1
|
Vieira A, Mateus C, Fonseca IM, Domingues F, Oleastro M, Ferreira S. The dual action of probiotic lactobacilli in suppressing virulence and survival of Arcobacter butzleri. Microb Pathog 2025; 204:107589. [PMID: 40239725 DOI: 10.1016/j.micpath.2025.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Arcobacter butzleri is a widely distributed foodborne and waterborne pathogen, increasingly recognized as an emerging enteropathogen. Understanding its survival mechanisms and interactions with probiotics is crucial for developing targeted intervention strategies. A. butzleri must withstand various hostile conditions to successfully colonize the gastrointestinal tract, including inhibition by probiotics, such as Limosilactobacillus reuteri, Lactobacillus acidophilus and Lactiplantibacillus plantarum. Thus, this study aimed to assess the survival of A. butzleri under acidic conditions and determine its minimum inhibitory concentration (MIC) for bile salts. Additionally, the antimicrobial potential of the lactobacilli strains was evaluated by analysing the effects of their culture-free supernatant (CFS) on A. butzleri growth, coculture interactions, and biofilm formation. The influence of lactobacilli on A. butzleri was further investigated through competition, displacement and exclusion assays using Caco-2 cell models. The results indicate that lactobacilli strains exhibit tolerance to acidic environments and physiological bile salt concentrations, whereas A. butzleri was more susceptible to acidic stress. The antagonistic effect of lactobacilli was evidenced by growth inhibition of A. butzleri in the presence of CFS or during coculture. However, CFS from certain lactobacilli strains was found to enhance biofilm formation, highlighting potential consequences. Furthermore, while lactobacilli did not demonstrate significant antagonistic effects in competition assays, they effectively displaced and excluded A. butzleri in the Caco-2 infection model. Overall, these findings suggest that probiotic lactobacilli can inhibit A. butzleri growth, yet their impact on its virulence remains uncertain. This underscores the need for strain-specific probiotic selection to effectively target this pathogen and emphasizes that not every probiotic contribute to the prevention of A. butzleri infections.
Collapse
Affiliation(s)
- Alexandre Vieira
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cristiana Mateus
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Inês M Fonseca
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Fernanda Domingues
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Susana Ferreira
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
2
|
Danilova TA, Adzhieva AA, Danilina GA, Minko AG, Dmitrenko OA, Zhukhovitsky VG. Antimicrobial Effect of Lactobacillus Supernatant on Polyresistant Bacteria of the ESKAPE Group. Bull Exp Biol Med 2025; 178:615-618. [PMID: 40293592 DOI: 10.1007/s10517-025-06385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 04/30/2025]
Abstract
Lactobacillus supernatants exhibit pronounced antimicrobial activity against a number of bacteria of bacteria of the ESKAPE group. The antimicrobial activity of the supernatant was evaluated using the broth microdilution assay on polystyrene plates. The highest level of inhibition (more than 10 times compared with the control) was observed against gram-positive S. aureus. Among gram-negative bacteria, the maximum level of inhibition (9.4 times compared with the control) was noted for P. aeruginosa and slightly lower in A. baumannii and K. pneumoniae. The supernatants also inhibited biofilm formation by both gram-positive and gram-negative bacteria.
Collapse
Affiliation(s)
- T A Danilova
- N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - A A Adzhieva
- N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G A Danilina
- N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A G Minko
- N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - O A Dmitrenko
- N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V G Zhukhovitsky
- N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Russian Medical Academy of Continuing Professional Education (RMANPO), Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
3
|
Javadi K, Emadzadeh MR, Mohammadzadeh Hosseini Moghri SAH, Halaji M, Parsian H, Rajabnia M, Pournajaf A. Anti-biofilm and antibacterial effect of bacteriocin derived from Lactobacillus plantarum on the multidrug-resistant Acinetobacter baumannii. Protein Expr Purif 2025; 226:106610. [PMID: 39306312 DOI: 10.1016/j.pep.2024.106610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
This research examines the impact of bacteriocin derived from Lactobacillus plantarum PTCC 1745 on the biofilm formations of A. baumannii isolates. Bacteriocin derived from L. plantarum PTCC 1745 was obtained through ammonium sulfate precipitation, cation-exchange chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC). Testing for bacteriocin susceptibility has been conducted using the broth dilution method. The anti-biofilm activity of bacteriocin was evaluated using a microtiter plate method. Quantitative real-time PCR assay evaluated bap gene expression in bacteriocin-treated cells. According to SDS-PAGE, bacteriocin from L. plantarum has a 25-kDa apparent molecular weight. The MICs of bacteriocin ranged from 30 to 120 μg/mL, while the MBCs varied between 60 and 120 μg/mL. Compared to the non-treated group, strains bacteriocin-treated isolates had 59 % less ability to form biofilm. The mean relative expression of the bap gene among the MDR A. baumannii isolates decreased by 52 % compared to the untreated control. This study demonstrated that bacteriocin derived from L. plantarum PTCC 1745 had antibacterial and antibiofilm activity against MDR A. baumannii isolates.
Collapse
Affiliation(s)
- Kasra Javadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | | | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abazar Pournajaf
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
Gómez-Mejia A, Orlietti M, Tarnutzer A, Mairpady Shambat S, Zinkernagel AS. Inhibition of Streptococcus pyogenes biofilm by Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus. mSphere 2024; 9:e0043024. [PMID: 39360839 PMCID: PMC11520294 DOI: 10.1128/msphere.00430-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/10/2024] [Indexed: 10/30/2024] Open
Abstract
The human pathobiont Streptococcus pyogenes forms biofilms and causes infections, such as pharyngotonsillitis and necrotizing fasciitis. Bacterial biofilms are more resilient to antibiotic treatment, and new therapeutic strategies are needed to control biofilm-associated infections, such as recurrent pharyngotonsillitis. Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus are two bacterial commensals used for their probiotic properties. This study aimed to elucidate the anti-biofilm properties of L. plantarum and L. rhamnosus cell-free supernatants (LPSN and LRSN, respectively) on S. pyogenes biofilms grown in vitro in supplemented minimal medium. When planktonic or biofilm S. pyogenes were exposed to LPSN or LRSN, S. pyogenes survival was reduced significantly in a concentration-dependent manner, and the effect was more pronounced on preformed biofilms. Enzymatic digestion of LPSN and LRSN suggested that glycolipid compounds might cause the antimicrobial effect. In conclusion, this study indicates that L. plantarum and L. rhamnosus produce glycolipid bioactive compounds that reduce the viability of S. pyogenes in planktonic and biofilm cultures.IMPORTANCEStreptococcus pyogenes infections are a significant concern for populations at risk, such as children and the elderly, as non-invasive conditions such as impetigo and strep throat can lead to severe invasive diseases such as necrotizing fasciitis. Despite its susceptibility to current antibiotics, the formation of biofilm by this pathogen decreases the efficacy of antibiotic treatment alone. The ability of commensal lactobacillus to kill S. pyogenes has been documented by previous studies using in vitro settings. The relevance of our study is in using a physiological setup and a more detailed understanding of the nature of the lactobacillus molecule affecting the viability of S. pyogenes. This additional knowledge will help for a better comprehension of the molecules' characteristics and kinetics, which in turn will facilitate new avenues of research for its translation to new therapies.
Collapse
Affiliation(s)
- Alejandro Gómez-Mejia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Mariano Orlietti
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Andrea Tarnutzer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Gutiérrez-Fernández J, Cerezo-Collado L, Garcés V, Alarcón-Guijo P, Delgado-López JM, Dominguez-Vera JM. Probiotic-Loaded Bacterial Cellulose as an Alternative to Combat Carbapenem-Resistant Bacterial Infections. Antibiotics (Basel) 2024; 13:1003. [PMID: 39596698 PMCID: PMC11591192 DOI: 10.3390/antibiotics13111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Carbapenems are one of the mainstays of treatment for antibiotic-resistant bacteria (ARB). This has made the rise of carbapenem-resistant bacteria a threat to global health. In fact, the World Health Organization (WHO) has identified carbapenem-resistant bacteria as critical pathogens, and the development of novel antibacterials capable of combating infections caused by these bacteria is a priority. Objective: With the aim of finding new alternatives to fight against ARB and especially against carbapenem-resistant bacteria, we have developed a series of living materials formed by incorporating the probiotics Lactobacillus plantarum (Lp), Lactobacillus fermentum (Lf), and a mixture of both (L. plantarum+L. fermentum) into bacterial cellulose (BC). Results: These probiotic-loaded bacterial celluloses inhibited the proliferation of three ARB, including two carbapenem-resistant enterobacteria (CRE), identified as Klebsiella pneumoniae and Enterobacter cloacae, and a carbapenem-resistant Pseudomonas aeruginosa. Interestingly, while the probiotics L. plantarum, L. fermentum, and the mixture of both were found to be inactive against these ARB, they became active once incorporated into BC. Conclusions: The increase in activity is due to the known effect that cells increase their activity once incorporated into a suitable matrix, forming a living material. For the same reasons, the probiotics in the living materials BC-L. plantarum, BC-L. fermentum, and BC-L. plantarum+L. fermentum showed increased stability, allowing them to be stored with bacterial activity for long periods of time (two months).
Collapse
Affiliation(s)
| | - Laura Cerezo-Collado
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - Víctor Garcés
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - Pablo Alarcón-Guijo
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - José M. Delgado-López
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| | - Jose M. Dominguez-Vera
- Departmento de Química Inorgánica, Instituto de Biotecnología, Universidad de Granada. 18071 Granada, Spain; (L.C.-C.); (V.G.); (P.A.-G.)
| |
Collapse
|
6
|
Guan C, Li F, Yu P, Chen X, Yin Y, Chen D, Gu R, Zhang C, Pang B. Isolation, Identification and Antibacterial Characteristics of Lacticaseibacillus rhamnosus YT. Foods 2024; 13:2706. [PMID: 39272473 PMCID: PMC11394637 DOI: 10.3390/foods13172706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Pathogenic microorganisms have been detected in fermented food. Combining the enormous class of the pathogens and their continuously appearing mutants or novel species, it is important to select suitable and safe antibacterial agents for fermented food safety. Lactic acid bacteria (LAB) which produce diverse imperative antimicrobial metabolites have an immense number of applications in the food industry. Here, the human-derived strain YT was isolated due to its cell-free supernatant (CFS-YT) and cells (Cs-YT), respectively performed obvious inhibitory ring to Gram-positive and -negative spoilage bacteria. Strain YT was identified as Lacticaseibacillus rhamnosus by the 16s rDNA sequence and morphology. The antibacterial activity of CFS-YT was demonstrated to be growth-dependent, pHs-sensitive, broadly thermostable and enzyme-insensitive. Cs-YT displayed a broad antibacterial spectrum with the action mode of bacteriostasis. The antibacterial activity of Cs-YT was due to substances located at the cell surface which were sensitive to heat, stable at broad pH gradients and sensitive to specific enzymes. These data suggested that L. rhamnosus YT could be used as an alternative antimicrobial agent in fermented food biopreservation.
Collapse
Affiliation(s)
- Chengran Guan
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Feng Li
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Peng Yu
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xuan Chen
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Dawei Chen
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ruixia Gu
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chenchen Zhang
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Bo Pang
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
7
|
Urcan AC, Criste AD, Bobiș O, Cornea-Cipcigan M, Giurgiu AI, Dezmirean DS. Evaluation of Functional Properties of Some Lactic Acid Bacteria Strains for Probiotic Applications in Apiculture. Microorganisms 2024; 12:1249. [PMID: 38930631 PMCID: PMC11205645 DOI: 10.3390/microorganisms12061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
This study evaluates the suitability of three lactic acid bacteria (LAB) strains-Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Apilactobacillus kunkeei-for use as probiotics in apiculture. Given the decline in bee populations due to pathogens and environmental stressors, sustainable alternatives to conventional treatments are necessary. This study aimed to assess the potential of these LAB strains in a probiotic formulation for bees through various in vitro tests, including co-culture interactions, biofilm formation, auto-aggregation, antioxidant activity, antimicrobial activity, antibiotic susceptibility, and resistance to high osmotic concentrations. This study aimed to assess both the individual effects of the strains and their combined effects, referred to as the LAB mix. Results indicated no mutual antagonistic activity among the LAB strains, demonstrating their compatibility with multi-strain probiotic formulations. The LAB strains showed significant survival rates under high osmotic stress and simulated gastrointestinal conditions. The LAB mix displayed enhanced biofilm formation, antioxidant activity, and antimicrobial efficacy against different bacterial strains. These findings suggest that a probiotic formulation containing these LAB strains could be used for a probiotic formulation, offering a promising approach to mitigating the negative effects of pathogens. Future research should focus on in vivo studies to validate the efficacy of these probiotic bacteria in improving bee health.
Collapse
Affiliation(s)
- Adriana Cristina Urcan
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.C.U.); (A.D.C.)
| | - Adriana Dalila Criste
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.C.U.); (A.D.C.)
| | - Otilia Bobiș
- Department of Apiculture and Sericulture, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.B.); (D.S.D.)
| | - Mihaiela Cornea-Cipcigan
- Department of Horticulture and Landscaping, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Alexandru-Ioan Giurgiu
- Department of Apiculture and Sericulture, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.B.); (D.S.D.)
| | - Daniel Severus Dezmirean
- Department of Apiculture and Sericulture, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (O.B.); (D.S.D.)
| |
Collapse
|
8
|
Netto de Oliveira da Cunha C, Rodeghiero Collares S, Carvalho Rodrigues D, Walcher DL, Quintana de Moura M, Rodrigues Martins LH, Baracy Klafke G, de Oliveira Arias JL, Carapelli R, do Santos Espinelli Junior JB, Scaini CJ, Farias da Costa de Avila L. The larvicidal effect of the supernatant of Lactobacillus acidophilus ATCC 4356 on Toxocara canis. Exp Parasitol 2024; 258:108720. [PMID: 38367945 DOI: 10.1016/j.exppara.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
Human toxocariasis is a parasitic anthropozoonosis that is difficult to treat and control. A previous study carried out with Lactobacillus acidophilus ATCC 4356 revealed that the cell free supernatant (CFS) of this probiotic killed 100% of Toxocara canis larvae in vitro. The present study aimed to investigate the characteristics of the CFS of L. acidophilus ATCC 4356, which may be involved in its larvicidal effects on T. canis. L. acidophilus ATCC 4356 was cultured, and lactic and acetic acids present in the CFS were quantified by high performance liquid chromatography (HPLC). The levels of pH and H2O2 were also analyzed. To assess the larvicidal effect of the CFS, this was tested pure and diluted (1:2 to 1:128) on T. canis larvae. High concentrations of lactic and acetic acids were detected in the CFS. The acidity of the pure CFS was observed at pH 3.8, remaining acidic at dilutions of 1:2 to 1:16. Regarding the in vitro larvicidal effect, 100% death of T. canis larvae was observed using the pure CFS and 1:2 dilution. Based on these results, it can be inferred that the presence of higher concentrations of organic acids and low pH of the medium contributed to the larvicidal activity of the CFS of L. acidophilus ATCC 4356. In addition, the maintenance of the larvicidal effect, even after dilution, suggests a greater chance of the larvicidal effect of this CFS against T. canis in vivo.
Collapse
Affiliation(s)
- Carolina Netto de Oliveira da Cunha
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil.
| | | | - Débora Carvalho Rodrigues
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Débora Liliane Walcher
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Micaele Quintana de Moura
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Lourdes Helena Rodrigues Martins
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Gabriel Baracy Klafke
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Jean Lucas de Oliveira Arias
- Integrated Analysis Center, School of Chemistry and Food, Federal University of Rio Grande, Av. Italia, Km 6 - Campus Carreiros, CEP 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Rodolfo Carapelli
- School of Chemistry and Food, Federal University of Rio Grande, Avenida Itália, Km 08 - Campus Carreiros, CEP 96.203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - João Batista do Santos Espinelli Junior
- School of Chemistry and Food, Federal University of Rio Grande, Avenida Itália, Km 08 - Campus Carreiros, CEP 96.203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Carlos James Scaini
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Luciana Farias da Costa de Avila
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| |
Collapse
|
9
|
Li Z, Guo Q, Lin F, Li C, Yan L, Zhou H, Huang Y, Lin B, Xie B, Lin Z, Huang Y. Lactobacillus plantarum supernatant inhibits growth of Riemerella anatipestifer and mediates intestinal antimicrobial defense in Muscovy ducks. Poult Sci 2024; 103:103216. [PMID: 38043406 PMCID: PMC10711468 DOI: 10.1016/j.psj.2023.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
Riemerella anatipestifer (RA) is an important pathogen of waterfowl, with multiple serotypes and a lack of cross-protection between each serotype, which leads to the continued widespread in the world and causing significant economic losses to the duck industry. Thus, prevention and inhibition of RA infection are of great concern. Previous research has established that Lactobacillus plantarum supernatant (LPS) can prevents the pathogenic bacteria infection. However, LPS whether inhibits RA and underlying mechanisms have not yet been clarified. In this study, we investigated the direct and indirect effects of LPS-ZG7 against RA infection in Muscovy ducks. The results demonstrated that LPS-ZG7 prevented RA growth in the presence of pH-neutralized, and the inhibition was relatively stable and unaffected by heat, acid-base and ultraviolet light (UV). Following flow cytometry data found that LPS-ZG7 increased RA membrane permeability and leakage of intracellular molecules. And scanning electron microscopy revealed LPS-ZG7 damaged the RA membrane integrity and leading to RA death. Furthermore, quantitative real time polymerase chain reaction (qPCR) analysis represented that LPS-ZG7 upregulated mucosal tight junction proteins occludin, claudin-1, and Zo-1 in Muscovy ducks, and increasing mucosal transport channels SGLT-1, PepT1, AQP2, AQP3, and AQP10 in duodenum, jejunum, and colon, then decreased the intestinal permeability and intestinal barrier disruption which were caused from RA. From the data, it is apparent that LPS-ZG7 enhanced intestinal mucosal integrity by rising villus height, villus height-to-crypt depth ratio and lower crypt depth. LPS-ZG7 significantly decreased intestinal epithelia cells apoptosis caused by RA invasion, and enhanced intestinal permeability and contribute to barrier dysfunction, ultimately improving intestinal health of host, indirectly leading to reduce diarrhea rate and mortality caused by RA. Overall, this study strengthens the idea that LPS-ZG7 directly inhibited the RA growth by increased RA membrane permeability and damaged the RA membrane integrity, and then indirectly enhanced intestinal mucosal integrity, improved intestinal health of host and mediated intestinal antimicrobial defense.
Collapse
Affiliation(s)
- Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Qing Guo
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Fengqiang Lin
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Cuiting Li
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Lu Yan
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Haiou Zhou
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yaping Huang
- Department of Chemical and Biological Engineering, Minjiang Teachers College, Fuzhou 361000, China
| | - Binbin Lin
- Putian Institute of Agricultural Science, Putian 361013, China
| | - Bilin Xie
- Putian Institute of Agricultural Science, Putian 361013, China
| | - Zhimin Lin
- Putian Institute of Agricultural Science, Putian 361013, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
10
|
Bachtarzi N, Gomri MA, Meradji M, Gil-Cardoso K, Ortega N, Chomiciute G, Del Bas JM, López Q, Martínez V, Kharroub K. In vitro assessment of biofunctional properties of Lactiplantibacillus plantarum strain Jb21-11 and the characterization of its exopolysaccharide. Int Microbiol 2024; 27:239-256. [PMID: 37286917 DOI: 10.1007/s10123-023-00387-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
ABSTACT The microbiota of traditional food provides a rich reservoir of biodiversity to find new strains with interesting features for novel functional food formulation. Therefore, this study aimed to investigate the biofunctional potential of the lactic acid bacteria (LAB) strain Jb21-11 isolated from Jben, a traditional Algerian fresh cheese. This isolate was selected out of a collection of 154 LAB based on its exopolysaccharide (EPS) phenotype and was preliminarily identified by polyphasic characterization as Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) and its biofunctional properties were then assessed in vitro. The tested strain demonstrated good resistance to gastric juice, acidity around pH 2, and 2% (v/v) bile salts, which are important characteristics for potential biofunctional LAB candidates. It also showed a good production of ropy EPS with 674 mg/L on MRS medium. However, this ability appears to compromise the adhesion of the strain to Caco-2 cells (less than 1%), which according to our results, seems not to be related to autoaggregation and hydrophobicity (44.88 ± 0.028% and 16.59 ± 0.012%). Furthermore, promising antimicrobial activity against three pathogenic bacteria (Escherichia coli, Staphylococcus aureus, and Salmonella) was detected probably due to antimicrobial metabolites excreted during fermentation process into the medium. Moreover, the strain L. plantarum Jb21-11 displayed a therapeutic functionality with both anti-inflammatory and immunomodulatory action using RAW 264.7 cells. The chemical features of the novel ropy Jb21-11-EPS were also investigated revealing the presence of three monosaccharides, namely, mannose, galactose, and glucose, with a molar ratio of 5.42:1.00:4.52 linked together by α- and β-glycosidic bonds, presenting a relatively high molecular weight of 1.08 × 105 Da of interest for a texturing potential. Therefore, the new producing EPS strain Jb21-11 is a promising candidate for use as an adjunct culture for improving the texture of functional food.
Collapse
Affiliation(s)
- Nadia Bachtarzi
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria.
| | - Mohamed Amine Gomri
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| | - Meriem Meradji
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| | - Katherine Gil-Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Nàdia Ortega
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | | | - Quiro López
- Creaciones Aromáticas Industriales SA, Cuatrecasas i Arimí, 2, 08192, Sant Quirze del Vallès, Barcelona, Spain
| | - Vanesa Martínez
- Creaciones Aromáticas Industriales SA, Cuatrecasas i Arimí, 2, 08192, Sant Quirze del Vallès, Barcelona, Spain
| | - Karima Kharroub
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| |
Collapse
|
11
|
Danilova TA, Adzhieva AA, Mezentseva MV, Suetina IA, Danilina GA, Minko AG, Dmitrieva ML, Zhukhovitsky VG. The Inhibitory Activity of Lactobacillus plantarum Supernatant against Enterobacteria, Campylobacter, and Tumor Cells. Bull Exp Biol Med 2023; 176:64-67. [PMID: 38091142 DOI: 10.1007/s10517-023-05969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 12/19/2023]
Abstract
Cell-free supernatant of Lactobacillus plantarum exhibit a strong antimicrobial effect against a number of pathogenic enterobacteria (E. coli, Shigella flexneri, Salmonella typhimurium, Proteus mirabilis, and Campylobacter jejuni). The degree of growth inhibition in broth culture reached a high level for all tested bacteria. The highest rates were noted for P. mirabilis (by 13 times) and the lowest for S. flexneri (by 5 times) and C. jejuni (by 4.5 times). Significant antiproliferative effect of the supernatant on cells of tumor-derived epithelial cell lines was shown. The highest degree of inhibition (by 22 times) was observed for HT-29 cells (colon carcinoma). Thus, inclusion of probiotics in traditional treatment schemes can increase the effectiveness of antibacterial and antitumor drug therapy.
Collapse
Affiliation(s)
- T A Danilova
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - A A Adzhieva
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M V Mezentseva
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I A Suetina
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G A Danilina
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A G Minko
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M L Dmitrieva
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V G Zhukhovitsky
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Clinical and Laboratory Diagnosis with Laboratory Immunology Course, Russian Medical Academy of Continuous Professional Education, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
12
|
Coulibaly WH, Kouadio NR, Camara F, Diguță C, Matei F. Functional properties of lactic acid bacteria isolated from Tilapia (Oreochromis niloticus) in Ivory Coast. BMC Microbiol 2023; 23:152. [PMID: 37231432 DOI: 10.1186/s12866-023-02899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Probiotics have recently been applied in aquaculture as eco-friendly alternatives to antibiotics to improve fish health, simultaneously with the increase of production parameters. The present study aimed to investigate the functional potential of lactic acid bacteria (LAB) isolated from the gut of Tilapia (Oreochromis niloticus) originating from the aquaculture farm of Oceanologic Research Center in Ivory Coast. RESULTS Twelve LAB strains were identified by 16 S rDNA gene sequence homology analysis belonging to two genera Pediococcus (P. acidilactici and P. pentosaceus) and Lactobacillus (L. plantarum) with a predominance of P. acidilactici. Several aspects including functional, storage, and safety characteristics were taken into consideration in the selection process of the native LAB isolates as potential probiotics. All LAB isolates showed high antagonistic activity against bacterial pathogens like Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. In addition, the LAB isolates exhibited different degrees of cell surface hydrophobicity in the presence of hexane, xylene, and chloroform as solvents and a good ability to form biofilm. The strong antioxidant activity expressed through the DPPH scavenging capacity of LAB intact cells and their cell-free supernatants was detected. LAB strains survived between 34.18% and 49.9% when exposed to low pH (1.5) and pepsin for 3 h. In presence of 0.3% bile salts, the growth rate ranged from 0.92 to 21.46%. Antibiotic susceptibility pattern of LAB isolates showed sensitivity or intermediate resistance to amoxicillin, cephalothin, chloramphenicol, imipenem, kanamycin, penicillin, rifampicin, streptomycin, tetracycline and resistance to oxacillin, gentamicin, and ciprofloxacin. No significant difference in antibiotic susceptibility pattern was observed between P. acidilactici and P. pentosaceus strains. The non-hemolytic activity was detected. Following the analysis of the enzyme profile, the ability of LAB isolates to produce either lipase or β-galactosidase or both enzymes was highlighted. Furthermore, the efficacy of cryoprotective agents was proved to be isolate-dependent, with LAB isolates having a high affinity for D-sorbitol and sucrose. CONCLUSION The explored LAB strains inhibited the growth of pathogens and survived after exposure to simulated gastrointestinal tract conditions. The safety and preservative properties are desirable attributes of these new probiotic strains hence recommended for future food and feed applications.
Collapse
Affiliation(s)
- Wahauwouélé Hermann Coulibaly
- Biotechnology and Food Microbiology Laboratory, Food Science and Technology, Formation and Research Unit, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
- Applied Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăsti Blvd, Bucharest, 011464, Romania
| | - N'goran Richard Kouadio
- Nutrition and Food Safety Laboratory, Food Science and Technology, Formation and Research Unit, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| | - Fatoumata Camara
- Nutrition and Food Safety Laboratory, Food Science and Technology, Formation and Research Unit, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| | - Camelia Diguță
- Applied Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăsti Blvd, Bucharest, 011464, Romania.
| | - Florentina Matei
- Applied Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăsti Blvd, Bucharest, 011464, Romania
| |
Collapse
|
13
|
Neidhöfer C, Rathore K, Parčina M, Sieber MA. ESKAPEE Pathogen Biofilm Control on Surfaces with Probiotic Lactobacillaceae and Bacillus species. Antibiotics (Basel) 2023; 12:871. [PMID: 37237774 PMCID: PMC10215598 DOI: 10.3390/antibiotics12050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Combatting the rapidly growing threat of antimicrobial resistance and reducing prevalence and transmission of ESKAPEE pathogens in healthcare settings requires innovative strategies, one of which is displacing these pathogens using beneficial microorganisms. Our review comprehensively examines the evidence of probiotic bacteria displacing ESKAPEE pathogens, with a focus on inanimate surfaces. A systematic search was conducted using the PubMed and Web of Science databases on 21 December 2021, and 143 studies were identified examining the effects of Lactobacillaceae and Bacillus spp. cells and products on the growth, colonization, and survival of ESKAPEE pathogens. While the diversity of study methods limits evidence analysis, results presented by narrative synthesis demonstrate that several species have the potential as cells or their products or supernatants to displace nosocomial infection-causing organisms in a variety of in vitro and in vivo settings. Our review aims to aid the development of new promising approaches to control pathogen biofilms in medical settings by informing researchers and policymakers about the potential of probiotics to combat nosocomial infections. More targeted studies are needed to assess safety and efficacy of different probiotic formulations, followed by large-scale studies to assess utility in infection control and medical practice.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kamni Rathore
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin A. Sieber
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| |
Collapse
|
14
|
Li M, Xiao H, Su Y, Cheng D, Jia Y, Li Y, Yin Q, Gao J, Tang Y, Bai Q. Synergistic Inhibitory Effect of Honey and Lactobacillus plantarum on Pathogenic Bacteria and Their Promotion of Healing in Infected Wounds. Pathogens 2023; 12:pathogens12030501. [PMID: 36986423 PMCID: PMC10053434 DOI: 10.3390/pathogens12030501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Prevention and control of infections have become a formidable challenge due to the increasing resistance of pathogens to antibiotics. Probiotics have been discovered to have positive effects on the host, and it is well-known that some Lactobacilli are effective in treating and preventing inflammatory and infectious diseases. In this study, we developed an antibacterial formulation consisting of honey and Lactobacillus plantarum (honey-L. plantarum). The optimal formulation of honey (10%) and L. plantarum (1 × 109 CFU/mL) was used to investigate its antimicrobial effect and mechanism in vitro, and its healing effect on wound healing of whole skin infections in rats. Biofilm crystalline violet staining and fluorescent staining results indicated that the honey-L. plantarum formulation prevented the biofilm formation in Staphylococcus aureus and Pseudomonas aeruginosa and increased the number of dead bacteria in the biofilms. Further mechanism studies revealed that the honey-L. plantarum formulation may inhibit biofilm formation by upregulating biofilm-related genes (icaA, icaR, sigB, sarA, and agrA) and downregulating quorum sensing (QS) associated genes (lasI, lasR, rhlI, rhlR, and pqsR). Furthermore, the honey-L. plantarum formulation decreased the number of bacteria in the infected wounds of rats and accelerated the formation of new connective tissue to promote wound healing. Our study suggests that the honey-L. plantarum formulation provides a promising option for the treatment of pathogenic infections and wound healing.
Collapse
Affiliation(s)
- Mei Li
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Hong Xiao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Yongmei Su
- Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China
| | - Danlin Cheng
- The First Clinical School, Chongqing Medical University, Chongqing 400016, China
| | - Yan Jia
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Yingli Li
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Qi Yin
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Jieying Gao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| | - Yong Tang
- Chongqing Orthopedics Hospital of Traditional Chinese Medicine, Chongqing 400039, China
| | - Qunhua Bai
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 401334, China
| |
Collapse
|
15
|
Investigating the effect of the probiotic Lactobacillus plantarum and the prebiotic fructooligosaccharides on Pseudomonas aeruginosa metabolome, virulence factors and biofilm formation as potential quorum sensing inhibitors. Microb Pathog 2023; 177:106057. [PMID: 36878335 DOI: 10.1016/j.micpath.2023.106057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) uses quorum sensing signaling (QS) molecules to control the expression of virulence factors and biofilm formation. In this study, the effects of the probiotic's (Lactobacillus plantarum (L. plantarum)) lysate and cell-free supernatant and the prebiotic (Fructooligosaccharides (FOS)) on the levels of P. aeruginosa QS molecules, virulence factors, biofilm density and metabolites were observed. These effects were investigated using exofactor assays, crystal violet and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics approach. Results showed that in comparison to untreated P. aeruginosa, the L. plantarum cell-free supernatant (5%) and FOS (2%) significantly reduced the levels of the virulence factor pyoverdine (PVD) and several metabolites in the QS pathway including Pseudomonas autoinducer-2 (PAI-2). Metabolomics study revealed that the level of different secondary metabolites involved in the biosynthesis of vitamins, amino acids and the tricarboxylic acid (TCA) cycle were also affected. L. Plantarum was found to have a higher impact on the metabolomics profile of P. aeruginosa and its QS molecules compared to FOS. Lastly, a decrease in the formation of the P. aeruginosa biofilm was observed in a time-dependent pattern upon treatment with either cell-free supernatant of L. plantarum (5%), FOS (2%) or a combination of both treatments (5% + 2%). The latter showed the highest effect with 83% reduction in biofilm density at 72 h incubation. This work highlighted the important role probiotics and prebiotics play as potential QS inhibitors for P. aeruginosa. Moreover, it demonstrated the significant role of LC-MS metabolomics for investigating the altered biochemical and QS pathways in P. aeruginosa.
Collapse
|
16
|
Bacteriocin-Nanoconjugates (Bac10307-AgNPs) Biosynthesized from Lactobacillus acidophilus-Derived Bacteriocins Exhibit Enhanced and Promising Biological Activities. Pharmaceutics 2023; 15:pharmaceutics15020403. [PMID: 36839725 PMCID: PMC9967518 DOI: 10.3390/pharmaceutics15020403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The proteinaceous compounds produced by lactic acid bacteria are called bacteriocins and have a wide variety of bioactive properties. However, bacteriocin's commercial availability is limited due to short stability periods and low yields. Therefore, the objective of this study was to synthesize bacteriocin-derived silver nanoparticles (Bac10307-AgNPs) extracted from Lactobacillus acidophilus (L. acidophilus), which may have the potential to increase the bioactivity of bacteriocins and overcome the hurdles. It was found that extracted and purified Bac10307 had a broad range of stability for both temperature (20-100 °C) and pH (3-12). Further, based on Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, its molecular weight was estimated to be 4.2 kDa. The synthesized Bac10307-AgNPs showed a peak of surface plasmon resonance at 430 nm λmax. Fourier transform infrared (FTIR) confirmed the presence of biological moieties, and transmission electron microscopy (TEM) coupled with Energy dispersive X-Ray (EDX) confirmed that AgNPs were spherical and irregularly shaped, with a size range of 9-20 nm. As a result, the Bac10307-AgNPs displayed very strong antibacterial activity with MIC values as low as 8 μg/mL for Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), when compared to Bac10307 alone. In addition, Bac10307-AgNPs demonstrated promising in vitro antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 116.04 μg/mL) and in vitro cytotoxicity against human liver cancer cells (HepG2) (IC50 = 135.63 μg/mL), more than Bac10307 alone (IC50 = 139.82 μg/mL against DPPH and 158.20 μg/mL against HepG2). Furthermore, a protein-protein molecular docking simulation study of bacteriocins with target proteins of different biological functions was also carried out in order to ascertain the interactions between bacteriocins and target proteins.
Collapse
|
17
|
Potential Antimicrobe Producer of Endophytic Bacteria from Yellow Root Plant (Arcangelisia flava (L.)) Originated from Enggano Island. Int J Microbiol 2022. [DOI: 10.1155/2022/6435202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exploration studies of endophytic bacteria from Arcangelisia flava (L.) and their potential have not much been conducted. This research aims to explore and characterize the antimicrobial activity of endophytic bacteria in A. flava against pathogenic bacteria. This research consists of several steps including the isolation of bacteria, screening of the antimicrobial activity assay using the dual cross streak method, molecular identification through 16s rDNA analysis, and characterization of bioactive compound production through PKS-NRPS gene detection and GC-MS analysis. There are 29 endophytic bacteria that were successfully isolated from A. flava. The antimicrobial activity showed that there are four potential isolates AKEBG21, AKEBG23, AKEBG25, and AKEBG28 that can inhibit the growth of pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The 16S rDNA sequence analysis showed that these isolates are identified as Bacillus cereus. These four isolates are identified as able to produce the bioactive compounds through the detection of polyketide synthase (PKS) and nonribosomal peptide synthase (NRPS)-encoding genes. B. cereus AKEBG23 has the highest inhibition against pathogenic bacteria, and according to the GC-MS analysis, five major compounds are allegedly involved in its antimicrobial activity such as butylated hydroxytoluene (BHT), diisooctyl phthalate, E-15-heptadecenal, 1-heneicosanol, and E-14-hexadecenal. This result suggested that B. cereus AKEBG23 as the endophytic bacterium from A. flava has a beneficial role as well as the plant itself. The bacterium produces several bioactive compounds that are allegedly involved in its antimicrobial activity against pathogenic bacteria.
Collapse
|
18
|
You I, Mahiddine FY, Park H, Kim MJ. Lactobacillus acidophilus novel strain, MJCD175, as a potential probiotic for oral health in dogs. Front Vet Sci 2022; 9:946890. [PMID: 36118340 PMCID: PMC9478757 DOI: 10.3389/fvets.2022.946890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
The oral cavity is the second-largest habitat for microorganisms, and a well-balanced oral microbiome contributes to preventing dental disorders caused by pathogenic bacteria. Since humans and dogs have different lifestyles and oral microbiome structures, the present study aimed to develop novel probiotics for dogs. A total 53 Lactobacillus spp. were isolated from healthy dogs, and nine isolates were identified as Lactobacillus acidophilus according to 16S rRNA gene sequencing. According to the high antimicrobial activity against the dental caries-causing bacterium Streptococcus mutans, single or three mixed strains were orally administered to dogs for 4 weeks with concentration of 108-109 CFU/day. Intraoral swab samples were collected before and after the administration, and changes of oral pathogen were analyzed using quantitative PCR. Among them, Porphyromonas gingivalis, a critical factor of periodontitis, was significantly reduced in the single-strain administered group. Based on the acid and bile salts tolerance characteristics of isolates, systemic effects were also analyzed by comparing serum immunoglobulin and reproductive ability before and after the administration. However, no significant changes were observed in the serum IgG level and sperm quality. Overall, these in vitro and in vivo results suggest that L. acidophilus isolates from dogs, especially L. acidophilus MJCD175, could be promising probiotic candidates to support oral health without systemic adverse effects in dogs.
Collapse
|
19
|
Seyedzade Hashemi S, Khorshidian N, Mohammadi M. An insight to potential application of synbiotic edible films and coatings in food products. Front Nutr 2022; 9:875368. [PMID: 35967779 PMCID: PMC9363822 DOI: 10.3389/fnut.2022.875368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Edible films and coatings have gained significant consideration in recent years due to their low cost and decreasing environmental pollution. Several bioactive compounds can be incorporated into films and coatings, including antioxidants, antimicrobials, flavoring agents, colors, probiotics and prebiotics. The addition of probiotics to edible films and coatings is an alternative approach for direct application in food matrices that enhances their stability and functional properties. Also, it has been noted that the influence of probiotics on the film properties was dependent on the composition, biopolymer structure, and intermolecular interactions. Recently, the incorporation of probiotics along with prebiotic compounds such as inulin, starch, fructooligosaccharide, polydextrose and wheat dextrin has emerged as new bioactive packaging. The simultaneous application of probiotics and prebiotics improved the viability of probiotic strains and elevated their colonization in the intestinal tract and provided health benefits to humans. Moreover, prebiotics created a uniform and compact structure by filling the spaces within the polymer matrix and increased opacity of edible films. The effects of prebiotics on mechanical and barrier properties of edible films was dependent on the nature of prebiotic compounds. This review aims to discuss the concept of edible films and coatings, synbiotic, recent research on synbiotic edible films and coatings as well as their application in food products.
Collapse
Affiliation(s)
- Sahar Seyedzade Hashemi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mohammadi
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Danilova TA, Danilina GA, Adzhieva AA, Polyakov NB, Zhukhovitskii VG. Antibacterial Activity of Lactobacillus plantarum Supernatant on Non-Fermenting Gram-Negative Bacteria. Bull Exp Biol Med 2022; 173:59-62. [PMID: 35622249 DOI: 10.1007/s10517-022-05493-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 10/18/2022]
Abstract
We studied the effect of the L. plantarum strain supernatant on the growth of culture and biofilm of non-fermenting bacteria of the genera Pseudomonas, Achromobacter, and Burkholderia. To obtain a supernatant, the culture of L. plantarum was grown for 48 h at 37°C on a Lactic broth nutrient medium with casein peptone, then centrifuged and filtered through a 0.22-μm Millipore filter. Antimicrobial activity was determined by broth microdilution assay. The inhibitory effect of the supernatant on the growth of bacteria of all three genera was demonstrated. The maximum inhibition was observed for P. aeruginosa (by 13 times compared to the control). For bacteria of the Achromobacter and Burkholderia genera, the inhibition was less pronounced: by 7 and 6 times, respectively. The supernatant also inhibited biofilm formation by P. aeruginosa and A. ruhlandii, but did not affect formed biofilm. Thus, the L. plantarum supernatant obtained by us exhibited pronounced antimicrobial activity against non-fermenting bacteria, the causative agents of nosocomial infections, especially in immunocompromised individuals, very often in cystic fibrosis patients.
Collapse
Affiliation(s)
- T A Danilova
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - G A Danilina
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A A Adzhieva
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N B Polyakov
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V G Zhukhovitskii
- Laboratory of Indication and Ultrastructural Analysis of Microorganisms, N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
21
|
Tapioca starch and skim milk support probiotic efficacy of Lactiplantibacillus plantarum post-fermentation medium against pathogens and cancer cells. Arch Microbiol 2022; 204:331. [PMID: 35579801 DOI: 10.1007/s00203-022-02943-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
The production of functional foods containing prebiotic ingredients is an area of particular interest and a very promising market with the potential to dominate the food industry. This study aims to explore the potential of starch-based prebiotic tapioca and skim milk, as low-cost and easily accessible food sources and as natural and "clean label" food ingredients on the probiotic activities of Lactiplantibacillus plantarum (formerly Lactobacillus plantarum). The results show that concomitant use of the modified tapioca starch and skim milk promotes the antibacterial and anti-cancer properties of L. plantarum post-fermentation media pointing out how the functionality of probiotic products can be regulated by growth supplements.
Collapse
|
22
|
The Bacillary Postbiotics, Including 2-Undecanone, Suppress the Virulence of Pathogenic Microorganisms. Pharmaceutics 2022; 14:pharmaceutics14050962. [PMID: 35631548 PMCID: PMC9143114 DOI: 10.3390/pharmaceutics14050962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 01/25/2023] Open
Abstract
Secreted molecules from probiotic Bacilli have often been considered potential pharmaceuticals to fight infections caused by bacterial or yeast pathogens. In the present study, we investigated the antagonistic potential of secreted probiotic filtrates (hereafter, postbiotics) derived from Lactobacillus plantarum cells against pathogenic microorganisms, such as Escherichia coli, Staphylococcus aureus, and Candida albicans. We found that the postbiotics mitigate the biofilms of the tested pathogens with no notable effect on their planktonic growth. In addition, the postbiotics suppressed some virulence traits, for instance, the dendrite swarming motility of E. coli and yeast-to-hyphal switch in C. albicans. Further assays with an active constituent produced by the L. plantarum cells–2-undecanone revealed two significant findings: (i) 2-undecanone inhibits C. albicans biofilms and hyphae in vitro and in a Caenorhabditis elegans model, and (ii) it interacts specifically with Gln 58 amino acid residue of hyphal wall protein-1 (Hwp-1) in molecular docking analysis. The results suggest the targeted mode of antagonistic action of 2-undecanone against C. albicans biofilm. In total, the findings of the study depict an appealing strategy to use postbiotics, including specific ketone molecules, produced by L. plantarum for developing novel antibiofilm and anti-hyphal pharmaceuticals.
Collapse
|
23
|
Kienesberger B, Obermüller B, Singer G, Arneitz C, Gasparella P, Klymiuk I, Horvath A, Stadlbauer V, Magnes C, Zügner E, López-García P, Trajanoski S, Miekisch W, Fuchs P, Till H, Castellani C. Insights into the Composition of a Co-Culture of 10 Probiotic Strains (OMNi BiOTiC ® AAD10) and Effects of Its Postbiotic Culture Supernatant. Nutrients 2022; 14:1194. [PMID: 35334850 PMCID: PMC8952306 DOI: 10.3390/nu14061194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND We aimed to gain insights in a co-culture of 10 bacteria and their postbiotic supernatant. METHODS Abundances and gene expression were monitored by shotgun analysis. The supernatant was characterized by liquid chromatography mass spectroscopy (LC-MS) and gas chromatography mass spectroscopy (GC-MS). Supernatant was harvested after 48 h (S48) and 196 h (S196). Susceptibility testing included nine bacteria and C. albicans. Bagg albino (BALBc) mice were fed with supernatant or culture medium. Fecal samples were obtained for 16S analysis. RESULTS A time-dependent decrease of the relative abundances and gene expression of L. salivarius, L. paracasei, E. faecium and B. longum/lactis and an increase of L. plantarum were observed. Substances in LC-MS were predominantly allocated to groups amino acids/peptides/metabolites and nucleotides/metabolites, relating to gene expression. Fumaric, panthotenic, 9,3-methyl-2-oxovaleric, malic and aspartic acid, cytidine monophosphate, orotidine, phosphoserine, creatine, tryptophan correlated to culture time. Supernatant had no effect against anaerobic bacteria. S48 was reactive against S. epidermidis, L. monocytogenes, P. aeruginosae, E. faecium and C. albicans. S196 against S. epidermidis and Str. agalactiae. In vivo S48/S196 had no effect on alpha/beta diversity. Linear discriminant analysis effect size (LEfSe) and analysis of composition of microbiomes (ANCOM) revealed an increase of Anaeroplasma and Faecalibacterium prausnitzii. CONCLUSIONS The postbiotic supernatant had positive antibacterial and antifungal effects in vitro and promoted the growth of distinct bacteria in vivo.
Collapse
Affiliation(s)
- Bernhard Kienesberger
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Christoph Arneitz
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Paolo Gasparella
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Ingeborg Klymiuk
- Department of Cell Biology, Histology and Embryology, Medical University of Graz, 8034 Graz, Austria;
| | - Angela Horvath
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8034 Graz, Austria; (A.H.); (V.S.)
- Center of Biomarker Research (CBmed), 8034 Graz, Austria;
| | - Vanessa Stadlbauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8034 Graz, Austria; (A.H.); (V.S.)
- Center of Biomarker Research (CBmed), 8034 Graz, Austria;
| | - Christoph Magnes
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research, 8010 Graz, Austria; (C.M.); (E.Z.)
| | - Elmar Zügner
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research, 8010 Graz, Austria; (C.M.); (E.Z.)
| | | | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Medical University of Graz, 8034 Graz, Austria;
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Patricia Fuchs
- Department of Anesthesiology and Intensive Care, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8034 Graz, Austria; (B.K.); (G.S.); (C.A.); (P.G.); (H.T.); (C.C.)
| |
Collapse
|
24
|
Isik M, Ozbayer C, Donmez DB, Colak E, Ustuner MC, Erol K, Degirmenci I. Effects of the probiotic, Lactobacillus rhamnosus GG, on ulcer pathogenesis, HSP70 stress protein and nitric oxide levels in stress induced ulcer. Biotech Histochem 2022; 97:449-460. [PMID: 35258367 DOI: 10.1080/10520295.2022.2028308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Peptic ulcer is a gastric or duodenal mucosal injury; psychological stress may participate in development of the lesions. Heat shock protein-70 (HSP70) is a molecular chaperone that is responsible for cellular healing; it is an early biomarker of cellular damage. Nitric oxide (NO) is an intra- and intercellular messenger in the gastrointestinal system that protects mucosal integrity. Lactobacillus rhamnosus is among the microflora of the intestinal tract; it is resistant to gastric acidity. We investigated the efficacy of L. rhamnosus administration on ulcer pathogenesis, stress protein HSP70 and NO levels in experimental stress induced ulcer. The proton pump inhibitor, pantoprazole, was used for comparison with the gastroprotective effect of the probiotic. We administered 10 mg/kg pantoprazole and L. rhamnosus at doses of 3 × 108 cfu/ml (M1), 15 × 108 cfu/ml (M5), 30 × 108 cfu/ml (M10) to rats according to McFarland-1, McFarland-5, McFarland-10 standards, respectively. Rats were stressed by immobilization at 4 °C, then sacrificed. The pH, amounts of gastric mucus, NO and HSP70 levels were measured and the histological structure of stomach was assessed. We found increased NO levels in the M5 group and increased HSP70 expression in the pantoprazole group. Significant epithelial damage was observed in the stressed groups and minimal epithelial damage was observed in M5 group compared to controls. The probiotic, L. rhamnosus, may be useful for preventing stress induced ulcers.
Collapse
Affiliation(s)
- Musab Isik
- Department of Physiology, Sakarya University, Medical Faculty, Sakarya, Turkey
| | - Cansu Ozbayer
- Department of Medical Biology, Medical Faculty, Kutahya Health Sciences University, Kutahya, Turkey
| | - Dilek Burukoglu Donmez
- Department of Histology and Embryology, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ertugrul Colak
- Department of Biostatistics, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Mehmet Cengiz Ustuner
- Department of Medical Biology, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Kevser Erol
- Department of Medical Pharmacology, Medical Faculty, Bahcesehir University, Istanbul, Turkey
| | - Irfan Degirmenci
- Department of Medical Biology, Medical Faculty, Kutahya Health Sciences University, Kutahya, Turkey
| |
Collapse
|
25
|
Probiotic Potentiality from Versatile Lactiplantibacillus plantarum Strains as Resource to Enhance Freshwater Fish Health. Microorganisms 2022; 10:microorganisms10020463. [PMID: 35208917 PMCID: PMC8877946 DOI: 10.3390/microorganisms10020463] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Dietary probiotic supplementation has the potential to enhance the health of fish and their disease resistance. In this study, some properties of ten Lactiplantibacillus plantarum strains have been evaluated, for their potential use as probiotics in freshwater fish diet. In particular, antimicrobial activity, antioxidant activity, the potentiality to survive the gastrointestinal transit and persist in the intestine, were evaluated in vitro. The experimental tests were carried out at 15 °C and 30 °C to determine the suitability of these lactic acid bacteria to be used as probiotics in the diet of fish grown at different temperatures. The results demonstrated that the evaluated Lp. plantarum strains, which often have significant differences among themselves, are characterized by important functional characteristics such as cell surface properties (auto-aggregation and hydrophobicity), ability to produce antioxidant substances, capacity to survive in the presence of 0.3% bile salts and acidic environment (2.5 pH), antagonistic activity against some fish opportunistic pathogens (A. salmonicida, Ps. aeruginosa, E. coli and C. freundii) and other unwanted bacteria present in fish products (S. aureus and L. innocua). The outcomes suggest that these Lp. plantarum strains may be candidates as probiotics in warm- and cold-water aquaculture.
Collapse
|
26
|
Kalenova LF, Petrov SA, Sukhovei YG. Reparative and Immunomodulatory Potential of Low-Molecular-Weight Fractions of Secondary Metabolites of Bacillus sp. Bull Exp Biol Med 2022; 172:332-335. [PMID: 35001312 DOI: 10.1007/s10517-022-05387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/28/2022]
Abstract
The experiment was performed on male BALB/c mice with modeled skin wound. Two chromatographic fractions of secondary metabolites of permafrost bacteria Bacillus sp., that represent a mixture of polyethylene-polypropylene glycols oligomers with a molecular weight from 900 to 1350 Da were used as therapeutic agents. Application of the test substances on the wound surface and their parenteral administration significantly accelerated wound epithelialization in comparison with untreated control, activated metabolic processes, and improved humoral immunity. In in vitro experiments, the fractions activated the synthesis of IFNγ and IL-4 by human peripheral blood mononuclear cells. We conclude that polyethylene-polypropylene glycol oligomers can be a part of effector molecules that determine the repair and immunomodulatory potential of secondary metabolites of permafrost microorganisms Bacillus sp.
Collapse
Affiliation(s)
- L F Kalenova
- Federal Research Center Tyumen Scientific Center, Siberian Division of the Russian Academy of Sciences, Tyumen, Russia.
| | - S A Petrov
- Federal Research Center Tyumen Scientific Center, Siberian Division of the Russian Academy of Sciences, Tyumen, Russia
| | - Yu G Sukhovei
- Federal Research Center Tyumen Scientific Center, Siberian Division of the Russian Academy of Sciences, Tyumen, Russia
| |
Collapse
|
27
|
INAYAH I, WIBOWO MS, JULIANTI E, SUCIATI T. Characterization of Lactobacillus zeae as probiotic and starter culture for tamarillo fermented product. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.54021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Istiyati INAYAH
- Institut Teknologi Bandung, Indonesia; Pasundan University, Indonesia
| | | | | | | |
Collapse
|
28
|
Inhibitory activity of Co-microencapsulation of cell free supernatant from Lactobacillus plantarum with propolis extracts towards fish spoilage bacteria. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Sidhu PK, Nehra K. Purification and characterization of bacteriocin Bac23 extracted from Lactobacillus plantarum PKLP5 and its interaction with silver nanoparticles for enhanced antimicrobial spectrum against food-borne pathogens. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
30
|
Characterization of transcriptional response of Lactobacillus plantarum under acidic conditions provides insight into bacterial adaptation in fermentative environments. Sci Rep 2020; 10:19203. [PMID: 33154427 PMCID: PMC7645587 DOI: 10.1038/s41598-020-76171-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022] Open
Abstract
Lactic acid bacteria (LAB) play an important role in kimchi fermentation by metabolizing raw materials into diverse metabolites. Bacterial adaptation is therefore a crucial element of fermentation. In this study, we investigated the transcriptional changes of Lactobacillus plantarum under acidic conditions to evaluate the elements of bacterial adaptation critical for fermentation. Differentially expressed genes (DEGs) have shown that transport function is primarily affected by acidic conditions. Five of the 13 significantly down-regulated genes and 7 of the 25 significantly up-regulated genes were found to have transport-related functions. We quantified the intracellular leucine content of bacteria grown at different pH ranges, determining that optimal bacterial leucine transport could be controlled by acidity during fermentation. Inhibition of L. plantarum growth was investigated and compared with other LAB at a pH range of 6.2–5.0. Interestingly, valinomycin inhibited L. plantarum growth from pH 6.2 to 5.0. This showed that L. plantarum had a wider range of transport functions than other LAB. These results suggested that L. plantarum had robust transport functions, and that this was the crucial factor for bacterial adaptation during fermentation.
Collapse
|
31
|
Inhibitory Effect of Copper and Zinc Ions on the Growth of Streptococcus pyogenes and Escherichia coli Biofilms. Bull Exp Biol Med 2020; 169:648-652. [DOI: 10.1007/s10517-020-04946-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 10/23/2022]
|
32
|
Rassokhina II, Platonov AV, Laptev GY, Bolshakov VN. Morphophysical reaction of Hordeum vulgare to the influence of microbial preparations. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Bacterial preparations contribute to the digestion of mineral nutrition, have antifungicidal activity, increase the grain productivity and biomass of cultivated crops. We studied the influence of microbiological preparations developed on the basis of microorganisms Bacillus subtilis and Lactobacillus buchneri on the growth processes, photosynthetic parameters and grain productivity of barley (Hordeum vulgare L.) of Sonet variety. The experiments were performed in 2019 in the North-West of the Russian Federation. The biological preparations were introduced by soaking seeds and treatment of the plants in the phase of third leaf with solutions of the preparations in the concentration of 1 mL/L. The laboratory surveys revealed the positive effect of the biological preparations on germination rate and energy of germination of seeds. Field trials were conducted on micro plots in six replications. During field experiments, we determined that introduction of biological preparations led to significant increase in the leaf area in the experimental plants (to 64.5%), increase in average daily growth gains (to 82.9%) and accumulation of biomass (to 73.1%). Somewhat higher efficiency was exerted by the biological preparation developed on the basis of a strain of L. buchneri. Perhaps, such effect takes place due to higher activity of pigment units of phytohormones of the auxin group. In our opinion, biological preparations accelerate the completion of the ontogenesis phases, thus the plants more rapidly achieve their genetically programmed sizes and transform to the stage of ear-formation. The studied biological preparations increased the coefficient of agricultural use of plants, and grain productivity of barley by up to 15.8%, and nutritional value remained. Microbial preparations on the basis of B. subtilis and L. buchneri exhibited efficiency, and their trials shall be continued on other crops on industrial scales.
Collapse
|