1
|
Virchea LI, Frum A, Georgescu C, Pecsenye B, Máthé E, Mironescu M, Crăciunaș MT, Totan M, Tănăsescu C, Gligor FG. An Overview of the Bioactivity of Spontaneous Medicinal Plants Suitable for the Improvement of Lung Cancer Therapies. Pharmaceutics 2025; 17:336. [PMID: 40143000 PMCID: PMC11945085 DOI: 10.3390/pharmaceutics17030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Lung cancer is the second cause of death in the world, being the most common type of cancer. Conventional therapies are not always recommended due to the particularities of patients. Thus, there is a need to develop new anticancer therapeutic agents. Medicinal plants constitute a source of bioactive compounds with therapeutic potential in lung cancer. The purpose of our narrative review is to evaluate and summarize the main studies on the cytotoxic effects of ten medicinal plants and their extracts, volatile oils, and bioactive compounds. We have also included studies that reported protective effects of these natural products against chemotherapy-induced toxicity. Studies were identified by assessing five databases using specific keywords. The investigated natural products possess cytotoxic effects on lung cancer cell cultures. Several mechanisms of action have been proposed including cell death by apoptosis, necrosis or autophagy, cell cycle arrest, the modulation of signaling pathways (PI3K/Akt and MAPK), the inhibition of migration, invasion and metastasis, antiangiogenesis, and targeting inflammation. Different bioactive compounds exhibit protective effects against chemotherapy-induced toxicity. Studies have shown promising results. To develop new therapeutic agents useful in treating lung cancer, the plants included in this review should be more deeply investigated to reveal their molecular mechanisms of action.
Collapse
Affiliation(s)
- Lidia-Ioana Virchea
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, Lucian Blaga Str. 2A, 550169 Sibiu, Romania; (L.-I.V.); (M.T.); (C.T.); (F.-G.G.)
| | - Adina Frum
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, Lucian Blaga Str. 2A, 550169 Sibiu, Romania; (L.-I.V.); (M.T.); (C.T.); (F.-G.G.)
| | - Cecilia Georgescu
- Faculty of Agriculture Sciences, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, Dr. Ion Rațiu Str. 7-9, 550012 Sibiu, Romania; (C.G.); (M.M.)
| | - Bence Pecsenye
- Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary; (B.P.); (E.M.)
| | - Endre Máthé
- Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 128, 4032 Debrecen, Hungary; (B.P.); (E.M.)
- Department of Life Sciences, Faculty of Medicine, Vasile Goldis, Western University from Arad, L. Rebreanu Str. 86, 310414 Arad, Romania
| | - Monica Mironescu
- Faculty of Agriculture Sciences, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, Dr. Ion Rațiu Str. 7-9, 550012 Sibiu, Romania; (C.G.); (M.M.)
| | - Mihai-Tudor Crăciunaș
- Faculty of Sciences, “Lucian Blaga” University of Sibiu, Dr. Ion Rațiu Str. 5-7, 550012 Sibiu, Romania;
| | - Maria Totan
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, Lucian Blaga Str. 2A, 550169 Sibiu, Romania; (L.-I.V.); (M.T.); (C.T.); (F.-G.G.)
| | - Ciprian Tănăsescu
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, Lucian Blaga Str. 2A, 550169 Sibiu, Romania; (L.-I.V.); (M.T.); (C.T.); (F.-G.G.)
| | - Felicia-Gabriela Gligor
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, Lucian Blaga Str. 2A, 550169 Sibiu, Romania; (L.-I.V.); (M.T.); (C.T.); (F.-G.G.)
| |
Collapse
|
2
|
A Comparative Analysis of the Anatomy, Phenolic Profile, and Antioxidant Capacity of Tussilago farfara L. Vegetative Organs. PLANTS 2022; 11:plants11131663. [PMID: 35807614 PMCID: PMC9269468 DOI: 10.3390/plants11131663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022]
Abstract
Tussilago farfara L., a perennial species, is a medicinal herb used in traditional medicine, mainly for the treatment of respiratory tract-related pathology. In traditional Chinese medicine, flower buds are preferred; in Europe, the leaves are used; and in some parts of India, the whole plant is utilized. This preferential usage of the plant organs might be based on differences in the chemical composition due to environmental conditions, along with preferred traditional and cultural approaches. In this article, the impact of pedoclimatic growth conditions on the morpho-anatomical development and phytochemical profile of the plant were studied on T. farfara in the vegetative state, collected from two different locations in the Romanian spontaneous flora, revealing significant variations. Furthermore, the antioxidant profile of the specific extracts from the aerial and subterranean plant parts is also in accordance with these discrepancies. The plant anatomy was assessed histologically by optical microscopy, while the analytical chemistry evaluation was based on LC/MS and spectral methods for the evaluation of the antioxidant and enzyme inhibitory activity. To our knowledge, this is the first comparative analysis contextually reporting on the histology, phenolic profile, antioxidant capacity, and geographical location of the vegetative form of T. farfara.
Collapse
|
3
|
Sauruk da Silva K, Carla da Silveira B, Bueno LR, Malaquias da Silva LC, da Silva Fonseca L, Fernandes ES, Maria-Ferreira D. Beneficial Effects of Polysaccharides on the Epithelial Barrier Function in Intestinal Mucositis. Front Physiol 2021; 12:714846. [PMID: 34366901 PMCID: PMC8339576 DOI: 10.3389/fphys.2021.714846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal mucositis is a clinically relevant side effect of anticancer therapies. It is experienced by 60–100% of patients undergoing treatment with high doses of chemotherapy, radiation therapy, and bone marrow transplantation. Intestinal mucositis can manifest as pain, weight loss, inflammation, diarrhea, rectal bleeding, and infection; affecting normal nutritional intake and intestinal function. It often impacts adherence to anticancer therapy as it frequently limits patient’s ability to tolerate treatment, causing schedule delays, interruptions, or premature discontinuation. In some cases, local and systemic secondary infections are observed, increasing the costs toward medical care and hospitalization. Several strategies for managing mucositis are available which do not always halt this condition. In this context, new therapeutic strategies are under investigation to prevent or treat intestinal mucositis. Polysaccharides from natural resources have recently become promising molecules against intestinal damage due to their ability to promote mucosal healing and their anti-inflammatory actions. These effects are associated with the protection of intestinal mucosa and regulation of microbiota and immune system. This review aims to discuss the recent advances of polysaccharides from natural resources as potential therapies for intestinal mucositis. The source, species, doses, treatment schedules, and mechanisms of action of polysaccharides will be discussed in detail.
Collapse
Affiliation(s)
- Karien Sauruk da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Bruna Carla da Silveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Laryssa Regis Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Liziane Cristine Malaquias da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Lauany da Silva Fonseca
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| |
Collapse
|
4
|
Chen S, Dong L, Quan H, Zhou X, Ma J, Xia W, Zhou H, Fu X. A review of the ethnobotanical value, phytochemistry, pharmacology, toxicity and quality control of Tussilago farfara L. (coltsfoot). JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113478. [PMID: 33069788 PMCID: PMC7561605 DOI: 10.1016/j.jep.2020.113478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tussilago farfara L. (commonly called coltsfoot), known as a vital folk medicine, have long been used to treat various respiratory disorders and consumed as a vegetable in many parts of the world since ancient times. AIM OF THE REVIEW This review aims to provide a critical evaluation of the current knowledge on the ethnobotanical value, phytochemistry, pharmacology, toxicity and quality control of coltsfoot, thus provide a basis for further investigations. MATERIALS AND METHODS A detailed literature search was obtained using various online search engines (e.g. Google Scholar, Web of Science, Science Direct, Baidu Scholar, PubMed and CNKI). Additional information was sourced from ethnobotanical literature focusing on Chinese and European flora. The plant synonyms were validated by the database 'The Plant List' (www.theplantlist.org). RESULTS Coltsfoot has diverse uses in local and traditional medicine, but similarities have been noticed, specifically for relieving inflammatory conditions, respiratory and infectious diseases in humans. Regarding its pharmacological activities, many traditional uses of coltsfoot are supported by modern in vitro or in vivo pharmacological studies such as anti-inflammatory activities, neuro-protective activity, anti-diabetic, anti-oxidant activity. Quantitative analysis (e.g. GC-MS, UHPLC-MRMHR) indicated the presence of a rich (>150) pool of chemicals, including sesquiterpenes, phenolic acids, flavonoids, chromones, pyrrolizidine alkaloids (PAs) and others from its leaves and buds. In addition, adverse events have resulted from a collection of the wrong plant which contains PAs that became the subject of public concern attributed to their highly toxic. CONCLUSIONS So far, remarkable progress has been witnessed in phytochemistry and pharmacology of coltsfoot. Thus, some traditional uses have been well supported and clarified by modern pharmacological studies. Discovery of therapeutic natural products and novel structures in plants for future clinical and experimental studies are still a growing interest. Furthermore, well-designed studies in vitro particularly in vivo are required to establish links between the traditional uses and bioactivities, as well as ensure safety before clinical use. In addition, the good botanical identification of coltsfoot and content of morphologically close species is a precondition for quality supervision and control. Moreover, strict quality control measures are required in the studies investigating any aspect of the pharmacology and chemistry of coltsfoot.
Collapse
Affiliation(s)
- Shujuan Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| | - Lin Dong
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Yinchuan, 750004, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan, 750004, China.
| | - Hongfeng Quan
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| | - Xirong Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| | - Jiahua Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| | - Wenxin Xia
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| | - Hao Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Yinchuan, 750004, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan, 750004, China.
| |
Collapse
|