1
|
Wu J, Qiu Y, Tian M, Wang L, Gao K, Yang X, Jiang Z. Flavonoids from Scutellaria baicalensis: Promising Alternatives for Enhancing Swine Production and Health. Int J Mol Sci 2025; 26:3703. [PMID: 40332337 PMCID: PMC12027786 DOI: 10.3390/ijms26083703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Concerns over vaccine safety, bacterial resistance, and drug residues have led to increased interest in plant extracts for improving swine nutrition and health. Scutellaria baicalensis Georgi, rich in four primary flavonoids-baicalin, baicalein, wogonoside, and wogonin-demonstrates significant pharmacological properties, including anti-inflammatory, antioxidant, antibacterial, and antiviral activities in swine. These flavonoids have been shown to enhance growth performance, improve immunity, modulate gut microbiota, and aid in the prevention and treatment of various diseases. This review highlights the pharmacological effects of these flavonoids in swine, with a focus on network pharmacology to reveal the underlying molecular mechanisms. By constructing drug-target networks and identifying key signaling pathways, the review reveals how these flavonoids interact with biological systems to promote health. Furthermore, it discusses the practical applications of Scutellaria baicalensis flavonoids in swine production and outlines potential future research directions. This work provides a theoretical framework for understanding the therapeutic targets of these flavonoids, offering valuable insights for advancing sustainable and healthy pig farming practices.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.W.); (Y.Q.); (M.T.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry husbandry Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Husbandry and Nutrition, Guangzhou 510640, China
| | - Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.W.); (Y.Q.); (M.T.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry husbandry Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Husbandry and Nutrition, Guangzhou 510640, China
| | - Min Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.W.); (Y.Q.); (M.T.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry husbandry Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Husbandry and Nutrition, Guangzhou 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.W.); (Y.Q.); (M.T.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry husbandry Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Husbandry and Nutrition, Guangzhou 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.W.); (Y.Q.); (M.T.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry husbandry Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Husbandry and Nutrition, Guangzhou 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.W.); (Y.Q.); (M.T.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry husbandry Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Husbandry and Nutrition, Guangzhou 510640, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.W.); (Y.Q.); (M.T.); (L.W.); (K.G.); (Z.J.)
- State Key Laboratory of Swine and Poultry husbandry Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Husbandry and Nutrition, Guangzhou 510640, China
| |
Collapse
|
2
|
Yang X, Zheng S, Wang X, Wang J, Ali Shah SB, Wang Y, Gao R, Xu Z. Advances in pharmacology, biosynthesis, and metabolic engineering of Scutellaria-specialized metabolites. Crit Rev Biotechnol 2024; 44:302-318. [PMID: 36581326 DOI: 10.1080/07388551.2022.2149386] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 12/31/2022]
Abstract
Scutellaria Linn., which belongs to the family Lamiaceae, is a commonly used medicinal plant for heat clearing and detoxification. In particular, the roots of S. baicalensis and the entire herb of S. barbata have been widely used in traditional medicine for thousands of years. The main active components of Scutellaria, including: baicalein, wogonin, norwogonin, scutellarein, and their glycosides have potential or existing drug usage. However, the wild resources of Scutellaria plants have been overexploited, and degenerated germplasm resources cannot fulfill the requirements of chemical extraction and clinical usage. Metabolic engineering and green production via microorganisms provide alternative strategies for greater efficiency in the production of natural products. Here, we review the progress of: pharmacological investigations, multi-omics, biosynthetic pathways, and metabolic engineering of various Scutellaria species and their active compounds. In addition, based on multi-omics data, we systematically analyze the phylogenetic relationships of Scutellaria and predict candidate transcription factors related to the regulation of active flavonoids. Finally, we propose the prospects of directed evolution of core enzymes and genome-assisted breeding to alleviate the shortage of plant resources of Scutellaria. This review provides important insights into the sustainable utilization and development of Scutellaria resources.
Collapse
Affiliation(s)
- Xinyi Yang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Sihao Zheng
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Xiaotong Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jing Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Syed Basit Ali Shah
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yu Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ranran Gao
- The Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhichao Xu
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
3
|
Palai S, Kesh SS, Rudrapal M. Plant‐Based Products and Phytochemicals against Viral Infections of the Central Nervous System. PHYTOCHEMICAL DRUG DISCOVERY FOR CENTRAL NERVOUS SYSTEM DISORDERS 2023:251-272. [DOI: 10.1002/9781119794127.ch10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Huang Q, Wang M, Wang M, Lu Y, Wang X, Chen X, Yang X, Guo H, He R, Luo Z. Scutellaria baicalensis: a promising natural source of antiviral compounds for the treatment of viral diseases. Chin J Nat Med 2023; 21:563-575. [PMID: 37611975 DOI: 10.1016/s1875-5364(23)60401-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Indexed: 08/25/2023]
Abstract
Viruses, the smallest microorganisms, continue to present an escalating threat to human health, being the leading cause of mortality worldwide. Over the decades, although significant progress has been made in the development of therapies and vaccines against viral diseases, the need for effective antiviral interventions remains urgent. This urgency stems from the lack of effective vaccines, the severe side effects associated with current drugs, and the emergence of drug-resistant viral strains. Natural plants, particularly traditionally-used herbs, are often considered an excellent source of medicinal drugs with potent antiviral efficacy, as well as a substantial safety profile. Scutellaria baicalensis, a traditional Chinese medicine, has garnered considerable attention due to its extensive investigation across diverse therapeutic areas and its demonstrated efficacy in both preclinical and clinical trials. In this review, we mainly focused on the potential antiviral activities of ingredients in Scutellaria baicalensis, shedding light on their underlying mechanisms of action and therapeutic applications in the treatment of viral infections.
Collapse
Affiliation(s)
- Qiuju Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Muyang Wang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Min Wang
- Hainan Affiliated Hospital of Hainan Medical University, Department of Pharmacy, Haikou 570311, China
| | - Yuhui Lu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Xiaohua Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 612505, China
| | - Xin Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xin Yang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China.
| | - Rongrong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 612505, China.
| | - Zhuo Luo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
5
|
Bao M, Ma Y, Liang M, Sun X, Ju X, Yong Y, Liu X. Research progress on pharmacological effects and new dosage forms of baicalin. Vet Med Sci 2022; 8:2773-2784. [DOI: 10.1002/vms3.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Minglong Bao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yunfei Ma
- College of Veterinary Medicine, China Agricultural University Beijing P. R. China
| | - Mei Liang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xinyi Sun
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| |
Collapse
|
6
|
Goryashchenko AS, Uvarova VI, Osolodkin DI, Ishmukhametov AA. Discovery of small molecule antivirals targeting tick-borne encephalitis virus. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2022. [DOI: 10.1016/bs.armc.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Lin C, Tsai FJ, Hsu YM, Ho TJ, Wang GK, Chiu YJ, Ha HA, Yang JS. Study of Baicalin toward COVID-19 Treatment: In silico Target Analysis and in vitro Inhibitory Effects on SARS-CoV-2 Proteases. Biomed Hub 2021; 6:122-137. [PMID: 34934765 PMCID: PMC8647113 DOI: 10.1159/000519564] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023] Open
Abstract
Negative impacts of COVID-19 on human health and economic and social activities urge scientists to develop effective treatments. Baicalin is a natural flavonoid, extracted from a traditional medicinal plant, previously reported with anti-inflammatory activity. In this study, we used pharmacophore fitting and molecular docking to screen and determine docking patterns and the binding affinity of baicalin on 3 major targets of SARS-CoV-2 (3-chymotrypsin-like cysteine protease [3CLpro], papain-like protease [PLpro], and RNA-dependent RNA polymerase). The obtained data revealed that baicalin has high pharmacophore fitting on 3CLpro and predicted good binding affinity on PLpro. Moreover, using the enzymatic assay, we examined the inhibitory effect of baicalin in vitro on the screened enzymes. Baicalin also exhibits inhibitory effect on these proteases in vitro. Additionally, we performed pharmacophore-based screening of baicalin on human targets and conducted pathway analysis to explore the potential cytoprotective effects of baicalin in the host cell that may be beneficial for COVID-19 treatment. The result suggested that baicalin has multiple targets in human cell that may induce multiple pharmacological effects. The result of pathway analysis implied that these targets may be associated with baicalin-induced bioactivities that are involved with signals of pro-inflammation factors, such as cytokine and chemokine. Taken together with supportive data from the literature, the bioactivities of bailalin may be beneficial for COVID-19 treatment by reducing cytokine-induced acute inflammation. In conclusion, baicalin is potentially a good candidate for developing new therapeutic to treat COVID-19.
Collapse
Affiliation(s)
- Chingju Lin
- Department of Physiology, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Medical Research, Human Genetics Center, China Medical University Hospital 404, Taichung, Taiwan.,Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Guo-Kai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Yu-Jen Chiu
- Division of Reconstructive and Plastic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Yang Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hai-Anh Ha
- School of Pharmacy, China Medical University, Taichung, Taiwan.,Faculty of Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Bibi S, Sarfraz A, Mustafa G, Ahmad Z, Zeb MA, Wang YB, Khan T, Khan MS, Kamal MA, Yu H. Impact of Traditional Plants and their Secondary Metabolites in the Discovery of COVID-19 Treatment. Curr Pharm Des 2021; 27:1123-1143. [PMID: 33213320 DOI: 10.2174/1381612826666201118103416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Coronavirus Disease-2019 belongs to the family of viruses which cause serious pneumonia along with fever, breathing issues and infection of lungs, and was first reported in China and later spread worldwide. OBJECTIVE Several studies and clinical trials have been conducted to identify potential drugs and vaccines for Coronavirus Disease-2019. The present study listed natural secondary metabolites identified from plant sources with antiviral properties and could be a safer and tolerable treatment for Coronavirus Disease-2019. METHODS A comprehensive search on the reported studies was conducted using different search engines such as Google Scholar, SciFinder, Sciencedirect, Medline PubMed, and Scopus for the collection of research articles based on plant-derived secondary metabolites, herbal extracts, and traditional medicine for coronavirus infections. RESULTS Status of COVID-19 worldwide and information of important molecular targets involved in COVID- 19 are described, and through literature search, it is highlighted that numerous plant species and their extracts possess antiviral properties and are studied with respect to coronavirus treatments. Chemical information, plant source, test system type with a mechanism of action for each secondary metabolite are also mentioned in this review paper. CONCLUSION The present review has listed plants that have presented antiviral potential in the previous coronavirus pandemics and their secondary metabolites, which could be significant for the development of novel and a safer drug which could prevent and cure coronavirus infection worldwide.
Collapse
Affiliation(s)
- Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| | - Ayesha Sarfraz
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zeeshan Ahmad
- Kohsar Homeopathic Medical College, Rawalpindi, Pakistan
| | - Muhammad A Zeb
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuan-Bing Wang
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| | - Tahir Khan
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| | - Muhammad S Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Mohammad A Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| |
Collapse
|
9
|
Yin B, Li W, Qin H, Yun J, Sun X. The Use of Chinese Skullcap ( Scutellaria baicalensis) and Its Extracts for Sustainable Animal Production. Animals (Basel) 2021; 11:ani11041039. [PMID: 33917159 PMCID: PMC8067852 DOI: 10.3390/ani11041039] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary With the increasing pressure to address the problems of bacterial resistance and drug residues, medicinal herbs are gradually taking a more important role in animal production. Scutellaria baicalensis is a common and widely used Chinese medicinal herb. The main bioactive compounds in the plant are baicalein and baicalin. These compounds have many biological functions including anti-oxidation, antipyretic, analgesic, anti-inflammatory, antiallergic, antimicrobial, immunomodulatory, and antitumor effects. S. baicalensis and its extracts can effectively promote animal growth, improve the production performance of dairy cows, reduce the stress and inflammatory response, and have effective therapeutic effects on diseases caused by bacteria, viruses, and other pathogenic microorganisms. This paper summarizes the biological function of S. baicalensis and its application in sustainable animal production to provide a reference for future application of S. baicalensis and other medicinal herbs in animal production and disease treatment. Abstract Drugs have been widely adopted in animal production. However, drug residues and bacterial resistance are a worldwide issue, and thus the most important organizations (FAO, USDA, EU, and EFSA) have limited or banned the use of some drugs and the use of antibiotics as growth promoters. Natural products such as medicinal herbs are unlikely to cause bacterial resistance and have no chemical residues. With these advantages, medicinal herbs have long been used to treat animal diseases and improve animal performance. In recent years, there has been an increasing interest in the study of medicinal herbs. S. baicalensis is a herb with a high medicinal value. The main active compounds are baicalin and baicalein. They may act as antipyretic, analgesic, anti-inflammatory, antiallergenic, antimicrobial, and antitumor agents. They also possess characteristics of being safe, purely natural, and not prone to drug resistance. S. baicalensis and its extracts can effectively promote the production performance of livestock and treat many animal diseases, such as mastitis. In this review, we summarize the active compounds, biological functions, and applications of S. baicalensis in the production of livestock and provide a guideline for the application of natural medicines in the production and treatment of diseases.
Collapse
Affiliation(s)
- Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Wei Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Hongyu Qin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Jinyan Yun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Xuezhao Sun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
- The Innovation Centre of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin Agricultural Science and Technology University, Jilin 132109, China
- Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin 132109, China
- Correspondence: ; Tel.: +86-187-4327-5745
| |
Collapse
|
10
|
Leonova GN, Maistrovskaya OS, Lubova VA. Molecular and Genetic Bases of Inhibition of Tick-Borne Encephalitis Virus Replication by Eprosartan and Ribavirin. Bull Exp Biol Med 2020; 170:53-57. [PMID: 33222083 DOI: 10.1007/s10517-020-05003-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 11/25/2022]
Abstract
The antiviral activity of eprosartan (compound selected in silico) towards highly and low-virulent strains of tick-borne encephalitis virus was compared in vitro with activity of ribavirin. Study of the cytopathogenic activity of the virus on SPEV cells by ELISA, IFAT, and PCR showed similar results: both substances (eprosartan and ribavirin) promoted elimination of tick-borne encephalitis virus. Ribavirin exhibited intracellular inhibition towards both strains: the selectivity index for highly virulent Dal'negorsk strain was 160, for low-virulent Primorye-437 strain - 113. Eprosartan inhibited intracellular replication of Dal'negorsk strain (13.7) and less so that of Primorye-437 strain (2.9). The efficiency of virtual screening of the ligand (eprosartan) was demonstrated for highly virulent, but not low virulent tick-borne encephalitis strain.
Collapse
Affiliation(s)
- G N Leonova
- G. P. Somov Institute of Epidemiology and Microbiology, Vladivostok, Russia.
| | - O S Maistrovskaya
- G. P. Somov Institute of Epidemiology and Microbiology, Vladivostok, Russia
| | - V A Lubova
- G. P. Somov Institute of Epidemiology and Microbiology, Vladivostok, Russia
| |
Collapse
|
11
|
Aisa HA, Izotova L, Karimov A, Botirov E, Mamadrahimov A, Ibragimov B. Crystal, mol-ecular structure and Hirshheld surface analysis of 5-hy-droxy-3,6,7,8-tetra-meth-oxy-flavone. Acta Crystallogr E Crystallogr Commun 2020; 76:1748-1751. [PMID: 33209346 PMCID: PMC7643244 DOI: 10.1107/s2056989020013596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 12/02/2022]
Abstract
The title compound (systematic name: 5-hydroxy-3,6,7,8-tetramethoxy-2-phenyl-4H-chromen-4-one), C19H18O7, is a flavone that was isolated from a butanol extract of the herb Scutellaria nepetoides M. Pop. The flavone mol-ecule is almost planar, with a dihedral angle between the planes of the benzo-pyran-4-one group and the attached phenyl ring of 6.4 (4)°. The 5-hy-droxy group forms a strong intra-molecular hydrogen bond with the carbonyl group, resulting in a six-membered hydrogen-bonded ring. The crystal structure has triclinic (P ) symmetry. In the crystal, the mol-ecules are linked by C-H⋯O hydrogen bonds into a two dimensional network parallel to the ab plane. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (53.9%) and H⋯O/O⋯H (20.9%) inter-actions.
Collapse
Affiliation(s)
- Haji Akber Aisa
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, People’s Republic of China
| | - Lidiya Izotova
- Institute of Bioorganic Chemistry, UzAS, M. Ulugbek Str., 83, 100125,Tashkent, Uzbekistan
| | - Abdurashid Karimov
- Institute of the Chemistry of Plant Substances, UzAS, M. Ulugbek Str., 77, 100170, Tashkent, Uzbekistan
| | - Erkin Botirov
- Institute of the Chemistry of Plant Substances, UzAS, M. Ulugbek Str., 77, 100170, Tashkent, Uzbekistan
| | - Azimjon Mamadrahimov
- Institute of Bioorganic Chemistry, UzAS, M. Ulugbek Str., 83, 100125,Tashkent, Uzbekistan
| | - Bahtiyar Ibragimov
- Institute of Bioorganic Chemistry, UzAS, M. Ulugbek Str., 83, 100125,Tashkent, Uzbekistan
| |
Collapse
|
12
|
Leonova GN. Mechanisms of Protective Actions of Specific Antibodies against the Tick-Borne Encephalitis Virus. Bull Exp Biol Med 2020; 169:657-660. [PMID: 32986207 DOI: 10.1007/s10517-020-04948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Indexed: 10/23/2022]
Abstract
The protective mechanisms of specific antibodies against tick-borne encephalitis virus were demonstrated on in vitro model. The effect of specific IgG on tick-borne encephalitis virus was comprehensively assessed in virucidal, preventive, direct antiviral, and intracellular actions by ELISA and virus titration results. The IC50 values were obtained for virucidal (3.8±0.7 U/ml), preventive (42.8±9.9 U/ml), direct antiviral (7.2±0.9 U/ml), and intracellular action (1.7±0.4 U/ml). During titration of the samples, complete elimination of the virus was observed at IgG concentration of 16 U/ml (virucidal), 320 U/ml (preventive), 32 U/ml (direct antiviral), and 8 U/ml (intracellular action). It was demonstrated that specific IgG produces a complex inhibitory effect on tick-borne encephalitis virus: it possesses both direct neutralizing activity on the virus and reduces its adsorption and intracellular replication.
Collapse
Affiliation(s)
- G N Leonova
- G. P. Somov Research Institute of Epidemiology and Microbiology, Vladivostok, Russia.
| |
Collapse
|