PLA, Beijing 100142, P.R. China
| | - Chengrong Lu
- Aviation Medicine Research Laboratory, Air Force General Hospital, PLA, Beijing 100142, P.R. China
| |
Collapse
|
24
|
Ishii Y, Nhiayi MK, Tse E, Cheng J, Massimino M, Durden DL, Vigneri P, Wang JYJ. Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release. PLoS One 2015; 10:e0140585. [PMID: 26473951 PMCID: PMC4608728 DOI: 10.1371/journal.pone.0140585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/27/2015] [Indexed: 12/21/2022] Open
Abstract
Knockout serum replacement (KOSR) is a nutrient supplement commonly used to replace serum for culturing stem cells. We show here that KOSR has pro-survival activity in chronic myelogenous leukemia (CML) cells transformed by the BCR-ABL oncogene. Inhibitors of BCR-ABL tyrosine kinase kill CML cells by stimulating pro-apoptotic BIM and inhibiting anti-apoptotic BCL2, BCLxL and MCL1. We found that KOSR protects CML cells from killing by BCR-ABL inhibitors—imatinib, dasatinib and nilotinib. The protective effect of KOSR is reversible and not due to the selective outgrowth of drug-resistant clones. In KOSR-protected CML cells, imatinib still inhibited the BCR-ABL tyrosine kinase, reduced the phosphorylation of STAT, ERK and AKT, down-regulated BCL2, BCLxL, MCL1 and up-regulated BIM. However, these pro-apoptotic alterations failed to cause cytochrome c release from the mitochondria. With mitochondria isolated from KOSR-cultured CML cells, we showed that addition of recombinant BIM protein also failed to cause cytochrome c release. Besides the kinase inhibitors, KOSR could protect cells from menadione, an inducer of oxidative stress, but it did not protect cells from DNA damaging agents. Switching from serum to KOSR caused a transient increase in reactive oxygen species and AKT phosphorylation in CML cells that were protected by KOSR but not in those that were not protected by this nutrient supplement. Treatment of KOSR-cultured cells with the PH-domain inhibitor MK2206 blocked AKT phosphorylation, abrogated the formation of BIM-resistant mitochondria and stimulated cell death. These results show that KOSR has cell-context dependent pro-survival activity that is linked to AKT activation and the inhibition of BIM-induced cytochrome c release from the mitochondria.
Collapse
Affiliation(s)
- Yuki Ishii
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - May Keu Nhiayi
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Edison Tse
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Jonathan Cheng
- Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Michele Massimino
- Department of Clinical and Molecular Bio-Medicine, University of Catania, Catania, Italy
| | - Donald L. Durden
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
- Department of Pediatrics, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Paolo Vigneri
- Department of Clinical and Molecular Bio-Medicine, University of Catania, Catania, Italy
| | - Jean Y. J. Wang
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
- Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in Health and Disease. Oncotarget 2015; 6:23058-134. [PMID: 26405162 PMCID: PMC4695108 DOI: 10.18632/oncotarget.5492] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022] Open
Abstract
The BH3-only Bim protein is a major determinant for initiating the intrinsic apoptotic pathway under both physiological and pathophysiological conditions. Tight regulation of its expression and activity at the transcriptional, translational and post-translational levels together with the induction of alternatively spliced isoforms with different pro-apoptotic potential, ensure timely activation of Bim. Under physiological conditions, Bim is essential for shaping immune responses where its absence promotes autoimmunity, while too early Bim induction eliminates cytotoxic T cells prematurely, resulting in chronic inflammation and tumor progression. Enhanced Bim induction in neurons causes neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Moreover, type I diabetes is promoted by genetically predisposed elevation of Bim in β-cells. On the contrary, cancer cells have developed mechanisms that suppress Bim expression necessary for tumor progression and metastasis. This review focuses on the intricate network regulating Bim activity and its involvement in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Spiros A. Vlahopoulos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Thivon and Levadias, Goudi, Athens, Greece
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
26
|
Wu XP, Xiong M, Xu CS, Duan LN, Dong YQ, Luo Y, Niu TH, Lu CR. Resveratrol induces apoptosis of human chronic myelogenous leukemia cells in vitro through p38 and JNK-regulated H2AX phosphorylation. Acta Pharmacol Sin 2015; 36:353-61. [PMID: 25619392 DOI: 10.1038/aps.2014.132] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/15/2014] [Indexed: 11/09/2022]
Abstract
AIM The phosphorylation of histone H2AX, a novel tumor suppressor protein, is involved in regulation of cancer cell apoptosis. The aim of this study was to examine whether H2AX phosphorylation was required for resveratrol-induced apoptosis of human chronic myelogenous leukemia (CML) cells in vitro. METHODS K562 cells were tested. Cell apoptosis was analyzed using flow cytometry, and the phosphorylation of H2AX and other signaling proteins was examined with Western blotting. To analyze the signaling pathways, the cells were transfected with lentiviral vectors encoding H2AX-wt or specific siRNAs. RESULTS Treatment of K562 cells with resveratrol (20-100 μmol/L) induced apoptosis and phosphorylation of H2AX at Ser139 in time- and dose-dependent manners, but reduced phosphorylation of histone H3 at Ser10. Resveratrol treatment activated two MAPK family members p38 and JNK, and blocked the activation of another MAPK family member ERK. Pretreatment with the p38 inhibitor SB202190 or the JNK inhibitor SP600125 dose-dependently reduced resveratrol-induced phosphorylation of H2AX, which were also observed when the cells were transfected with p38- or JNK-specific siRNAs. Overexpression of H2AX in K562 cells markedly increased resveratrol-induced apoptosis, whereas overexpression of H2AX-139m (Ser139 was mutated to block phosphorylation) inhibited resveratrol-induced apoptosis. K562 cells transfected with H2AX-specific siRNAs were resistant to resveratrol-induced apoptosis. CONCLUSION H2AX phosphorylation at Ser139 in human CML cells, which is regulated by p38 and JNK, is essential for resveratrol-induced apoptosis.
Collapse
|
27
|
Dong Y, Yin S, Song X, Huo Y, Fan L, Ye M, Hu H. Involvement of ROS-p38-H2AX axis in novel curcumin analogues-induced apoptosis in breast cancer cells. Mol Carcinog 2015; 55:323-34. [DOI: 10.1002/mc.22280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/25/2014] [Accepted: 12/08/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Yinhui Dong
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; China Agricultural University; Haidian District Beijing China
| | - Shutao Yin
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; China Agricultural University; Haidian District Beijing China
| | - Xinhua Song
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; China Agricultural University; Haidian District Beijing China
| | - Yazhen Huo
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; China Agricultural University; Haidian District Beijing China
| | - Lihong Fan
- College of Veterinary Medicine; China Agricultural University; Beijing Key Laboratory of Functional Food From Plant Resources; Haidian District Beijing China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Beijing China
| | - Hongbo Hu
- Department of Nutrition and Health; College of Food Science and Nutritional Engineering; China Agricultural University; Haidian District Beijing China
| |
Collapse
|
28
|
Zhang CZ, Fang EF, Zhang HT, Liu LL, Yun JP. Momordica charantia lectin exhibits antitumor activity towards hepatocellular carcinoma. Invest New Drugs 2014; 33:1-11. [PMID: 25200916 DOI: 10.1007/s10637-014-0156-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/01/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND The incidence and mortality of hepatocellular carcinoma (HCC) remain high worldwide. Drug screening from natural plants is one of the potential therapeutic approaches on HCC. METHODS The antitumor effect of momordica charantia lectin (MCL) was examined, using MTT, colony formation, AnnexinV/PI staining, western blot and animal model. RESULTS MCL treatment induced G2/M phase arrest, autophagy, DNA fragmentation, mitochondrial injury, and subsequently cell apoptosis in HCC cells. Activation of caspase and MAPK pathway was involved in MCL-induced apoptosis. In vitro and in vivo studies showed that up-regulation of truncated Bid (tBid) upon MCL treatment. Correlation analysis revealed that Bid expression was reversely associated with the IC50 of MCL. Bid suppression using Bid siRNA, BI-6C9 (Bid inhibitor) and Z-IETD-FMK (caspase 8 inhibitor) dramatically attenuated MCL-induced cell proliferation inhibition, caspase 3 activation, ΔΨm depolarization and apoptosis. In addition, combination of MCL and sorafenib exerted stronger lethal activity towards HCC in vitro and in vivo. CONCLUSION Our data show that the natural compound MCL manifests antitumor activities towards HCC and therefore suggest MCL as a promising chemotherapeutic agent.
Collapse
Affiliation(s)
- Chris Zhiyi Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China,
| | | | | | | | | |
Collapse
|