1
|
Sharma RK, Sahai R, Singh NC, Maheshwari M, Yadav N, Sarkar J, Mitra K. Ormeloxifene induces mitochondrial fission-mediated pro-death autophagy in colon cancer cells. Biochem Biophys Res Commun 2025; 759:151698. [PMID: 40153998 DOI: 10.1016/j.bbrc.2025.151698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Ormeloxifene (ORM) is a nonsteroidal selective estrogen receptor modulator (SERM), developed by the CSIR-Central Drug Research Institute that is approved as an oral contraceptive. However, it has also shown promising anti-cancer activity, especially in breast cancer. Here, we have investigated the anti-cancer effect of ORM on colon cancer cells and show that its antiproliferative activity is mediated through mitochondrial fission and autophagy-associated cell death. We observed that ORM treatment led to an elevation in autophagy markers like LC3II, Beclin1, and Atg7. Autophagy induction and LC3II turnover were monitored by immunofluorescence staining and confocal microscopy. Transmission electron microscopy results confirmed the formation of autophagosomes and autophagolysosomes. Autophagic flux was confirmed by the increased expression of LC3II in cells co-treated with BafilomycinA1(autophagy inhibitor) and ORM. This was further corroborated using tandem mRFP-GFP-LC3 (tfLC3) transfection in DLD-1 cells. Interestingly, we observed that inhibition of autophagy reduced the apoptotic cell population, suggesting pro-death autophagy. ORM treatment caused notable ultrastructural alterations indicative of cellular stress. Notably, ORM triggered the generation of mitochondrial ROS, associated with increased levels of mitochondrial fission and a decrease in mitochondrial fusion proteins. Changes in mitochondrial dynamics were observed under the TEM, which included reduced mitochondrial size and increased mitochondrial number. Inhibition of mitochondrial fission resulted in enhanced cell survival and a concomitant decrease in the autophagic markers, implying that ORM-induced autophagy depends on mitochondrial fission. Taken together, our findings bring to light a novel mechanism where Ormeloxifene targets mitochondrial dynamics to promote autophagy-associated cell death in colon cancer cells.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rohit Sahai
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India
| | - Nishakumari Chentunarayan Singh
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India
| | - Mayank Maheshwari
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Nisha Yadav
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayanta Sarkar
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kalyan Mitra
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Long Y, Shi H, Ye J, Qi X. Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants. Antioxidants (Basel) 2025; 14:114. [PMID: 39857448 PMCID: PMC11762571 DOI: 10.3390/antiox14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is a state of imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the antioxidant defence system in the body. Oxidative stress may be associated with a variety of diseases, such as ovarian cancer, diabetes mellitus, and neurodegeneration. The generation of oxidative stress in ovarian cancer, one of the common and refractory malignancies among gynaecological tumours, may be associated with several factors. On the one hand, the increased metabolism of ovarian cancer cells can lead to the increased production of ROS, and on the other hand, the impaired antioxidant defence system of ovarian cancer cells is not able to effectively scavenge the excessive ROS. In addition, chemotherapy and radiotherapy may elevate the oxidative stress in ovarian cancer cells. Oxidative stress can cause oxidative damage, promote the development of ovarian cancer, and even result in drug resistance. Therefore, studying oxidative stress in ovarian cancer is important for the prevention and treatment of ovarian cancer. Antioxidants, important markers of oxidative stress, might serve as one of the strategies for preventing and treating ovarian cancer. In this review, we will discuss the complex relationship between oxidative stress and ovarian cancer, as well as the role and therapeutic potential of antioxidants in ovarian cancer, thus guiding future research and clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Key Laboratory of Birth, Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (H.S.); (J.Y.)
| |
Collapse
|
3
|
Chowdhury R, Bhuia MS, Al Hasan MS, Hossain Snigdha S, Afrin S, Büsselberg D, Habtemariam S, Sönmez Gürer E, Sharifi‐Rad J, Ahmed Aldahish A, Аkhtayeva N, Islam MT. Anticancer potential of phytochemicals derived from mangrove plants: Comprehensive mechanistic insights. Food Sci Nutr 2024; 12:6174-6205. [PMID: 39554337 PMCID: PMC11561795 DOI: 10.1002/fsn3.4318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer is a collection of illnesses characterized by aberrant cellular proliferation that can infiltrate or metastasize to distant anatomical sites, posing a notable threat to human well-being due to its substantial morbidity and death rates worldwide. The potential of plant-derived natural compounds as anticancer medicines has been assessed owing to their favorable attributes of few side effects and significant antitumor activity. Mangrove plants and their derived compounds have been scientifically shown to exhibit many significant beneficial biological activities, such as anti-inflammatory, immunomodulatory, antioxidant, neuroprotective, cardioprotective, and hepatoprotective properties. This study summarized mangrove plants and their derived compounds as potential anticancer agents, with an emphasis on the underlying molecular mechanisms. To explore this, we gathered data on the preclinical (in vivo and in vitro) anticancer effects of mangrove plants and their derived compounds from reputable literature spanning 2000 to 2023. We conducted thorough searches in various academic databases, including PubMed, ScienceDirect, Wiley Online, SpringerLink, Google Scholar, Scopus, and the Web of Science. The results demonstrated that mangrove plants and their derived compounds have promising anticancer properties in preclinical pharmacological test systems through various molecular mechanisms, including induction of oxidative stress and mitochondrial dysfunction, cytotoxicity, genotoxicity, cell cycle arrest, apoptosis, autophagy, antiproliferative, antimetastatic, and other miscellaneous actions. Upon thorough observation of the pertinent information, it is suggested that mangrove plants and their derived chemicals may serve as a potential lead in the development of novel drugs for cancer therapy.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Shimul Bhuia
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Sakib Al Hasan
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | | | - Sadia Afrin
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| | | | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of PharmacognosySivas Cumhuriyet UniversitySivasTurkey
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Nursulu Аkhtayeva
- Department of Biodiversity and Bioresources of Al‐Farabi Kazakh National UniversityAlmatyKazakhstan
| | - Muhammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| |
Collapse
|
4
|
Nayana P, Manjunatha H, Gollapalli P, Ashok AK, Karal Andrade P, V V. A combined in vitro and molecular dynamics simulation studies unveil the molecular basis of the anticancer potential of piperine targeting AKT1 against prostate cancer. J Biomol Struct Dyn 2024; 42:3616-3629. [PMID: 37272194 DOI: 10.1080/07391102.2023.2220045] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
The present study investigates the activity of the natural compound piperine on prostate cancer cell line (PC-3), followed by exploring its mechanistic inhibition on the RAC-alpha serine/threonine-protein kinase (AKT1) protein. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay showed that after 24 hrs of exposure to piperine (15 µmol/ml), cell viability fell to 50% compared to the standard drug flutamide (SDF) (51 µmol/ml) with a lower IC50 concentration. However, the Dual acridine orange/ethidium bromide (AO/EtBr) staining demonstrated that, as compared to the SDF, piperine caused substantial cellular death in PC-3 cells, presumably by triggering DNA fragmentation. In addition, compared to untreated cells, the proportion of the sub-G0/G1 and G2/M stages population increased considerably in piperine-treated cells. The cell cycle's sub-G0/G1 and G2/M phases were also arrested in piperine-treated cells compared to the SDF in cell cycle analysis. Based on our systems pharmacology and molecular docking studies, AKT1 is predicted as a potential target against piperine. The complementary charge between AKT1 and piperine was emphasized in the transient ligand-protein binding interaction in molecular dynamic modeling over 100 ns, and stable hydrogen bond interaction between Lys268 and Ser205 amino acid residues of the active pocket was hypothesized. Overall, the findings from our in vitro and MD simulations provide insights into the mechanism of piperine targeting AKT1 and offer a possible candidate for future prostate cancer therapeutic development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prakash Nayana
- Department of PG studies and research in Biotechnology, Kuvempu University, Shivamogga, Karnataka, India
| | | | - Pavan Gollapalli
- Center for Bioinformatics and Biostatistics, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Avinash Karkada Ashok
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, India
| | - Preema Karal Andrade
- Department of PG studies and research in Biotechnology, Kuvempu University, Shivamogga, Karnataka, India
| | - Vijayalaksmi V
- Department of PG studies and research in Biotechnology, Kuvempu University, Shivamogga, Karnataka, India
| |
Collapse
|
5
|
Hasan A, Khamjan N, Lohani M, Mir SS. Targeted Inhibition of Hsp90 in Combination with Metformin Modulates Programmed Cell Death Pathways in A549 Lung Cancer Cells. Appl Biochem Biotechnol 2023; 195:7338-7378. [PMID: 37000353 DOI: 10.1007/s12010-023-04424-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/01/2023]
Abstract
The pathophysiology of lung cancer is dependent on the dysregulation in the apoptotic and autophagic pathways. The intricate link between apoptosis and autophagy through shared signaling pathways complicates our understanding of how lung cancer pathophysiology is regulated. As drug resistance is the primary reason behind treatment failure, it is crucial to understand how cancer cells may respond to different therapies and integrate crosstalk between apoptosis and autophagy in response to them, leading to cell death or survival. Thus, in this study, we have tried to evaluate the crosstalk between autophagy and apoptosis in A549 lung cancer cell line that could be modulated by employing a combination therapy of metformin (6 mM), an anti-diabetic drug, with gedunin (12 µM), an Hsp90 inhibitor, to provide insights into the development of new cancer therapeutics. Our results demonstrated that metformin and gedunin were cytotoxic to A549 lung cancer cells. Combination of metformin and gedunin generated ROS and promoted MMP loss and DNA damage. The combination further increased the expression of AMPKα1 and promoted the nuclear localization of AMPKα1/α2. The expression of Hsp90 was downregulated, further decreasing the expression of its clients, EGFR, PIK3CA, AKT1, and AKT3. Inhibition of the EGFR/PI3K/AKT pathway upregulated TP53 and inhibited autophagy. The combination was promoting nuclear localization of p53; however, some cytoplasmic signals were also detected. Further increase in the expression of caspase 9 and caspase 3 was observed. Thus, we concluded that the combination of metformin and gedunin upregulates apoptosis by inhibiting the EGFR/PI3K/AKT pathway and autophagy in A549 lung cancer cells.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India
- Current Address: Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Nizar Khamjan
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Kingdom of Saudi Arabia
| | - Mohtashim Lohani
- Medical Research Center, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
- Emergency Medical Services, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India.
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
6
|
Chandel S, Singh R, Gautam A, Ravichandiran V. Screening of Azadirachta indica phytoconstituents as GSK-3β inhibitor and its implication in neuroblastoma: molecular docking, molecular dynamics, MM-PBSA binding energy, and in-vitro study. J Biomol Struct Dyn 2022; 40:12827-12840. [PMID: 34569452 DOI: 10.1080/07391102.2021.1977705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3), a constitutively active serine/threonine kinase, primary regulator of various cellular activities varying from glycogen metabolism to cell proliferation and regulation. GSK-3β is associated with the pathogenesis of numerous human diseases, including cancer, metabolic disorder, and Alzheimer's disease. In this study, Azadirachta indica compounds were selected and further screened on the BOILED-Egg model. The compounds showing good GIT absorption were docked with the crystal structure of GSK-3β. The compounds with high docking score were submitted for the molecular dynamic simulation (MDS) and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA). Based upon the MDS and MM-PBSA study, gedunin showed the highest binding energy throughout the MDS process. Gedunin was isolated from the Azadirachta indica, and its efficacy on GSK-3β inhibition was studied in the human neuroblastoma (SH-SY5Y) cells. Gedunin induced apoptosis and anti-proliferative activity by arresting G2/M phase, as evident by cell-cycle analysis. From immunoblot study, gedunin significantly enhanced the expression of an inhibitory form of GSK-3β (p-GSK-3β Ser9) in concentration-dependent manner. Our findings demonstrate that gedunin may act as an effective GSK-3β inhibitor suggesting that this compound may be used for the management of neuroblastoma. Further preclinical and clinical investigation is desirable.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Chandel
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
7
|
Park S, Choi EJ, Kim JY, Lee EJ, Bae YJ, Seong SH, Lee J, Oh SH. 7-desacetoxy-6,7-dehydrogedunin discovered by high-throughput screening system suppresses melanogenesis through ATP-P2X7 signaling inhibition. J Dermatol Sci 2022; 108:157-166. [PMID: 36610940 DOI: 10.1016/j.jdermsci.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/25/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hyperpigmented skin disorders such as melasma and lentigo are common photoaging diseases that cause cosmetic problems. The pigmentation is usually exacerbated by ultraviolet (UV) radiation, and various factors and pathways are involved in UV-mediated melanogenesis. Adenosine 5'-triphosphate (ATP), a well-known molecular unit of intracellular energy, is also regarded as a mediator of UV-mediated melanogenesis via the P2X7 purinergic receptor. OBJECTIVE To discover natural substances with an anti-melanogenic effect through inhibition of ATP-P2X7 axis by high-throughput screening (HTS). METHODS Among natural compounds provided by the Korea Chemical Bank, chemical compounds with a P2X7 inhibiting effect were screened through an HTS system. Then the selected compounds were verified for their anti-melanogenic effect after treating primary human epidermal melanocytes (PHEMs) with and without ATP. The expression of MITF, tyrosinase, and PMEL/gp100 was analyzed by Western blot, and melanin content was measured as 405 nm absorbance. RESULTS Among 962 natural compounds, 58 showed greater than 80% suppression of YO-PRO-1 fluorescence, representing P2X7 activity. Among them, considering cell viability, chemical stability, and availability, 7-desaxacetoxy-6,7-dehydrogedunin (7DG), a limonoid natural compound, was selected. The expression of MITF, tyrosinase, and PMEL/gp100; tyrosinase enzyme activity; and melanin content, which were increased by ATP treatment were abrogated by 7DG. Even when 7DG was treated in PHEMs without addition of ATP, tyrosinase expression and melanin content were significantly decreased. Hypopigmenting effect of 7DG was confirmed in ex vivo culture of human skins. CONCLUSIONS 7DG has an anti-melanogenic effect through ATP-P2X7 pathway inhibition and could be a potential skin whitening material.
Collapse
Affiliation(s)
- Sujin Park
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ju Choi
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Jeong Bae
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seol Hwa Seong
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jinu Lee
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea.
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Identification of Gedunin from a Phytochemical Depository as a Novel Multidrug Resistance-Bypassing Tubulin Inhibitor of Cancer Cells. Molecules 2022; 27:molecules27185858. [PMID: 36144591 PMCID: PMC9501561 DOI: 10.3390/molecules27185858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
The chemotherapy of tumors is frequently limited by the development of resistance and severe side effects. Phytochemicals may offer promising candidates to meet the urgent requirement for new anticancer drugs. We screened 69 phytochemicals, and focused on gedunin to analyze its molecular modes of action. Pearson test-base correlation analyses of the log10IC50 values of 55 tumor cell lines of the National Cancer Institute (NCI), USA, for gedunin with those of 91 standard anticancer agents revealed statistically significant relationships to all 10 tested microtubule inhibitors. Thus, we hypothesized that gedunin may be a novel microtubule inhibitor. Confocal microscopy, cell cycle measurements, and molecular docking in silico substantiated our assumption. Agglomerative cluster analyses and the heat map generation of proteomic data revealed a subset of 40 out of 3171 proteins, the expression of which significantly correlated with sensitivity or resistance for the NCI cell line panel to gedunin. This indicates the complexity of gedunin’s activity against cancer cells, underscoring the value of network pharmacological techniques for the investigation of the molecular modes of drug action. Finally, we correlated the transcriptome-wide mRNA expression of known drug resistance mechanism (ABC transporter, oncogenes, tumor suppressors) log10IC50 values for gedunin. We did not find significant correlations, indicating that gedunin’s anticancer activity might not be hampered by classical drug resistance mechanisms. In conclusion, gedunin is a novel microtubule-inhibiting drug candidate which is not involved in multidrug resistance mechanisms such as other clinically established mitotic spindle poisons.
Collapse
|
9
|
Liew HY, Tan XY, Chan HH, Khaw KY, Ong YS. Natural HSP90 inhibitors as a potential therapeutic intervention in treating cancers: A comprehensive review. Pharmacol Res 2022; 181:106260. [DOI: 10.1016/j.phrs.2022.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
10
|
Budiyanto F, Alhomaidi EA, Mohammed AE, Ghandourah MA, Alorfi HS, Bawakid NO, Alarif WM. Exploring the Mangrove Fruit: From the Phytochemicals to Functional Food Development and the Current Progress in the Middle East. Mar Drugs 2022; 20:303. [PMID: 35621954 PMCID: PMC9146169 DOI: 10.3390/md20050303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, the logarithmic production of existing well-known food materials is unable to keep up with the demand caused by the exponential growth of the human population in terms of the equality of access to food materials. Famous local food materials with treasury properties such as mangrove fruits are an excellent source to be listed as emerging food candidates with ethnomedicinal properties. Thus, this study reviews the nutrition content of several edible mangrove fruits and the innovation to improve the fruit into a highly economic food product. Within the mangrove fruit, the levels of primary metabolites such as carbohydrates, protein, and fat are acceptable for daily intake. The mangrove fruits, seeds, and endophytic fungi are rich in phenolic compounds, limonoids, and their derivatives as the compounds present a multitude of bioactivities such as antimicrobial, anticancer, and antioxidant. In the intermediary process, the flour of mangrove fruit stands as a supplementation for the existing flour with antidiabetic or antioxidant properties. The mangrove fruit is successfully transformed into many processed food products. However, limited fruits from species such as Bruguiera gymnorrhiza, Rhizophora mucronata, Sonneratia caseolaris, and Avicennia marina are commonly upgraded into traditional food, though many more species demonstrate ethnomedicinal properties. In the Middle East, A. marina is the dominant species, and the study of the phytochemicals and fruit development is limited. Therefore, studies on the development of mangrove fruits to functional for other mangrove species are demanding. The locally accepted mangrove fruit is coveted as an alternate food material to support the sustainable development goal of eliminating world hunger in sustainable ways.
Collapse
Affiliation(s)
- Fitri Budiyanto
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (F.B.); (M.A.G.); (W.M.A.)
- National Research and Innovation Agency, Jl. M.H. Thamrin No. 8, Jakarta 10340, Indonesia
| | - Eman A. Alhomaidi
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Afrah E. Mohammed
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed A. Ghandourah
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (F.B.); (M.A.G.); (W.M.A.)
| | - Hajer S. Alorfi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (H.S.A.); (N.O.B.)
| | - Nahed O. Bawakid
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (H.S.A.); (N.O.B.)
| | - Wailed M. Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (F.B.); (M.A.G.); (W.M.A.)
| |
Collapse
|
11
|
Mitochondrial Dysfunction Pathway Alterations Offer Potential Biomarkers and Therapeutic Targets for Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5634724. [PMID: 35498135 PMCID: PMC9045977 DOI: 10.1155/2022/5634724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 04/02/2022] [Indexed: 11/29/2022]
Abstract
The mitochondrion is a very versatile organelle that participates in some important cancer-associated biological processes, including energy metabolism, oxidative stress, mitochondrial DNA (mtDNA) mutation, cell apoptosis, mitochondria-nuclear communication, dynamics, autophagy, calcium overload, immunity, and drug resistance in ovarian cancer. Multiomics studies have found that mitochondrial dysfunction, oxidative stress, and apoptosis signaling pathways act in human ovarian cancer, which demonstrates that mitochondria play critical roles in ovarian cancer. Many molecular targeted drugs have been developed against mitochondrial dysfunction pathways in ovarian cancer, including olive leaf extract, nilotinib, salinomycin, Sambucus nigra agglutinin, tigecycline, and eupatilin. This review article focuses on the underlying biological roles of mitochondrial dysfunction in ovarian cancer progression based on omics data, potential molecular relationship between mitochondrial dysfunction and oxidative stress, and future perspectives of promising biomarkers and therapeutic targets based on the mitochondrial dysfunction pathway for ovarian cancer.
Collapse
|
12
|
Insights into the Role of Oxidative Stress in Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8388258. [PMID: 34659640 PMCID: PMC8516553 DOI: 10.1155/2021/8388258] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Oxidative stress (OS) arises when the body is subjected to harmful endogenous or exogenous factors that overwhelm the antioxidant system. There is increasing evidence that OS is involved in a number of diseases, including ovarian cancer (OC). OC is the most lethal gynecological malignancy, and risk factors include genetic factors, age, infertility, nulliparity, microbial infections, obesity, smoking, etc. OS can promote the proliferation, metastasis, and therapy resistance of OC, while high levels of OS have cytotoxic effects and induce apoptosis in OC cells. This review focuses on the relationship between OS and the development of OC from four aspects: genetic alterations, signaling pathways, transcription factors, and the tumor microenvironment. Furthermore, strategies to target aberrant OS in OC are summarized and discussed, with a view to providing new ideas for clinical treatment.
Collapse
|
13
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
14
|
Sandhir R, Khurana M, Singhal NK. Potential benefits of phytochemicals from Azadirachta indica against neurological disorders. Neurochem Int 2021; 146:105023. [PMID: 33753160 DOI: 10.1016/j.neuint.2021.105023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Azadirachta indica or Neem has been extensively used in the Indian traditional medical system because of its broad range of medicinal properties. Neem contains many chemically diverse and structurally complex phytochemicals such as limonoids, flavonoids, phenols, catechins, gallic acid, polyphenols, nimbins. These phytochemicals possess vast array of therapeutic activities that include anti-feedant, anti-viral, anti-malarial, anti-bacterial, anti-cancer properties. In recent years, many phytochemicals from Neem have been shown to be beneficial against various neurological disorders like Alzheimer's and Parkinson's disease, mood disorders, ischemic-reperfusion injury. The neuroprotective effects of the phytochemicals from Neem are primarily mediated by their anti-oxidant, anti-inflammatory and anti-apoptotic activities along with their ability to modulate signaling pathways. However, extensive studies are still required to fully understand the molecular mechanisms involved in neuropotective effects of phytochemicals from Neem. This review is an attempt to cover the neuroprotective properties of various phytochemicals from Neem along with their mechanism of action so that the potential of the compounds could be realized to reduce the burden of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India.
| | - Mehak Khurana
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI) Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
| |
Collapse
|
15
|
Dutta N, Ghosh S, Nelson VK, Sareng HR, Majumder C, Mandal SC, Pal M. Andrographolide upregulates protein quality control mechanisms in cell and mouse through upregulation of mTORC1 function. Biochim Biophys Acta Gen Subj 2021; 1865:129885. [PMID: 33639218 DOI: 10.1016/j.bbagen.2021.129885] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Heat shock response (HSR), a component of cellular protein quality control mechanisms, is defective in different neurodegenerative conditions such as Parkinson's disease (PD). Forced upregulation of heat shock factor 1 (HSF1), an HSR master regulator, showed therapeutic promise in PD models. Many of the reported small-molecule HSF1 activators have limited functions. Therefore, identification and understanding the molecular bases of action of new HSF1 activating molecules is necessary. METHOD We used a cell-based reporter system to screen Andrographis paniculata leaf extract to isolate andrographolide as an inducer of HSF1 activity. The andrographolide activity was characterized by analyzing its role in different protein quality control mechanisms. RESULT We find that besides ameliorating the PD in MPTP-treated mice, andrographolide upregulated different machineries controlled by HSF1 and NRF2 in both cell and mouse brain. Andrographolide achieves these functions through mTORC1 activated via p38 MAPK and ERK pathways. NRF2 activation is reflected in the upregulation of proteasome as well as autophagy pathways. We further show that NRF2 activation is mediated through mTORC1 driven phosphorylation of p62/sequestosome 1. Studies with different cell types suggested that andrographolide-mediated induction of ROS level underlies all these activities in agreement with the upregulation of mTORC1 and NRF2-antioxidant pathway in mice. CONCLUSION Andrographolide through upregulating HSF1 activity ameliorates protein aggregation induced cellular toxicity. GENERAL SIGNIFICANCE Our results provide a reasonable basis for use of andrographolide in the therapy regimen for the treatment of PD.
Collapse
Affiliation(s)
- Naibedya Dutta
- Division of Molecular Medicine, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Vinod K Nelson
- Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Hossainoor R Sareng
- Division of Molecular Medicine, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Chirantan Majumder
- Division of Molecular Medicine, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Subhash C Mandal
- Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India.
| |
Collapse
|
16
|
Lu C, Hu G, Gao S, Mou D. Apoptotic and anti-proliferative effect of essential oil from turmeric (<i>Curcuma longa L.</i>) on HepG2 and H1299 cells. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caihui Lu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology
| | - Gaoshuang Hu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology
| | - Shan Gao
- College of Bioscience and Bioengineering, Hebei University of Science and Technology
| | - Dehua Mou
- College of Bioscience and Bioengineering, Hebei University of Science and Technology
| |
Collapse
|
17
|
Ren Y, Kinghorn AD. Development of Potential Antitumor Agents from the Scaffolds of Plant-Derived Terpenoid Lactones. J Med Chem 2020; 63:15410-15448. [PMID: 33289552 PMCID: PMC7812702 DOI: 10.1021/acs.jmedchem.0c01449] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Naturally occurring terpenoid lactones and their synthetic derivatives have attracted increasing interest for their promising antitumor activity and potential utilization in the discovery and design of new antitumor agents. In the present perspective article, selected plant-derived five-membered γ-lactones and six-membered δ-lactones that occur with terpenoid scaffolds are reviewed, with their structures, cancer cell line cytotoxicity and in vivo antitumor activity, structure-activity relationships, mechanism of action, and the potential for developing cancer chemotherapeutic agents discussed in each case. The compounds presented include artemisinin (ART, 1), parthenolide (PTL, 2), thapsigargin (TPG, 3), andrographolide (AGL, 4), ginkgolide B (GKL B, 5), jolkinolide B (JKL B, 6), nagilactone E (NGL E, 7), triptolide (TPL, 8), bruceantin (BRC, 9), dichapetalin A (DCT A, 10), and limonin (LMN, 11), and their naturally occurring analogues and synthetic derivatives. It is hoped that this contribution will be supportive of the future development of additional efficacious anticancer agents derived from natural products.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
18
|
Hsp90 inhibitor gedunin causes apoptosis in A549 lung cancer cells by disrupting Hsp90:Beclin-1:Bcl-2 interaction and downregulating autophagy. Life Sci 2020; 256:118000. [PMID: 32585246 DOI: 10.1016/j.lfs.2020.118000] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022]
Abstract
AIMS Hsp90 is regarded as an important therapeutic target in cancer treatment. Client proteins of Hsp90 like Beclin-1, PI3K, and AKT, are associated with tumor development, poor prognosis, and resistance to cancer therapies. This study aims to analyze the role of Gedunin, an Hsp-90 inhibitor, in mediation of crosstalk between apoptosis and autophagy by targeting Beclin-1:Bcl-2 interaction, and ER stress. MAIN METHODS A549 cells were treated with different concentrations of gedunin, and inhibitory rate was evaluated by MTT assay. Effect of gedunin on generation of reactive oxygen species, mitochondrial membrane potential, and chromatin condensation was studied by staining methods like DCFH-DA, MitoTracker, and DAPI. Expression of EGFR, PIK3CA, AKT, marker genes for apoptosis and autophagy were studied using semi-quantitative RT-PCR. Interaction study of Hsp90:Beclin-1:Bcl-2 was done by immunoprecipitation analysis. Protein expression of autophagy and apoptosis markers along with Grp78, Hsp70, and Hsp90 was analyzed by immunoblotting. KEY FINDINGS Gedunin exerts cytotoxic effects, causes increase in ROS generation, downregulates mitochondrial membrane potential and induces loss in DNA integrity. mRNA expression analysis revealed that gedunin sensitized A549 cells towards apoptosis by downregulating EGFR, PIK3CA, AKT, and autophagy. Gedunin also inhibited interaction between Hsp90:Beclin-1:Bcl-2, leading to downregulation of autophagy (Beclin-1, Atg5-12 complex, and LC3) and antiapoptotic protein Bcl-2, which may result in ER stress-induced apoptosis. Moreover, Hsp90 inhibition by gedunin did not cause upregulation of Hsp70 expression. SIGNIFICANCE Gedunin induces apoptosis in lung cancer cells by disrupting Hsp90:Beclin-1:Bcl-2 interaction and autophagy downregulation, thus making gedunin a good drug lead for targeting lung cancer.
Collapse
|