1
|
Tolstova T, Dotsenko E, Luzgina N, Rusanov A. Preconditioning of Mesenchymal Stem Cells Enhances the Neuroprotective Effects of Their Conditioned Medium in an Alzheimer's Disease In Vitro Model. Biomedicines 2024; 12:2243. [PMID: 39457556 PMCID: PMC11504366 DOI: 10.3390/biomedicines12102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) develops as a result of oxidative damage to neurons and chronic inflammation of microglia. These processes can be influenced by the use of a conditioned medium (CM) derived from mesenchymal stem cells (MSCs). The CM contains a wide range of factors that have neurotrophic, antioxidant, and anti-inflammatory effects. In addition, the therapeutic potential of the CM can be further enhanced by pretreating the MSCs to increase their paracrine activity. The current study aimed to investigate the neuroprotective effects of CM derived from MSCs, which were either activated by a TLR3 ligand or exposed to CoCl2, a hypoxia mimetic (pCM or hCM, respectively), in an in vitro model of AD. METHODS We have developed a novel in vitro model of AD that allows us to investigate the neuroprotective and anti-inflammatory effects of MSCs on induced neurodegeneration in the PC12 cell line and the activation of microglia using THP-1 cells. RESULTS This study demonstrates for the first time that pCM and hCM exhibit more pronounced immunosuppressive effects on proinflammatory M1 macrophages compared to CM derived from untreated MSCs (cCM). This may help prevent the development of neuroinflammation by balancing the M1 and M2 microglial phenotypes via the decreased secretion of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and increased secretion of IL-4, as well as the expression of IL-10 and TGF-β by macrophages. Moreover, a previously unknown increase in the neurotrophic properties of hCM was discovered, which led to an increase in the viability of neuron-like PC12 cells under H2O2-induced oxidative-stress conditions. These results are likely associated with an increase in the production of growth factors, including vascular endothelial growth factor (VEGF). In addition, the neuroprotective effects of CM from preconditioned MSCs are also mediated by the activation of the Nrf2/ARE pathway in PC12 cells. CONCLUSIONS TLR3 activation in MSCs leads to more potent immunosuppressive effects of the CM against pro-inflammatory M1 macrophages, while the use of hCM led to increased neurotrophic effects after H2O2-induced damage to neuronal cells. These results are of interest for the potential treatment of AD with CM from preactivated MSCs.
Collapse
Affiliation(s)
- Tatiana Tolstova
- Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | | | | | - Alexander Rusanov
- Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| |
Collapse
|
2
|
Tolstova T, Dotsenko E, Kozhin P, Novikova S, Zgoda V, Rusanov A, Luzgina N. The effect of TLR3 priming conditions on MSC immunosuppressive properties. Stem Cell Res Ther 2023; 14:344. [PMID: 38031182 PMCID: PMC10687850 DOI: 10.1186/s13287-023-03579-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have regenerative and immunomodulatory properties, making them suitable for cell therapy. Toll-like receptors (TLRs) in MSCs respond to viral load by secreting immunosuppressive or proinflammatory molecules. The expression of anti-inflammatory molecules in MSCs can be altered by the concentration and duration of exposure to the TLR3 ligand polyinosinic-polycytidylic acid (poly(I:C)). This study aimed to optimize the preconditioning of MSCs with poly(I:C) to increase immunosuppressive effects and to identify MSCs with activated TLR3 (prMSCs). METHODS Flow cytometry and histochemical staining were used to analyze MSCs for immunophenotype and differentiation potential. MSCs were exposed to poly(I:C) at 1 and 10 μg/mL for 1, 3, and 24 h, followed by determination of the expression of IDO1, WARS1, PD-L1, TSG-6, and PTGES2 and PGE2 secretion. MSCs and prMSCs were cocultured with intact (J-) and activated (J+) Jurkat T cells. The proportion of proliferating and apoptotic J+ and J- cells, IL-10 secretion, and IL-2 production after cocultivation with MSCs and prMSCs were measured. Liquid chromatography-mass spectrometry and bioinformatics analysis identified proteins linked to TLR3 activation in MSCs. RESULTS Poly(I:C) at 10 μg/mL during a 3-h incubation caused the highest expression of immunosuppression markers in MSCs. Activation of prMSCs caused a 18% decrease in proliferation and a one-third increase in apoptotic J+ cells compared to intact MSCs. Cocultures of prMSCs and Jurkat cells had increased IL-10 and decreased IL-2 in the conditioned medium. A proteomic study of MSCs and prMSCs identified 53 proteins with altered expression. Filtering the dataset with Gene Ontology and Reactome Pathway revealed that poly(I:C)-induced proteins activate the antiviral response. Protein‒protein interactions by String in prMSCs revealed that the antiviral response and IFN I signaling circuits were more active than in native MSCs. prMSCs expressed more cell adhesion proteins (ICAM-I and Galectin-3), PARP14, PSMB8, USP18, and GBP4, which may explain their anti-inflammatory effects on Jurkat cells. CONCLUSIONS TLR3 activation in MSCs is dependent on exposure time and poly(I:C) concentration. The maximum expression of immunosuppressive molecules was observed with 10 µg/mL poly(I:C) for 3-h preconditioning. This priming protocol for MSCs enhances the immunosuppressive effects of prMSCs on T cells.
Collapse
Affiliation(s)
- Tatiana Tolstova
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | | | - Peter Kozhin
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Svetlana Novikova
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Alexander Rusanov
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121.
| | - Nataliya Luzgina
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| |
Collapse
|
3
|
Vilar A, Hodgson-Garms M, Kusuma GD, Donderwinkel I, Carthew J, Tan JL, Lim R, Frith JE. Substrate mechanical properties bias MSC paracrine activity and therapeutic potential. Acta Biomater 2023; 168:144-158. [PMID: 37422008 DOI: 10.1016/j.actbio.2023.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Mesenchymal stromal cells (MSCs) have significant therapeutic potential due to their ability to differentiate into musculoskeletal lineages suitable for tissue-engineering, as well as the immunomodulatory and pro-regenerative effects of the paracrine factors that these cells secrete. Cues from the extracellular environment, including physical stimuli such as substrate stiffness, are strong drivers of MSC differentiation, but their effects upon MSC paracrine activity are not well understood. This study, therefore sought to determine the impact of substrate stiffness on the paracrine activity of MSCs, analysing both effects on MSC fate and their effect on T-cell and macrophage activity and angiogenesis. The data show that conditioned medium (CM) from MSCs cultured on 0.2 kPa (soft) and 100 kPa (stiff) polyacrylamide hydrogels have differing effects on MSC proliferation and differentiation, with stiff CM promoting proliferation whilst soft CM promoted differentiation. There were also differences in the effects upon macrophage phagocytosis and angiogenesis, with the most beneficial effects from soft CM. Analysis of the media composition identified differences in the levels of proteins including IL-6, OPG, and TIMP-2. Using recombinant proteins and blocking antibodies, we confirmed a role for OPG in modulating MSC proliferation with a complex combination of factors involved in the regulation of MSC differentiation. Together the data confirm that the physical microenvironment has an important influence on the MSC secretome and that this can alter the differentiation and regenerative potential of the cells. These findings can be used to tailor the culture environment for manufacturing potent MSCs for specific clinical applications or to inform the design of biomaterials that enable the retention of MSC activity after delivery into the body. STATEMENT OF SIGNIFICANCE: • MSCs cultured on 100 kPa matrices produce a secretome that boosts MSC proliferation • MSCs cultured on 0.2 kPa matrices produce a secretome that promotes MSC osteogenesis and adipogenesis, as well as angiogenesis and macrophage phagocytosis • IL-6 secretion is elevated in MSCs on 0.2 kPa substrates • OPG, TIMP-2, MCP-1, and sTNFR1 secretion are elevated in MSCs on 100 kPa substrates.
Collapse
Affiliation(s)
- Aeolus Vilar
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
| | - Margeaux Hodgson-Garms
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Gina D Kusuma
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ilze Donderwinkel
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - James Carthew
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jean L Tan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3800, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3800, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
4
|
Polarized Anti-Inflammatory Mesenchymal Stem Cells Increase Hippocampal Neurogenesis and Improve Cognitive Function in Aged Mice. Int J Mol Sci 2023; 24:ijms24054490. [PMID: 36901920 PMCID: PMC10003244 DOI: 10.3390/ijms24054490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Age-related decline in cognitive functions is associated with reduced hippocampal neurogenesis caused by changes in the systemic inflammatory milieu. Mesenchymal stem cells (MSC) are known for their immunomodulatory properties. Accordingly, MSC are a leading candidate for cell therapy and can be applied to alleviate inflammatory diseases as well as aging frailty via systemic delivery. Akin to immune cells, MSC can also polarize into pro-inflammatory MSC (MSC1) and anti-inflammatory MSC (MSC2) following activation of Toll-like receptor 4 (TLR4) and TLR3, respectively. In the present study, we apply pituitary adenylate cyclase-activating peptide (PACAP) to polarize bone-marrow-derived MSC towards an MSC2 phenotype. Indeed, we found that polarized anti-inflammatory MSC were able to reduce the plasma levels of aging related chemokines in aged mice (18-months old) and increased hippocampal neurogenesis following systemic administration. Similarly, aged mice treated with polarized MSC displayed improved cognitive function in the Morris water maze and Y-maze assays compared with vehicle- and naïve-MSC-treated mice. Changes in neurogenesis and Y-maze performance were negatively and significantly correlated with sICAM, CCL2 and CCL12 serum levels. We conclude that polarized PACAP-treated MSC present anti-inflammatory properties that can mitigate age-related changes in the systemic inflammatory milieu and, as a result, ameliorate age related cognitive decline.
Collapse
|
5
|
Rivera-Cruz CM, Figueiredo ML. Evaluation of human adipose-derived mesenchymal stromal cell Toll-like receptor priming and effects on interaction with prostate cancer cells. Cytotherapy 2023; 25:33-45. [PMID: 36257875 DOI: 10.1016/j.jcyt.2022.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are a multipotent cell population of clinical interest because of their ability to migrate to injury and tumor sites, where they may participate in tissue repair and modulation of immune response. Although the processes regulating MSC function are incompletely understood, it has been shown that stimulation of Toll-like receptors (TLRs) can alter MSC activity. More specifically, it has been reported that human bone marrow-derived MSCs can be "polarized" by TLR priming into contrasting immunomodulatory functions, with opposite (supportive or suppressive) roles in tumor progression and inflammation. Adipose-derived MSCs (ASCs) represent a promising alternative MSC subpopulation for therapeutic development because of their relative ease of isolation and higher abundance compared with their bone marrow-derived counterparts; however, the polarization of ASCs remains unreported. METHODS In this study, we evaluated the phenotypic and functional consequences of short-term, low-level stimulation of ASCs with TLR3 and TLR4 agonists. RESULTS In these assays, we identified transient gene expression changes resembling the reported pro-inflammatory and anti-inflammatory MSC phenotypes. Furthermore, these priming strategies led to changes in the functional properties of ASCs, affecting their ability to migrate and modulate immune-mediated responses to prostate cancer cells in vitro. CONCLUSIONS TLR3 stimulation significantly decreased ASC migration, and TLR4 stimulation increased ASC immune-mediated killing potential against prostate cancer cells.
Collapse
Affiliation(s)
- Cosette M Rivera-Cruz
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
6
|
Preconditioned Mesenchymal Stromal Cells to Improve Allotransplantation Outcome. Cells 2021; 10:cells10092325. [PMID: 34571974 PMCID: PMC8469056 DOI: 10.3390/cells10092325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are tissue-derived progenitor cells with immunomodulatory as well as multilineage differentiation capacities, and have been widely applied as cellular therapeutics in different disease systems in both preclinical models and clinical studies. Although many studies have applied MSCs in different types of allotransplantation, the efficacy varies. It has been demonstrated that preconditioning MSCs prior to in vivo administration may enhance their efficacy. In the field of organ/tissue allotransplantation, many recent studies have shown that preconditioning of MSCs with (1) pretreatment with bioactive factors or reagents such as cytokines, or (2) specific gene transfection, could prolong allotransplant survival and improve allotransplant function. Herein, we review these preconditioning strategies and discuss potential directions for further improvement.
Collapse
|