1
|
Lorenzon T, Vescovo M, Maiullari M, Tonon G, Conceição NR, Carabineiro SAC, Mahmoud AG, Dietl MC, Demitri N, Orian L, Nogara PA, Caligiuri I, Rizzolio F, Hashmi ASK, Visentin F, Scattolin T. Influence of the charge of 1,3,5-triaza-7-phosphaadamantane-based ligands on the anticancer activity of organopalladium complexes. RSC Adv 2025; 15:14058-14071. [PMID: 40313314 PMCID: PMC12044415 DOI: 10.1039/d5ra02119g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025] Open
Abstract
In this study, we report the synthesis and characterization of novel organopalladium complexes featuring 1,3,5-triaza-7-phosphaadamantane (PTA)-based ligands, including several cationic derivatives prepared as hexafluorophosphate salts to prevent halide exchange reactions. The complexes incorporate diverse organopalladium fragments-Pd(ii)-vinyl, Pd(ii)-butadienyl, Pd(ii)-allyl, Pd(ii)-imidoyl, Pd(ii)-aryl, and Pd(0)-alkene-many of which have recently shown promising antitumor activity. Most reactions proceeded rapidly at room temperature under aerobic conditions using non-anhydrous solvents. Biological evaluation against ovarian cancer (A2780), cisplatin-resistant ovarian cancer (A2780cis), triple-negative breast cancer (MDA-MB-231), glioblastoma (U87), and non-cancerous fibroblasts (MRC-5) revealed the remarkable cytotoxicity of the complexes, particularly those with Pd(ii)-butadienyl, Pd(ii)-aryl, and Pd(0)-alkene fragments. These compounds demonstrated activity comparable to or exceeding cisplatin, with some showing up to two orders of magnitude greater efficacy. Importantly, the complexes were highly selective for cancer cells, exhibiting minimal toxicity toward MRC-5 fibroblasts, unlike cisplatin. Complex 14b, that contains a Pd(0)-alkene fragment and two MePTA+ ligands, was the only one that exhibited excellent cytotoxicity across all cancer cell lines, including glioblastoma. These findings underscore the potential of PTA-based organopalladium complexes as selective anticancer agents, warranting further in vitro and in vivo studies, as well as mechanistic investigations.
Collapse
Affiliation(s)
- Tommaso Lorenzon
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| | - Maria Vescovo
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| | - Michele Maiullari
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| | - Giovanni Tonon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Nuno Reis Conceição
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Sónia A C Carabineiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Abdallah G Mahmoud
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa 2829-516 Caparica Portugal
| | - Martin C Dietl
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza Trieste Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria Santa Maria RS Brazil
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS Via Franco Gallini 2 33081 Aviano Italy
| | - Flavio Rizzolio
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova Via Marzolo 1 35131 Padova Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS Via Franco Gallini 2 33081 Aviano Italy
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155 30174 Venezia-Mestre Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
2
|
Klaimanee E, Temram T, Ratanaphan A, Saithong S, Sooksawat D, Samphao A, Yakiyama Y, Sakurai H, Konno T, Tantirungrotechai Y, Choojun K, Leesakul N. Iridium(III) coordination compounds based on organophosphorus ancillary ligands showing cytotoxicity against breast cancer cells and Fe(III) luminescent sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125150. [PMID: 39305800 DOI: 10.1016/j.saa.2024.125150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/10/2024]
Abstract
Three phosphorescent iridium(III) complexes consisting bis-diphosphine ligands were prepared and characterized by single-crystal XRD, CHN analysis, spectroscopic techniques, cyclic voltammetry, and DFT. The synthesized complexes were the three monomeric [Ir(ppy)2(L1)Cl] (1), [Ir(ppy)2(L2)]Cl (2) and [Ir(ppy)2(L3)]Cl (3) where L1 = bis-(diphenylphosphino)methane (dppm), L2 = bis-(diphenylphosphino)propane (dppp) and L3 = bis-(diphenylphosphino)benzene (dppbe). Complexes 1-3 gave an absorption band between 240 to 380 nm in both CH2Cl2 and DMSO, which is assigned as a charge transfer transition based on theoretical calculation. They showed a blue-green emission at 460-520 nm in DMSO with an absolute quantum efficiency of 0.013-0.046 at room temperature. The selective photo-induced electron transfer (PET) by Fe3+ in DMSO, was studied to obey the Rehm-Weller principle. The 1:1 binding soichiometry between 1-3 and Fe3+ was established by Job's plot. The binding constants (Ka) were determined using the Benesi-Hildebrand plot. All the complexes are extremely more potent than cisplatin for in vitro antiproliferative activity towards the human breast cancer cells, HCC1937, MCF-7, and MDA-MB-231. The values of IC50 were in the range of 0.077-0.485 μM, and 1 exhibited the most effective IC50 against MDA-MB-231 cell line, the triple-negative breast cancer cell. Their lipophilicities (log P) were also examined to explain the penetration ability of the studied complexes towards cell barriers, and transport to the molecular target.
Collapse
Affiliation(s)
- Ekkapong Klaimanee
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Thitirat Temram
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Adisorn Ratanaphan
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Saowanit Saithong
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; Medical Science Research and Innovation Institute, Research and Development Office, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Dhassida Sooksawat
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Anchalee Samphao
- Department of Chemistry, Faculty of Science, Ubonratchathani University, Ubonratchathani, 34190, Thailand
| | - Yumi Yakiyama
- Division of Applied Chemistry, Graduate School of Engineering, and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yuthana Tantirungrotechai
- Thammasat University Research Unit in Innovation of Molecular Hybrid for Biomedical Application and Division of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| | - Kittisak Choojun
- Catalytic Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Nararak Leesakul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| |
Collapse
|
3
|
Das U, Basu U, Paira P. Recent trends in the design and delivery strategies of ruthenium complexes for breast cancer therapy. Dalton Trans 2024; 53:15113-15157. [PMID: 39219354 DOI: 10.1039/d4dt01482k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As the most frequent and deadly type of cancer in women, breast cancer has a high propensity to spread to the brain, bones, lymph nodes, and lungs. The discovery of cisplatin marked the beginning of the development of anticancer metal-based medications, although the drug's severe side effects have limited its usage in clinical settings. The remarkable antimetastatic and anticancer activity of different ruthenium complexes such as NAMI-A, KP1019, KP1339, etc. reported in the 1980s has bolstered the discovery of ruthenium complexes with various types of ligands for anticancer applications. The review meticulously elucidates the cytotoxic and antimetastatic potential of reported ruthenium complexes against breast cancer cells. Notably, arene-based and cyclometalated ruthenium complexes emerge as standout candidates, showcasing remarkable potency with notably low IC50 values. These findings underscore the promising therapeutic avenues offered by ruthenium-based compounds, particularly in addressing the challenges posed by conventional treatments in refractory or aggressive breast cancer subtypes. Moreover, the review comprehensively integrates a spectrum of ruthenium complexes, spanning traditional metal complexes to nano-based formulations and light-activated variants, underscoring the versatility and adaptability of ruthenium chemistry in breast cancer therapy.
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Uttara Basu
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, K K Birla Goa Campus, NH 17B Bypass Road, Goa - 403726, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| |
Collapse
|
4
|
Pereira SAP, Romano-deGea J, Barbosa AI, Costa Lima SA, Dyson PJ, Saraiva MLMFS. Fine-tuning the cytotoxicity of ruthenium(II) arene compounds to enhance selectivity against breast cancers. Dalton Trans 2023; 52:11679-11690. [PMID: 37552495 PMCID: PMC10442743 DOI: 10.1039/d3dt02037a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Ruthenium-based complexes have been suggested as promising anticancer drugs exhibiting reduced general toxicity compared to platinum-based drugs. In particular, Ru(η6-arene)(PTA)Cl2 (PTA = 1,3,5-triaza-7-phosphaadamantane), or RAPTA, complexes have demonstrated efficacy against breast cancer by suppressing metastasis, tumorigenicity, and inhibiting the replication of the human tumor suppressor gene BRCA1. However, RAPTA compounds have limited cytotoxicity, and therefore comparatively high doses are required. This study explores the activity of a series of RAPTA-like ruthenium(II) arene compounds against MCF-7 and MDA-MB-231 breast cancer cell lines and [Ru(η6-toluene)(PPh3)2Cl]+ was identified as a promising candidate. Notably, [Ru(η6-toluene)(PPh3)2Cl]Cl was found to be remarkably stable and highly cytotoxic, and selective to breast cancer cells. The minor groove of DNA was identified as a relevant target.
Collapse
Affiliation(s)
- Sarah A P Pereira
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Jan Romano-deGea
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Ana Isabel Barbosa
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| |
Collapse
|
5
|
Arene Ru(II) Complexes Acted as Potential KRAS G-Quadruplex DNA Stabilizer Induced DNA Damage Mediated Apoptosis to Inhibit Breast Cancer Progress. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103046. [PMID: 35630522 PMCID: PMC9146995 DOI: 10.3390/molecules27103046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 11/24/2022]
Abstract
A series of arene Ru(II) complexes, [(η6-MeC6H5)Ru(L)Cl]Cl, (L=o-ClPIP, 1; m-ClPIP, 2 and p-ClPIP, 3) (o-ClPIP=2-(2-chlorophenyl)imidazo[4,5-f][1,10]phenanthroline; m-ClPIP=2-(3-chlorophenyl)imidazo[4,5-f][1,10]phenanthroline; p-ClPIP=2-(4-chlorophenyl)imidazo[4,5-f][1,10]phenanthroline) was synthesized and investigated as a potential apoptosis inducer in chemotherapy. Spectroscopy and molecular docking simulations show that 1 exhibits moderated binding affinity to KRAS G-quadruplex DNA by groove mode. Further, in vitro studies reveal that 1 displays inhibitory activity against MCF-7 growth with IC50 = 3.7 ± 0.2 μM. Flow cytometric analysis, comet assay, and immunofluorescence confirm that 1 can induce the apoptosis of MCF-7 cells and G0/G1 phase arrest through DNA damage. In summary, the prepared arene Ru(II) complexes can be developed as a promising candidate for targeting G-quadruplex structure to induce the apoptosis of breast cancer cells via binding and stabilizing KRAS G-quadruplex conformation on oncogene promoter.
Collapse
|
6
|
Swaminathan S, Haribabu J, Balakrishnan N, Vasanthakumar P, Karvembu R. Piano stool Ru(II)-arene complexes having three monodentate legs: A comprehensive review on their development as anticancer therapeutics over the past decade. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Ferraro MG, Piccolo M, Misso G, Santamaria R, Irace C. Bioactivity and Development of Small Non-Platinum Metal-Based Chemotherapeutics. Pharmaceutics 2022; 14:pharmaceutics14050954. [PMID: 35631543 PMCID: PMC9147010 DOI: 10.3390/pharmaceutics14050954] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Countless expectations converge in the multidisciplinary endeavour for the search and development of effective and safe drugs in fighting cancer. Although they still embody a minority of the pharmacological agents currently in clinical use, metal-based complexes have great yet unexplored potential, which probably hides forthcoming anticancer drugs. Following the historical success of cisplatin and congeners, but also taking advantage of conventional chemotherapy limitations that emerged with applications in the clinic, the design and development of non-platinum metal-based chemotherapeutics, either as drugs or prodrugs, represents a rapidly evolving field wherein candidate compounds can be fine-tuned to access interactions with druggable biological targets. Moving in this direction, over the last few decades platinum family metals, e.g., ruthenium and palladium, have been largely proposed. Indeed, transition metals and molecular platforms where they originate are endowed with unique chemical and biological features based on, but not limited to, redox activity and coordination geometries, as well as ligand selection (including their inherent reactivity and bioactivity). Herein, current applications and progress in metal-based chemoth are reviewed. Converging on the recent literature, new attractive chemotherapeutics based on transition metals other than platinum—and their bioactivity and mechanisms of action—are examined and discussed. A special focus is committed to anticancer agents based on ruthenium, palladium, rhodium, and iridium, but also to gold derivatives, for which more experimental data are nowadays available. Next to platinum-based agents, ruthenium-based candidate drugs were the first to reach the stage of clinical evaluation in humans, opening new scenarios for the development of alternative chemotherapeutic options to treat cancer.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Gabriella Misso
- Department of Precision Medicine, School of Medicine and Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (G.M.); (C.I.)
| | - Rita Santamaria
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
- Correspondence: (G.M.); (C.I.)
| |
Collapse
|
8
|
DNA binding and cleavage, BRCA1 gene interaction, antiglycation and anticancer studies of transition metal complexes of sulfonamides. Mol Divers 2022; 26:3093-3113. [PMID: 35182295 DOI: 10.1007/s11030-021-10366-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
A series of 4-((4-methylphenylsulfonamido)methyl)cyclohexanecarboxylic acid (NaMSCCA) transition metal complexes [Cu(II), Zn(II), Ni(II), Mn(II), and Co(II)] have been synthesized by precipitation method. The characterization was done by physical techniques, FT-IR spectroscopy, mass spectrometry, and NMR spectroscopy. The molecular structures of nickel (II) AZ-3 and cobalt (II) AZ-5 complexes were determined by the X-ray diffraction technique and found to crystallize in the triclinic space group P-1. The coordination geometry around the central nickel (AZ-3) and cobalt (AZ-5) atoms was square planar bipyramidal. Molecular docking was performed with duplex DNA of sequence d(CGCGAATTCGCG)2 DNA to determine the probable binding mode of compounds. Then these synthesized compounds were used to perform DNA cleavage activity through the agarose gel electrophoresis method. Among the compounds, compounds AZ-1 and AZ-2 exhibited good nuclease activity. The DNA sequence of breast-cancer suppressor gene 1 (BRCA1) was amplified through PCR and interaction studies of compounds AZ-1 and AZ-2 were performed through gel electrophoresis and fluorescence emission spectroscopy. The expression analysis of the BRCA1 gene was also performed to quantify the expression relative fold change (2^-(∆∆CT)) after treatment with compounds. All synthesized compounds were evaluated for their antioxidant and antiglycation activities and AZ-2 exhibited excellent results. The molecular docking study of these compounds was performed against the protein structure of advanced glycation end products to support the experimental results. Anticancer activity of compounds was performed through MTT assay. Copper and zinc complexes depicted the highest anticancer activity against human breast adenocarcinoma (MCF7) and human corneal epithelial cell (HCEC) cell lines.
Collapse
|
9
|
Rubio AR, González R, Busto N, Vaquero M, Iglesias AL, Jalón FA, Espino G, Rodríguez AM, García B, Manzano BR. Anticancer Activity of Half-Sandwich Ru, Rh and Ir Complexes with Chrysin Derived Ligands: Strong Effect of the Side Chain in the Ligand and Influence of the Metal. Pharmaceutics 2021; 13:1540. [PMID: 34683834 PMCID: PMC8537477 DOI: 10.3390/pharmaceutics13101540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
An important challenge in the field of anticancer chemotherapy is the search for new species to overcome the resistance of standard drugs. An interesting approach is to link bioactive ligands to metal fragments. In this work, we have synthesized a set of p-cymene-Ru or cyclopentadienyl-M (M = Rh, Ir) complexes with four chrysin-derived pro-ligands with different -OR substituents at position 7 of ring A. The introduction of a piperidine ring on chrysin led to the highly cytotoxic pro-ligand HL4 and its metal complexes L4-M (SW480 and A549 cell lines, cytotoxic order: L4-Ir > L4-Ru ≈ L4-Rh). HL4 and its complexes induce apoptosis and can overcome cis-platinum resistance. However, HL4 turns out to be more cytotoxic in healthy than in tumor cells in contrast to its metal complexes which displayed higher selectivity than cisplatin towards cancer cells. All L4-M complexes interact with double stranded DNA. Nonetheless, the influence of the metal is clear because only complex L4-Ir causes DNA cleavage, through the generation of highly reactive oxygen species (1O2). This result supports the hypothesis of a potential dual mechanism consisting of two different chemical pathways: DNA binding and ROS generation. This behavior provides this complex with a great effectivity in terms of cytotoxicity.
Collapse
Affiliation(s)
- Ana R. Rubio
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Rocío González
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
| | - Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Mónica Vaquero
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Ana L. Iglesias
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
- Facultad de Ciencias de la Ingeniería y Tecnología (FCITEC), Universidad Autónoma de Baja California, Blvd. Universitario # 1000, Unidad Valle de las Palmas, Baja California, Tijuana 21500, Mexico
| | - Félix A. Jalón
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
| | - Gustavo Espino
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Ana M. Rodríguez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Avda. C. J. Cela 2, 13071 Ciudad Real, Spain;
| | - Begoña García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Blanca R. Manzano
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
| |
Collapse
|
10
|
Hongthong K, Nhukeaw T, Temboot P, Dyson PJ, Ratanaphan A. Anticancer activity of RAPTA-EA1 in triple-negative BRCA1 proficient breast cancer cells: single and combined treatment with the PARP inhibitor olaparib. Heliyon 2021; 7:e07749. [PMID: 34430738 PMCID: PMC8371217 DOI: 10.1016/j.heliyon.2021.e07749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/08/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
RAPTA-EA1 is a promising glutathione transferase (GSTP-1) inhibitor that has previously been shown to inhibit the growth of various breast cancer cells. We studied the anticancer activity of RAPTA-EA1 on triple-negative BRCA1 competent breast cancer MDA-MB-231 cells. MDA-MB-231 cells are significantly more sensitive to RAPTA-EA1 than MCF-7 cells. Treatment reveals a higher degree of cytotoxicity than cisplatin against both cell lines. Ruthenium accumulation in MDA-MB-231 cells is mainly in the nuclear fraction (43%), followed by the cytoplasm (30%), and the mitochondria (27%). RAPTA-EA1 blocks cell growth at the G2/M phase, leading to nuclear condensation and cell death. The compound slightly inhibits DNA replication of the 3,426-bp fragment of the BRCA1 exon 11 of the cells, with approximately 0.6 lesion per the BRCA1 fragment. The expression of BRCA1 mRNA and its protein in the Ru-treated cells is curtailed by 50–80% compared to the untreated controls. Growth inhibition of the triple-negative BRCA1 wild-type MDA-MB-231 and the sporadic BRCA1 wild-type MCF-7 cells by olaparib (a poly [ADP-ribose] polymerase (PARP) inhibitor) is dose-dependent, with MDA-MB-231 cells being two-fold less susceptible to the drug than MCF-7 cells. Combining olaparib with RAPTA-EA1 results in a combination index (CI) of 0.78 (almost additive) in MDA-MB-231 cells and 0.24 (potent synergy) in the MCF-7 cells. The PARP inhibitor alone differently regulates the expression of BRCA1 mRNA in both cell lines, whereas the olaparib-RAPTA-EA1 combination induces overexpression of BRCA1 mRNA in these cells. However, the expression level of the BRCA1 protein is dramatically reduced after treatment with the combined inhibitors, compared with the untreated controls. This observation highlights the cellular responses of triple-negative BRCA1 proficient breast cancer MDA-MB-231 cells to RAPTA-EA1 through BRCA1 inhibition and provides insights into alternative treatments for breast cancer.
Collapse
Affiliation(s)
- Khwanjira Hongthong
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Tidarat Nhukeaw
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Pornvichai Temboot
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Paul J Dyson
- Institute of Chemical Sciences, and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Adisorn Ratanaphan
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| |
Collapse
|
11
|
Klaimanee E, Nhukeaw T, Saithong S, Ratanaphan A, Phongpaichit S, Tantirungrotechai Y, Leesakul N. Half-sandwich ruthenium (II) p-cymene complexes based on organophosphorus ligands: Structure determination, computational investigation, in vitro antiproliferative effect in breast cancer cells and antimicrobial activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Rafols L, Josa D, Aguilà D, Barrios LA, Roubeau O, Cirera J, Soto-Cerrato V, Pérez-Tomás R, Martínez M, Grabulosa A, Gamez P. Piano-Stool Ruthenium(II) Complexes with Delayed Cytotoxic Activity: Origin of the Lag Time. Inorg Chem 2021; 60:7974-7990. [PMID: 33979132 PMCID: PMC8659375 DOI: 10.1021/acs.inorgchem.1c00507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
We have recently reported a series
of piano-stool ruthenium(II)
complexes of the general formula [RuCl2(η6-arene)(P(1-pyrenyl)R2R3)] showing excellent
cytotoxic activities (particularly when R2 = R3 = methyl). In the present study, new members of this family of compounds
have been prepared with the objective to investigate the effect of
the steric hindrance of a bulky phosphane ligand, namely diisopropyl(1-pyrenyl)phosphane
(L), on exchange reactions involving the coordinated
halides (X = Cl, I). Two η6-arene rings were used,
i.e. η6-methyl benzoate (mba) and η6-p-cymene (p-cym), and four complexes
were synthesized, namely [RuCl2(mba)(L)] (1Cl2iPr), [RuI2(mba)(L)] (1I2iPr), [RuCl2(p-cym)(L)] (2Cl2iPr), and [RuI2(p-cym)(L)]
(2I2iPr). Unexpectedly, all of
the complexes exhibited poor cytotoxic activities after 24 h of incubation
with cells, in contrast to the related compounds previously reported.
However, it was observed that aged DMSO solutions of 2I2iPr (from 2 to 7 days) exhibited better activities
in comparison to freshly prepared solutions and that the activity
improved over “aging” time. Thorough studies were therefore
performed to uncover the origin of this lag time in the cytotoxicity
efficiency. The data achieved clearly demonstrated that compounds 2I2iPr and 2Cl2iPr were undergoing a series of transformation reactions in DMSO (with
higher rates for the iodido complex 2I2iPr), ultimately generating cyclometalated species through a mechanism
involving DMSO as a coordinated proton abstractor. The cyclometalated
complexes detected in solution were subsequently prepared; hence,
pure [RuCl(p-cym)(κ2C-diisopropyl(1-pyrenyl)phosphane)] (3CliPr), [RuI(p-cym)(κ2C-diisopropyl(1-pyrenyl)phosphane)]
(3IiPr), and [Ru(p-cym)(κS-dmso)(κ2C-diisopropyl(1-pyrenyl)phosphane)]PF6 (3dmsoiPr) were synthesized and fully
characterized. Remarkably, 3CliPr, 3IiPr, and 3dmsoiPr are all very efficient cytotoxic agents,
exhibiting slightly better activities in comparison to the chlorido
noncyclometalated complexes [RuCl2(η6-arene)(P(1-pyrenyl)R2R3)] described in an earlier report. For comparison
purposes, the iodido compounds [RuI2(mba)(dimethyl(1-pyrenyl)phosphane)]
(1I2Me) and [RuI2(p-cym)(dimethyl(1-pyrenyl)phosphane)] (2I2Me), bearing the less hindered dimethyl(1-pyrenyl)phosphane ligand,
have also been prepared. The cytotoxic and chemical behaviors of 1I2Me and 1I2Me were comparable to those of their chlorido counterparts reported
previously. DMSO gradually converts half-sandwich,
1-pyrenyl-containing
ruthenium(II) complexes into cyclometalated species showing notable
cytotoxic properties.
Collapse
Affiliation(s)
- Laia Rafols
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - Dana Josa
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - David Aguilà
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Leoní A Barrios
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC and Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jordi Cirera
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.,Institut de Recerca de Química Teórica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat (Barcelona), Spain.,Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat (Barcelona), Spain.,Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Arnald Grabulosa
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Patrick Gamez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Santolaya J, Busto N, Martínez-Alonso M, Espino G, Grunenberg J, Barone G, García B. Experimental and theoretical characterization of the strong effects on DNA stability caused by half-sandwich Ru(II) and Ir(III) bearing thiabendazole complexes. J Biol Inorg Chem 2020; 25:1067-1083. [PMID: 32951085 DOI: 10.1007/s00775-020-01823-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022]
Abstract
The synthesis and characterization of two half-sandwich complexes of Ru(II) and Ir(III) with thiabendazole as ancillary ligand and their DNA binding ability were investigated using experimental and computational methods. 1H NMR and acid-base studies have shown that aquo-complexes are the reactive species. Kinetic studies show that both complexes bind covalently to DNA through the metal site and non covalently through the ancillary ligand. Thermal stability studies, viscosity, circular dichroism measurements and quantum chemical calculations have shown that the covalent binding causes breaking of the H-bonding between base pairs, bringing about DNA denaturation and compaction. Additionally, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations shed light into the binding features of the Ru(II) and Ir(III) complexes and their respective enantiomers toward double-helical DNA, highlighting the important role played by the NˆN ancillary ligand once the complexes are covalently linked to DNA. Moreover, metal quantification in the nucleus of SW480 colon adenocarcinoma cells were carried out by inductively coupled plasma-mass spectrometry (ICP-MS), both complexes are more internalized than cisplatin after 4 h of exposition. However, in spite of the dramatic changes in the helicity of the DNA secondary structure induced by these complexes and their nuclear localization, antiproliferative studies have revealed that both, Ru(II) and Ir(III) complexes, cannot be considered cytotoxic. This unexpected behavior can be justified by the fast formation of aquo-complexes, which may react with components of the cell culture medium or the cytoplasm compartment in such a way that they may become deactivated before reaching DNA.
Collapse
Affiliation(s)
- Javier Santolaya
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.,Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Natalia Busto
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Marta Martínez-Alonso
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.,Laboratory for Inorganic Chemical Biology, Institute of Chemistry for Life and Health Sciences, Chimie ParisTech, PSL University, CNRS, 75005, Paris, France
| | - Gustavo Espino
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Jörg Grunenberg
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Begoña García
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain
| |
Collapse
|
14
|
Pavlović M, Tadić A, Gligorijević N, Poljarević J, Petrović T, Dojčinović B, Savić A, Radulović S, Grgurić-Šipka S, Aranđelović S. Synthesis, chemical characterization, PARP inhibition, DNA binding and cellular uptake of novel ruthenium(II)-arene complexes bearing benzamide derivatives in human breast cancer cells. J Inorg Biochem 2020; 210:111155. [PMID: 32768729 DOI: 10.1016/j.jinorgbio.2020.111155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
Inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) showed remarkable clinical efficacy in BRCA-mutated tumors. Based on the rational drug design, derivatives of PARP inhibitor 3-aminobenzamide (3-AB), 2-amino-4-methylbenzamide (L1) and 3-amino-N-methylbenzamide (L2), were coordinated to the ruthenium(II) ion, to form potential drugs affecting DNA and inhibiting PARP enzyme. The four conjugated complexes of formula: C1 [(ƞ6-toluene)Ru(L1)Cl]PF6, C2 [(ƞ6-p-cymene)Ru(L1)Cl]PF6, C3 [(ƞ6-toluene)Ru(L2)Cl2] and C4 [(ƞ6-p-cymene)Ru(L2)Cl2], have been synthesized and characterized. Colorimetric 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) assay showed the highest antiproliferative activity of C1 in HCC1937, MDA-MB-231, and MCF-7 breast cancer cells. Efficiency of inhibition of PARP-1 enzymatic activity in vitro decreased in order: C2 > C4 > 3-AB>C1 > C3. ICP-MS study of intracellular accumulation and distribution in BRCA1-mutated HCC1937 revealed that C1-C4 entered cells within 24 h. The complex C1 showed the highest intracellular accumulation, nuclear-targeting properties, and exhibited the highest DNA binding (39.2 ± 0.6 pg of Ru per μg of DNA) that resulted in the cell cycle arrest in the S phase.
Collapse
Affiliation(s)
- Marijana Pavlović
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Ana Tadić
- Department of General and Inorganic Chemistry, University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Nevenka Gligorijević
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Jelena Poljarević
- Department of General and Inorganic Chemistry, University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Tamara Petrović
- Department of General and Inorganic Chemistry, University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Biljana Dojčinović
- Centre of Chemistry Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Aleksandar Savić
- Department of General and Inorganic Chemistry, University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Siniša Radulović
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Sanja Grgurić-Šipka
- Department of General and Inorganic Chemistry, University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Sandra Aranđelović
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| |
Collapse
|