1
|
Lian M, Sun M, Han B, Baranova A, Cao H, Zhang F. Gut microbiome's causal role in head and neck cancer: findings from mendelian randomization. Front Oncol 2024; 14:1453202. [PMID: 39628997 PMCID: PMC11611831 DOI: 10.3389/fonc.2024.1453202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction The gut microbiome (GM) has been implicated in cancer pathogenesis and treatment, including head and neck cancers (HNC). However, the specific microbial compositions influencing HNC and the underlying mechanisms remain largely unknown. Methods This study utilized published genome-wide association studies (GWAS) summary data-based two-sample Mendelian randomization (MR) to uncover the GM compositions that exert significant causal effects on HNC. Functional annotation and enrichment analysis were conducted to better understand the significant genetic variables and their connection with HNC. The HNC dataset included 2,281 cases and 314,193 controls. The GM GWAS data of 211 gut taxa (35 families, 20 orders, 16 classes, 9 phyla, and 131 genera) were obtained from the MibioGen consortium, involving 18,340 participants. Results MR analysis revealed four GM compositions exerting causal effects on HNC. Specifically, family Peptococcaceae.id.2024 was significantly associated with a 35% reduced risk of HNC (OR=0.65; 95%CI=0.48-0.90; P=0.0080). In contrast, genus DefluviitaleaceaeUCG-011.id.11287 (OR=1.54; 95%CI=1.13-2.09; P=0.0060), genus Gordonibacter.id.821 (OR=1.23; 95%CI=1.05-1.45; P=0.012), and genus Methanobrevibacter.id.123 (OR=1.28; 95%CI=1.01-1.62; P=0.040) showed a significant association with an increased risk of HNC. These GMs interact with genes and genetic variants involved in signaling pathways, such as GTPase regulation, influencing tumor progression and disease prognosis. Conclusions Our study demonstrates, for the first time, the causal influence of specific gut microbiome compositions on HNC, offering significant insights for advancing clinical research and personalized treatments. The identified GMs may serve as potential biomarkers or therapeutic targets, paving the way for innovative approaches in HNC diagnosis, prevention, and therapy.
Collapse
Affiliation(s)
- Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otorhinolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Minghong Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Boxuan Han
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otorhinolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, United States
- Research Centre for Medical Genetics, Moscow, Russia
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Ging K, Frick L, Schlachetzki J, Armani A, Zhu Y, Gilormini PA, Dhingra A, Böck D, Marques A, Deen M, Chen X, Serdiuk T, Trevisan C, Sellitto S, Pisano C, Glass CK, Heutink P, Yin JA, Vocadlo DJ, Aguzzi A. Direct and indirect regulation of β-glucocerebrosidase by the transcription factors USF2 and ONECUT2. NPJ Parkinsons Dis 2024; 10:192. [PMID: 39438499 PMCID: PMC11496744 DOI: 10.1038/s41531-024-00819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Mutations in GBA1 encoding the lysosomal enzyme β-glucocerebrosidase (GCase) are among the most prevalent genetic susceptibility factors for Parkinson's disease (PD), with 10-30% of carriers developing the disease. To identify genetic modifiers contributing to the incomplete penetrance, we examined the effect of 1634 human transcription factors (TFs) on GCase activity in lysates of an engineered human glioblastoma line homozygous for the pathogenic GBA1 L444P variant. Using an arrayed CRISPR activation library, we uncovered 11 TFs as regulators of GCase activity. Among these, activation of MITF and TFEC increased lysosomal GCase activity in live cells, while activation of ONECUT2 and USF2 decreased it. While MITF, TFEC, and USF2 affected GBA1 transcription, ONECUT2 might control GCase trafficking. The effects of MITF, TFEC, and USF2 on lysosomal GCase activity were reproducible in iPSC-derived neurons from PD patients. Our study provides a systematic approach to identifying modulators of GCase activity and deepens our understanding of the mechanisms regulating GCase.
Collapse
Affiliation(s)
- Kathi Ging
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Lukas Frick
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Johannes Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrea Armani
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Yanping Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | | | - Desirée Böck
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Ana Marques
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Matthew Deen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Xi Chen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Tetiana Serdiuk
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Stefano Sellitto
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Claudio Pisano
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Jiang-An Yin
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Haspel N, Jang H, Nussinov R. Allosteric Activation of RhoA Complexed with p115-RhoGEF Deciphered by Conformational Dynamics. J Chem Inf Model 2024; 64:862-873. [PMID: 38215280 DOI: 10.1021/acs.jcim.3c01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The Ras homologue family member A (RhoA) is a member of the Rho family, a subgroup of the Ras superfamily. RhoA interacts with the 115 kDa guanine nucleotide exchange factor (p115-RhoGEF), which assists in activation and binding with downstream effectors. Here, we use molecular dynamics (MD) simulations and essential dynamics analysis of the inactive RhoA-GDP and active RhoA-GTP, when bound to p115-RhoGEF to decipher the mechanism of RhoA activation at the structural level. We observe that inactive RhoA-GDP maintains its position near the catalytic site on the Dbl homology (DH) domain of p115-RhoGEF through the interaction of its Switch I region with the DH domain. We further show that the active RhoA-GTP is engaged in more interactions with the p115-RhoGEF membrane-bound Pleckstrin homology (PH) domain as compared to RhoA-GDP. We hypothesize that the role of the interactions between the active RhoA-GTP and the PH domain is to help release it from the DH domain upon activation. Our results support this premise, and our simulations uncover the beginning of this process and provide structural details. They also point to allosteric communication pathways that take part in RhoA activation to promote and strengthen the interaction between the active RhoA-GTP and the PH domain. Allosteric regulation also occurs among other members of the Rho superfamily. Collectively, we suggest that in the activation process, the role of the RhoA-GTP interaction with the PH domain is to release RhoA-GTP from the DH domain after activation, making it available to downstream effectors.
Collapse
Affiliation(s)
- Nurit Haspel
- Department of Computer Science, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|