1
|
Chen J, Xu Z, Liu Y, Mei A, Wang X, Shi Q. Cellular absorption of polystyrene nanoplastics with different surface functionalization and the toxicity to RAW264.7 macrophage cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114574. [PMID: 36706525 DOI: 10.1016/j.ecoenv.2023.114574] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/05/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastics (NPs) are a matter of widespread concern, as they are easily absorbed by a wide variety of organisms and accumulate in biological tissues. While there is evidence that nanoplastics are toxic to various organisms, few studies have investigated the mechanisms underlying the toxicities of NPs with different surface functionalizations to macrophage cells. In this study, mouse mononuclear macrophage (RAW264.7) cells were exposed to polystyrene nanoplastics (PS-NPs) with three different surface functionalizations, namely pristine polystyrene (PS), carboxyl-functionalized polystyrene (PS-COOH), and amino-functionalized polystyrene (PS-NH2), to evaluate the cellular endocytosis, lactate dehydrogenase (LDH) release, cell viability, reactive oxygen species (ROS), mitochondrial membrane potential, apoptosis, and related gene expression. Results showed that all three PS-NPs were endocytosed into cells. However, in the concentration range of 0-100 μg/mL, PS had no effect on cell viability or apoptosis, but it slightly increased cellular ROS and decreased mitochondrial membrane potential. PS-NH2 exhibited the highest cytotoxicity. PS-COOH and PS-NH2 induced ROS production, altered the mitochondrial membrane potential, and caused cell apoptosis regulated by the mitochondrial apoptosis pathway. Results also showed that cell membrane damage induced by PS-NH2 is one of the primary mechanisms of its cytotoxicity to RAW264.7 cells. The results of this study clarify the toxicities of PS-NPs with different surface functionalizations to macrophages, thereby improving the identification of immune system risks related to nanoplastics.
Collapse
Affiliation(s)
- Jiao Chen
- College of Ecology and Environment, Xin Jiang University, Urumqi 830046, PR China
| | - Zijun Xu
- College of Ecology and Environment, Xin Jiang University, Urumqi 830046, PR China; College of Resources and Environment Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yuying Liu
- College of Ecology and Environment, Xin Jiang University, Urumqi 830046, PR China
| | - AoXue Mei
- College of Ecology and Environment, Xin Jiang University, Urumqi 830046, PR China
| | - Xiyuan Wang
- College of Ecology and Environment, Xin Jiang University, Urumqi 830046, PR China.
| | - Qingdong Shi
- College of Ecology and Environment, Xin Jiang University, Urumqi 830046, PR China.
| |
Collapse
|
2
|
Morgan J, Bell R, Jones AL. Endogenous doesn't always mean innocuous: a scoping review of iron toxicity by inhalation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:107-136. [PMID: 32106786 DOI: 10.1080/10937404.2020.1731896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ambient air pollution is a leading risk factor for the global burden of disease. One possible pathway of particulate matter (PM)-induced toxicity is through iron (Fe), the most abundant metal in the atmosphere. The aim of the review was to consider the complexity of Fe-mediated toxicity following inhalation exposure focusing on the chemical and surface reactivity of Fe as a transition metal and possible pathways of toxicity via reactive oxygen species (ROS) generation as well as considerations of size, morphology, and source of PM. A broad term search of 4 databases identified 2189 journal articles and reports examining exposure to Fe via inhalation in the past 10 years. These were sequentially analyzed by title, abstract and full-text to identify 87 articles publishing results on the toxicity of Fe-containing PM by inhalation or instillation to the respiratory system. The remaining 87 papers were examined to summarize research dealing with in vitro, in vivo and epidemiological studies involving PM containing Fe or iron oxide following inhalation or instillation. The major findings from these investigations are summarized and tabulated. Epidemiological studies showed that exposure to Fe oxide is correlated with an increased incidence of cancer, cardiovascular diseases, and several respiratory diseases. Iron PM was found to induce inflammatory effects in vitro and in vivo and to translocate to remote locations including the brain following inhalation. A potential pathway for the PM-containing Fe-mediated toxicity by inhalation is via the generation of ROS which leads to lipid peroxidation and DNA and protein oxidation. Our recommendations include an expansion of epidemiological, in vivo and in vitro studies, integrating research improvements outlined in this review, such as the method of particle preparation, cell line type, and animal model, to enhance our understanding of the complex biological interactions of these particles.
Collapse
Affiliation(s)
- Jody Morgan
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Robin Bell
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Alison L Jones
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
3
|
A novel Approach for Non-Invasive Lung Imaging and Targeting Lung Immune Cells. Int J Mol Sci 2020; 21:ijms21051613. [PMID: 32120819 PMCID: PMC7084491 DOI: 10.3390/ijms21051613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 01/09/2023] Open
Abstract
Despite developments in pulmonary radiotherapy, radiation-induced lung toxicity remains a problem. More sensitive lung imaging able to increase the accuracy of diagnosis and radiotherapy may help reduce this problem. Super-paramagnetic iron oxide nanoparticles are used in imaging, but without further modification can cause unwanted toxicity and inflammation. Complex carbohydrate and polymer-based coatings have been used, but simpler compounds may provide additional benefits. Herein, we designed and generated super-paramagnetic iron oxide nanoparticles coated with the neutral natural dietary amino acid glycine (GSPIONs), to support non-invasive lung imaging and determined particle biodistribution, as well as understanding the impact of the interaction of these nanoparticles with lung immune cells. These GSPIONs were characterized to be crystalline, colloidally stable, with a size of 12 ± 5 nm and a hydrodynamic diameter of 84.19 ± 18 nm. Carbon, Hydrogen, Nitrogen (CHN) elemental analysis estimated approximately 20.2 × 103 glycine molecules present per nanoparticle. We demonstrated that it is possible to determine the biodistribution of the GSPIONs in the lung using three-dimensional (3D) ultra-short echo time magnetic resonance imaging. The GSPIONs were found to be taken up selectively by alveolar macrophages and neutrophils in the lung. In addition, the GSPIONs did not cause changes to airway resistance or induce inflammatory cytokines. Alveolar macrophages and neutrophils are critical regulators of pulmonary inflammatory diseases, including allergies, infections, asthma and chronic obstructive pulmonary disease (COPD). Therefore, pulmonary Magnetic Resonance (MR) imaging and preferential targeting of these lung resident cells by our nanoparticles offer precise imaging tools, which can be utilized to develop precision targeted radiotherapy as well as diagnostic tools for lung cancer, thereby having the potential to reduce the pulmonary complications of radiation.
Collapse
|
4
|
Sutunkova MP, Solovyeva SN, Chernyshov IN, Klinova SV, Gurvich VB, Shur VY, Shishkina EV, Zubarev IV, Privalova LI, Katsnelson BA. Manifestation of Systemic Toxicity in Rats after a Short-Time Inhalation of Lead Oxide Nanoparticles. Int J Mol Sci 2020; 21:ijms21030690. [PMID: 31973040 PMCID: PMC7038071 DOI: 10.3390/ijms21030690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022] Open
Abstract
Outbred female rats were exposed to inhalation of lead oxide nanoparticle aerosol produced right then and there at a concentration of 1.30 ± 0.10 mg/m3 during 5 days for 4 h a day in a nose-only setup. A control group of rats were sham-exposed in parallel under similar conditions. Even this short-time exposure of a relatively low level was associated with nanoparticles retention demonstrable by transmission electron microscopy in the lungs and the olfactory brain. Some impairments were found in the organism’s status in the exposed group, some of which might be considered lead-specific toxicological outcomes (in particular, increase in reticulocytes proportion, in δ-aminolevulinic acid (δ-ALA) urine excretion, and the arterial hypertension’s development).
Collapse
Affiliation(s)
- Marina P. Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Svetlana N. Solovyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Ivan N. Chernyshov
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Svetlana V. Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Vladimir B. Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Vladimir Ya. Shur
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Ekaterina V. Shishkina
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Ilya V. Zubarev
- The Institute of Natural Sciences, the Ural Federal University, 620000 Ekaterinburg, Russia; (V.Y.S.); (E.V.S.); (I.V.Z.)
| | - Larisa I. Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
| | - Boris A. Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., 620014 Ekaterinburg, Russia; (M.P.S.); (S.N.S.); (I.N.C.); (S.V.K.); (V.B.G.); (L.I.P.)
- Correspondence: ; Tel.: +7-343-253-04-21; Fax: +7-343-371-77-40
| |
Collapse
|
5
|
Chakraborty A, Royce SG, Plebanski M, Selomulya C. Glycine microparticles loaded with functionalized nanoparticles for pulmonary delivery. Int J Pharm 2019; 570:118654. [DOI: 10.1016/j.ijpharm.2019.118654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 01/24/2023]
|
6
|
Minigalieva IA, Katsnelson BA, Privalova LI, Sutunkova MP, Gurvich VB, Shur VY, Shishkina EV, Valamina IE, Makeyev OH, Panov VG, Varaksin AN, Bushueva TV, Sakhautdinova RR, Klinova SV, Solovyeva SN, Meshtcheryakova EY. Combined Subchronic Toxicity of Aluminum (III), Titanium (IV) and Silicon (IV) Oxide Nanoparticles and Its Alleviation with a Complex of Bioprotectors. Int J Mol Sci 2018. [PMID: 29534019 PMCID: PMC5877698 DOI: 10.3390/ijms19030837] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Stable suspensions of metal/metalloid oxide nanoparticles (MeO-NPs) obtained by laser ablation of 99.99% pure elemental aluminum, titanium or silicon under a layer of deionized water were used separately, or in three binary combinations, or in a ternary combination to induce subchronic intoxications in rats. To this end, the MeO-NPs were repeatedly injected intraperitoneally (i.p.) 18 times during 6 weeks before measuring a large number of functional, biochemical, morphological and cytological indices for the organism’s status. In many respects, the Al2O3-NP was found to be the most toxic species alone and the most dangerous component of the combinations studied. Mathematical modeling with the help of the Response Surface Methodology showed that, as well as in the case of any other binary toxic combinations previously investigated by us, the organism’s response to a simultaneous exposure to any two of the MeO-NP species under study was characterized by a complex interaction between all possible types of combined toxicity (additivity, subadditivity or superadditivity of unidirectional action and different variants of opposite effects) depending on which outcome this type was estimated for and on effect and dose levels. With any third MeO-NP species acting in the background, the type of combined toxicity displayed by the other two remained virtually the same or changed significantly, becoming either more or less unfavorable. Various harmful effects produced by the (Al2O3-NP + TiO2-NP + SiO2-NP)-combination, including its genotoxicity, were substantially attenuated by giving the rats per os during the entire exposure period a complex of innocuous bioactive substances expected to increase the organism’s antitoxic resistance.
Collapse
Affiliation(s)
- Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir Y Shur
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg 620000, Russia.
| | - Ekaterina V Shishkina
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg 620000, Russia.
| | - Irene E Valamina
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| | - Oleg H Makeyev
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| | - Vladimir G Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia.
| | - Anatoly N Varaksin
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, 20 Sofia Kovalevskaya Str., Ekaterinburg 620990, Russia.
| | - Tatiana V Bushueva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Renata R Sakhautdinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Svetlana N Solovyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Ekaterina Y Meshtcheryakova
- The Central Research Laboratory, The Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 620109, Russia.
| |
Collapse
|
7
|
Sutunkova MP, Privalova LI, Minigalieva IA, Gurvich VB, Panov VG, Katsnelson BA. The most important inferences from the Ekaterinburg nanotoxicology team's animal experiments assessing adverse health effects of metallic and metal oxide nanoparticles. Toxicol Rep 2018; 5:363-376. [PMID: 29854606 PMCID: PMC5977416 DOI: 10.1016/j.toxrep.2018.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 01/01/2023] Open
Abstract
During 2009-2017 we have studied nanoparticles of elemental silver or gold and of iron, copper, nickel, manganese, lead, zinc, aluminium and titanium oxides (Me-NPs) using, in most cases, a single low-dose intratracheal instillation 24 h before the bronchoalveolar lavage to obtain a fluid for cytological and biochemical assessment and, in all cases, repeated intraperitoneal injections in non-lethal doses to induce subchronic intoxications assessed by a lot of toxicodynamic and toxicokinetic features. We have also studied the same effects for a number of relevant combinations of these Me-NPs and have revealed some important patterns of their combined toxicity. Besides, we have carried out long-term inhalation experiments with Fe2O3, NiO and amorphous SiO2 nano-aerosols. We have demonstrated that Me-NPs are much more noxious as compared with their fine micrometric counterparts although the physiological mechanisms of their elimination from the lungs proved to be highly active. Even if water-insoluble, Me-NPs are significantly solubilized in some biological milieus in vitro and in vivo, which may explain some important peculiarities of their toxicity. At the same time, the in situ cytotoxicity, organ-systemic toxicity and in vivo genotoxicity of Me-NPs strongly depends on specific mechanisms characteristic of a particular metal. For some of the Me-NPs studied, we have proposed standards of presumably safe concentrations in workplace air. Along with this, we have proved that the adverse effects of Me-NPs could be significantly alleviated by background or preliminary administration of adequately composed combinations of some bioprotectors.
Collapse
Affiliation(s)
- Marina P. Sutunkova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Larisa I. Privalova
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Ilzira A. Minigalieva
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Vladimir B. Gurvich
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Vladimir G. Panov
- Institute of Industrial Ecology of Ural Branch of Russian Academy of Science, Ekaterinburg, 620990, Russia
| | - Boris A. Katsnelson
- The Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| |
Collapse
|
8
|
Minigalieva IA, Katsnelson BA, Panov VG, Privalova LI, Varaksin AN, Gurvich VB, Sutunkova MP, Shur VY, Shishkina EV, Valamina IE, Zubarev IV, Makeyev OH, Meshtcheryakova EY, Klinova SV. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology 2017; 380:72-93. [PMID: 28212817 DOI: 10.1016/j.tox.2017.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 11/28/2022]
Abstract
Stable suspensions of metal oxide nanoparticles (Me-NPs) obtained by laser ablation of 99.99% pure copper, zinc or lead under a layer of deionized water were used separately, in three binary combinations and a triple combination in two independent experiments on rats. In one of the experiments the rats were instilled with Me-NPs intratracheally (i.t.) (for performing a broncho-alveolar lavage in 24h to estimate the cytological and biochemical indices of the response of the lower airways), while in the other, Me-NPs were repeatedly injected intraperitoneally (i.p.) 18 times during 6 weeks (for estimating the accumulation of corresponding metals in the blood and their excretion with urine and feces and for assessing subchronic intoxication by a large number of functional and morphological indices). Mathematical description of the results from both experiments with the help of the Response Surface Methodology has shown that, as well as in the case of any other binary toxic combinations previously investigated by us, the response of the organism to a simultaneous exposure to any two of the Me-NPs under study is characterized by complex interactions between all possible types of combined toxicity (additivity, subadditivity or superadditivity of unidirectional action and different variants of opposite effects) depending on which effect it is estimated for as well as on the levels of the effect and dose. With any third Me-NP species acting in the background, the type of combined toxicity displayed by the other two may change significantly (as in the earlier described case of a triple combination of soluble metal salts). It is shown that various harmful effects produced by CuO-NP+ZnO-NP+PbO-NP combination may be substantially attenuated by giving rats per os a complex of innocuous bioactive substances theoretically expected to provide a protective integral and/or metal-specific effect during one month before i.t. instillation or during the entire period of i.p. injections.
Collapse
Affiliation(s)
- Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia.
| | - Vladimir G Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Anatoly N Varaksin
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| | - Vladimir Ya Shur
- School of Natural Sciences and Mathematics, The Ural Federal University, Ekaterinburg, Russia
| | - Ekaterina V Shishkina
- School of Natural Sciences and Mathematics, The Ural Federal University, Ekaterinburg, Russia
| | - Irene E Valamina
- The Central Research Laboratory of the Ural Medical University, Ekaterinburg, Russia
| | - Ilya V Zubarev
- School of Natural Sciences and Mathematics, The Ural Federal University, Ekaterinburg, Russia
| | - Oleg H Makeyev
- The Central Research Laboratory of the Ural Medical University, Ekaterinburg, Russia
| | | | - Svetlana V Klinova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, 620014, Russia
| |
Collapse
|
9
|
Katsnelson BA, Privalova LI, Sutunkova MP, Minigalieva IA, Gurvich VB, Shur VY, Shishkina EV, Makeyev OH, Valamina IE, Varaksin AN, Panov VG. Experimental Research into Metallic and Metal Oxide Nanoparticle Toxicity In Vivo. BIOACTIVITY OF ENGINEERED NANOPARTICLES 2017. [DOI: 10.1007/978-981-10-5864-6_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Katsnelson BA, Privalova LI, Sutunkova MP, Gurvich VB, Loginova NV, Minigalieva IA, Kireyeva EP, Shur VY, Shishkina EV, Beikin YB, Makeyev OH, Valamina IE. Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview). Int J Nanomedicine 2015; 10:3013-29. [PMID: 25945048 PMCID: PMC4406262 DOI: 10.2147/ijn.s80843] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The purpose of this paper is to overview and summarize previously published results of our experiments on white rats exposed to either a single intratracheal instillation or repeated intraperitoneal injections of silver, gold, iron oxide, copper oxide, nickel oxide, and manganese oxide nanoparticles (NPs) in stable water suspensions without any chemical additives. Based on these results and some corroborating data of other researchers we maintain that these NPs are much more noxious on both cellular and systemic levels as compared with their 1 μm or even submicron counterparts. However, within the nanometer range the dependence of systemic toxicity on particle size is intricate and non-unique due to complex and often contra-directional relationships between the intrinsic biological aggressiveness of the specific NPs, on the one hand, and complex mechanisms that control their biokinetics, on the other. Our data testify to the high activity of the pulmonary phagocytosis of NPs deposited in airways. This fact suggests that safe levels of exposure to airborne NPs are possible in principle. However, there are no reliable foundations for establishing different permissible exposure levels for particles of different size within the nanometric range. For workroom air, such permissible exposure levels of metallic NP can be proposed at this stage, even if tentatively, based on a sufficiently conservative approach of decreasing approximately tenfold the exposure limits officially established for respective micro-scale industrial aerosols. It was shown that against the background of adequately composed combinations of some bioactive agents (comprising pectin, multivitamin-multimineral preparations, some amino acids, and omega-3 polyunsaturated fatty acid) the systemic toxicity and even genotoxicity of metallic NPs could be markedly attenuated. Therefore we believe that, along with decreasing NP-exposures, enhancing organisms’ resistance to their adverse action with the help of such bioprotectors can prove an efficient auxiliary tool of health risk management in occupations connected with them.
Collapse
Affiliation(s)
- Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Nadezhda V Loginova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ekaterina P Kireyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Vladimir Y Shur
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg, Russia
| | - Ekaterina V Shishkina
- The Institute of Natural Sciences, The Ural Federal University, Ekaterinburg, Russia
| | - Ya B Beikin
- The City Clinical Diagnostics Centre, Ekaterinburg, Russia
| | | | | |
Collapse
|
11
|
Privalova LI, Katsnelson BA, Loginova NV, Gurvich VB, Shur VY, Beikin YB, Sutunkova MP, Minigalieva IA, Shishkina EV, Pichugova SV, Tulakina LG, Beljayeva SV. Some characteristics of free cell population in the airways of rats after intratracheal instillation of copper-containing nano-scale particles. Int J Mol Sci 2014; 15:21538-53. [PMID: 25421246 PMCID: PMC4264240 DOI: 10.3390/ijms151121538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/12/2014] [Indexed: 12/19/2022] Open
Abstract
We used stable water suspensions of copper oxide particles with mean diameter 20 nm and of particles containing copper oxide and element copper with mean diameter 340 nm to assess the pulmonary phagocytosis response of rats to a single intratracheal instillation of these suspensions using optical, transmission electron, and semi-contact atomic force microscopy and biochemical indices measured in the bronchoalveolar lavage fluid. Although both nano and submicron ultrafine particles were adversely bioactive, the former were found to be more toxic for lungs as compared with the latter while evoking more pronounced defense recruitment of alveolar macrophages and especially of neutrophil leukocytes and more active phagocytosis. Based on our results and literature data, we consider both copper solubilization and direct contact with cellular organelles (mainly, mitochondria) of persistent particles internalized by phagocytes as probable mechanisms of their cytotoxicity.
Collapse
Affiliation(s)
- Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Nadezhda V Loginova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Vladimir Y Shur
- The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg 620000, Russia.
| | - Yakov B Beikin
- The City Clinical Diagnostics Centre, 28 Dekabristov Str., Ekaterinburg 620142, Russia.
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 620014, Russia.
| | - Ekaterina V Shishkina
- The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg 620000, Russia.
| | - Svetlana V Pichugova
- The City Clinical Diagnostics Centre, 28 Dekabristov Str., Ekaterinburg 620142, Russia.
| | - Ludmila G Tulakina
- The City Clinical Diagnostics Centre, 28 Dekabristov Str., Ekaterinburg 620142, Russia.
| | - Svetlana V Beljayeva
- The City Clinical Diagnostics Centre, 28 Dekabristov Str., Ekaterinburg 620142, Russia.
| |
Collapse
|
12
|
Privalova LI, Katsnelson BA, Loginova NV, Gurvich VB, Shur VY, Valamina IE, Makeyev OH, Sutunkova MP, Minigalieva IA, Kireyeva EP, Rusakov VO, Tyurnina AE, Kozin RV, Meshtcheryakova EY, Korotkov AV, Shuman EA, Zvereva AE, Kostykova SV. Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors. Int J Mol Sci 2014; 15:12379-406. [PMID: 25026171 PMCID: PMC4139849 DOI: 10.3390/ijms150712379] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 12/27/2022] Open
Abstract
In the copper metallurgy workplace air is polluted with condensation aerosols, which a significant fraction of is presented by copper oxide particles<100 nm. In the scientific literature, there is a lack of their in vivo toxicity characterization and virtually no attempts of enhancing organism's resistance to their impact. A stable suspension of copper oxide particles with mean (±SD) diameter 20±10 nm was prepared by laser ablation of pure copper in water. It was being injected intraperitoneally to rats at a dose of 10 mg/kg (0.5 mg per mL of deionized water) three times a week up to 19 injections. In parallel, another group of rats was so injected with the same suspension against the background of oral administration of a "bio-protective complex" (BPC) comprising pectin, a multivitamin-multimineral preparation, some amino acids and fish oil rich in ω-3 PUFA. After the termination of injections, many functional and biochemical indices for the organism's status, as well as pathological changes of liver, spleen, kidneys, and brain microscopic structure were evaluated for signs of toxicity. In the same organs we have measured accumulation of copper while their cells were used for performing the Random Amplification of Polymorphic DNA (RAPD) test for DNA fragmentation. The same features were assessed in control rats infected intraperitoneally with water with or without administration of the BPC. The copper oxide nanoparticles proved adversely bio-active in all respects considered in this study, their active in vivo solubilization in biological fluids playing presumably an important role in both toxicokinetics and toxicodynamics. The BPC proposed and tested by us attenuated systemic and target organs toxicity, as well as genotoxicity of this substance. Judging by experimental data obtained in this investigation, occupational exposures to nano-scale copper oxide particles can present a significant health risk while the further search for its management with the help of innocuous bioprotectors seems to be justified.
Collapse
Affiliation(s)
- Larisa I Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Boris A Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Nadezhda V Loginova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Vladimir B Gurvich
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Vladimir Y Shur
- The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg 630000, Russia.
| | - Irene E Valamina
- Central Research Laboratory, the Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 630109, Russia.
| | - Oleg H Makeyev
- Central Research Laboratory, the Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 630109, Russia.
| | - Marina P Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Ilzira A Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Ekaterina P Kireyeva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Vadim O Rusakov
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Str., Ekaterinburg 630014, Russia.
| | - Anastasia E Tyurnina
- The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg 630000, Russia.
| | - Roman V Kozin
- The Institute of Natural Sciences, the Ural Federal University, Ekaterinburg 630000, Russia.
| | - Ekaterina Y Meshtcheryakova
- Central Research Laboratory, the Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 630109, Russia.
| | - Artem V Korotkov
- Central Research Laboratory, the Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 630109, Russia.
| | - Eugene A Shuman
- Central Research Laboratory, the Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 630109, Russia.
| | - Anastasia E Zvereva
- Central Research Laboratory, the Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 630109, Russia.
| | - Svetlana V Kostykova
- Central Research Laboratory, the Ural State Medical University, 17 Klyuchevskaya Str., Ekaterinburg 630109, Russia.
| |
Collapse
|
13
|
Comparative in vivo assessment of some adverse bioeffects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver's effects with a complex of innocuous bioprotectors. Int J Mol Sci 2013; 14:2449-83. [PMID: 23354478 PMCID: PMC3587996 DOI: 10.3390/ijms14022449] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 12/21/2022] Open
Abstract
Stable suspensions of nanogold (NG) and nanosilver (NS) with mean particle diameter 50 and 49 nm, respectively, were prepared by laser ablation of metals in water. To assess rat’s pulmonary phagocytosis response to a single intratracheal instillation of these suspensions, we used optical, transmission electron, and semi-contact atomic force microscopy. NG and NS were also repeatedly injected intraperitoneally into rats at a dose of 10 mg/kg (0.5 mg per mL of deionized water) three times a week, up to 20 injections. A group of rats was thus injected with NS after oral administration of a “bioprotective complex” (BPC) comprised of pectin, multivitamins, some amino acids, calcium, selenium, and omega-3 PUFA. After the termination of the injections, many functional and biochemical indices and histopathological features of the spleen, kidneys and liver were evaluated for signs of toxicity, and accumulation of NG or NS in these organs was measured. From the same rats, we obtained cell suspensions of different tissues for performing the RAPD test. It was demonstrated that, although both nanometals were adversely bioactive in all respects considered in this study, NS was more noxious as compared with NG, and that the BPC tested by us attenuated both the toxicity and genotoxicity of NS.
Collapse
|
14
|
Katsnelson BA, Privalova LI, Kuzmin SV, Gurvich VB, Sutunkova MP, Kireyeva EP, Minigalieva IA. An Approach to Tentative Reference Levels Setting for Nanoparticles in the Workroom Air Based on Comparing Their Toxicity with That of Their Micrometric Counterparts: A Case Study of Iron Oxide Fe3O4. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/143613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We overview the state of the art in the field of safe exposure levels setting for nanomaterials together with the previously published results of our experimental investigations characterizing comparative toxicity of the iron oxide (magnetite) in the form of microparticles and nanoparticles of different size and comparative activity of the defensive alveolar phagocytosis response to their pulmonary deposition. An approach to the substantiation of acceptable workplace exposure limits of metallic nanoparticles is discussed and, specifically, the tentative reference level for magnetite nanoparticles is recommended.
Collapse
Affiliation(s)
- Boris A. Katsnelson
- Department of Toxicology and Biological Prophylaxis, Medical Research Center for Prophylaxis Health Protection in Industrial Workers, 30 Popov Street, Ekaterinburg 620014, Russia
| | - Larisa I. Privalova
- Department of Toxicology and Biological Prophylaxis, Medical Research Center for Prophylaxis Health Protection in Industrial Workers, 30 Popov Street, Ekaterinburg 620014, Russia
| | - Sergey V. Kuzmin
- Department of Toxicology and Biological Prophylaxis, Medical Research Center for Prophylaxis Health Protection in Industrial Workers, 30 Popov Street, Ekaterinburg 620014, Russia
| | - Vladimir B. Gurvich
- Department of Toxicology and Biological Prophylaxis, Medical Research Center for Prophylaxis Health Protection in Industrial Workers, 30 Popov Street, Ekaterinburg 620014, Russia
| | - Marina P. Sutunkova
- Department of Toxicology and Biological Prophylaxis, Medical Research Center for Prophylaxis Health Protection in Industrial Workers, 30 Popov Street, Ekaterinburg 620014, Russia
| | - Ekaterina P. Kireyeva
- Department of Toxicology and Biological Prophylaxis, Medical Research Center for Prophylaxis Health Protection in Industrial Workers, 30 Popov Street, Ekaterinburg 620014, Russia
| | - Ilzira A. Minigalieva
- Department of Toxicology and Biological Prophylaxis, Medical Research Center for Prophylaxis Health Protection in Industrial Workers, 30 Popov Street, Ekaterinburg 620014, Russia
| |
Collapse
|