1
|
Hiramatsu L, Careau V, Garland T. Can a Hybrid Line Break a Selection Limit on Behavioral Evolution in Mice? Behav Genet 2025; 55:43-58. [PMID: 39636486 PMCID: PMC11790750 DOI: 10.1007/s10519-024-10209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Artificial selection yielded four replicate high runner (HR) lines of mice that reached apparent selection limits (~ threefold increase in wheel revolutions per day vs. four control lines), despite maintenance of additive genetic variance. After 68 generations, we used animal models to test for changes in additive-genetic variances and covariance of the two measured components (average speed and duration) of running distance. We also attempted to break the selection limit by crossing two HR lines, then continuing directional selection on this hybrid line and on the two parental lines for nine generations. The genetic correlation between speed and duration was positive in the base population, but evolved to be negative in the two parental HR lines. Although heritability for both speed and duration (but not distance) increased in the hybrid line, their genetic correlation remained negative. Hybrid F1 mice from generation 68 parents showed heterosis for running distance, which was lost in subsequent generations, and the hybrid line did not exceed the limit. Both male and female hybrids ran faster than parental lines for most generations, but running duration was intermediate or reduced, reflecting their negative genetic correlation. The evolved genetic trade-off between speed and duration may explain the inability for the hybrid line to break the selection limit for distance run, despite renewed additive genetic variance for at least one of its component traits.
Collapse
Affiliation(s)
- Layla Hiramatsu
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Vincent Careau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
2
|
Schwartz NE, Garland T. A meta-analysis of whole-body and heart mass effect sizes from a long-term artificial selection experiment for high voluntary exercise. J Exp Biol 2024; 227:jeb249213. [PMID: 39119628 DOI: 10.1242/jeb.249213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Selection experiments play an increasingly important role in comparative and evolutionary physiology. However, selection experiments can be limited by relatively low statistical power, in part because replicate line is the experimental unit for analyses of direct or correlated responses (rather than number of individuals measured). One way to increase the ability to detect correlated responses is through a meta-analysis of studies for a given trait across multiple generations. To demonstrate this, we applied meta-analytic techniques to two traits (body mass and heart ventricle mass, with body mass as a covariate) from a long-term artificial selection experiment for high voluntary wheel-running behavior. In this experiment, all four replicate High Runner (HR) lines reached apparent selection limits around generations 17-27, running approximately 2.5- to 3-fold more revolutions per day than the four non-selected Control (C) lines. Although both traits would also be expected to change in HR lines (relative heart size expected to increase, expected direction for body mass is less clear), their statistical significance has varied, despite repeated measurements. We compiled information from 33 unique studies and calculated a measure of effect size (Pearson's R). Our results indicate that, despite a lack of statistical significance in most generations, HR mice have evolved larger hearts and smaller bodies relative to controls. Moreover, plateaus in effect sizes for both traits coincide with the generational range during which the selection limit for wheel-running behavior was reached. Finally, since reaching the selection limit, absolute effect sizes for body mass and heart ventricle mass have become smaller (i.e. closer to 0).
Collapse
Affiliation(s)
- Nicole E Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Latchney SE, Cadney MD, Hopkins A, Garland T. Maternal upbringing and selective breeding for voluntary exercise behavior modify patterns of DNA methylation and expression of genes in the mouse brain. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12858. [PMID: 37519068 PMCID: PMC10733581 DOI: 10.1111/gbb.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Selective breeding has been utilized to study the genetic basis of exercise behavior, but research suggests that epigenetic mechanisms, such as DNA methylation, also contribute to this behavior. In a previous study, we demonstrated that the brains of mice from a genetically selected high runner (HR) line have sex-specific changes in DNA methylation patterns in genes known to be genomically imprinted compared to those from a non-selected control (C) line. Through cross-fostering, we also found that maternal upbringing can modify the DNA methylation patterns of additional genes. Here, we identify an additional set of genes in which DNA methylation patterns and gene expression may be altered by selection for increased wheel-running activity and maternal upbringing. We performed bisulfite sequencing and gene expression assays of 14 genes in the brain and found alterations in DNA methylation and gene expression for Bdnf, Pde4d and Grin2b. Decreases in Bdnf methylation correlated with significant increases in Bdnf gene expression in the hippocampus of HR compared to C mice. Cross-fostering also influenced the DNA methylation patterns for Pde4d in the cortex and Grin2b in the hippocampus, with associated changes in gene expression. We also found that the DNA methylation patterns for Atrx and Oxtr in the cortex and Atrx and Bdnf in the hippocampus were further modified by sex. Together with our previous study, these results suggest that DNA methylation and the resulting change in gene expression may interact with early-life influences to shape adult exercise behavior.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of BiologySt. Mary's College of MarylandSt. Mary's CityMarylandUSA
| | - Marcell D. Cadney
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
- Neuroscience Research Institute, University of CaliforniaSanta BarbaraCaliforniaUSA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
4
|
Kay JC, Colbath J, Talmadge RJ, Garland T. Mice from lines selectively bred for voluntary exercise are not more resistant to muscle injury caused by either contusion or wheel running. PLoS One 2022; 17:e0278186. [PMID: 36449551 PMCID: PMC9710767 DOI: 10.1371/journal.pone.0278186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Muscle injury can be caused by strenuous exercise, repetitive tasks or external forces. Populations that have experienced selection for high locomotor activity may have evolutionary adaptations that resist exercise-induced injury and/or enhance the ability to cope with injury. We tested this hypothesis with an experiment in which mice are bred for high voluntary wheel running. Mice from four high runner lines run ~three times more daily distance than those from four non-selected control lines. To test recovery from injury by external forces, mice experienced contusion via weight drop on the calf. After injury, running distance and speed were reduced in high runner but not control lines, suggesting that the ability of control mice to run exceeds their motivation. To test effects of injury from exercise, mice were housed with/without wheels for six days, then trunk blood was collected and muscles evaluated for injury and regeneration. Both high runner and control mice with wheels had increased histological indicators of injury in the soleus, and increased indicators of regeneration in the plantaris. High runner mice had relatively more central nuclei (regeneration indicator) than control in the soleus, regardless of wheel access. The subset of high runner mice with the mini-muscle phenotype (characterized by greatly reduced muscle mass and type IIb fibers) had lower plasma creatine kinase (indicator of muscle injury), more markers of injury in the deep gastrocnemius, and more markers of regeneration in the deep and superficial gastrocnemius than normal-muscled individuals. Contrary to our expectations, high runner mice were not more resistant to either type of injury.
Collapse
Affiliation(s)
- Jarren C. Kay
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, United States of America
- * E-mail:
| | - James Colbath
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, United States of America
| | - Robert J. Talmadge
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States of America
| | - Theodore Garland
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, United States of America
| |
Collapse
|
5
|
Castro AA, Rabitoy H, Claghorn GC, Garland T. Rapid and longer-term effects of selective breeding for voluntary exercise behavior on skeletal morphology in house mice. J Anat 2021; 238:720-742. [PMID: 33089524 PMCID: PMC7855075 DOI: 10.1111/joa.13341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/24/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Selection experiments can elucidate the varying course of adaptive changes across generations. We examined the appendicular skeleton of house mice from four replicate High Runner (HR) lines bred for physical activity on wheels and four non-selected Control (C) lines. HR mice reached apparent selection limits between generations 17 and 27, running ~3-fold more than C. Studies at generations 11, 16, and 21 found that HR mice had evolved thicker hindlimb bones, heavier feet, and larger articular surface areas of the knee and hip joint. Based on biomechanical theory, any or all of these evolved differences may be beneficial for endurance running. Here, we studied mice from generation 68, plus a limited sample from generation 58, to test whether the skeleton continued to evolve after selection limits were reached. Contrary to our expectations, we found few differences between HR and C mice for these later generations, and some of the differences in bone dimensions identified in earlier generations were no longer statistically significant. We hypothesize that the loss of apparently coadapted lower-level traits reflects (1) deterioration related to a gradual increase in inbreeding and/or (2) additional adaptive changes that replace the functional benefits of some skeletal changes.
Collapse
Affiliation(s)
- Alberto A. Castro
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCAUSA
| | - Hannah Rabitoy
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCAUSA
| | - Gerald C. Claghorn
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCAUSA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCAUSA
| |
Collapse
|
6
|
Martins DF, Martins TC, Batisti AP, dos Santos Leonel L, Bobinski F, Belmonte LAO, Mazzardo-Martins L, Cargnin-Ferreira E, Santos ARS. Long-Term Regular Eccentric Exercise Decreases Neuropathic Pain-like Behavior and Improves Motor Functional Recovery in an Axonotmesis Mouse Model: the Role of Insulin-like Growth Factor-1. Mol Neurobiol 2017; 55:6155-6168. [DOI: 10.1007/s12035-017-0829-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/07/2017] [Indexed: 11/28/2022]
|
7
|
Rosenfeld CS. Sex-dependent differences in voluntary physical activity. J Neurosci Res 2017; 95:279-290. [PMID: 27870424 DOI: 10.1002/jnr.23896] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022]
Abstract
Numbers of overweight and obese individuals are increasing in the United States and globally, and, correspondingly, the associated health care costs are rising dramatically. More than one-third of children are currently considered obese with a predisposition to type 2 diabetes, and it is likely that their metabolic conditions will worsen with age. Physical inactivity has also risen to be the leading cause of many chronic, noncommunicable diseases (NCD). Children are more physically inactive now than they were in past decades, which may be due to intrinsic and extrinsic factors. In rodents, the amount of time engaged in spontaneous activity within the home cage is a strong predictor of later adiposity and weight gain. Thus, it is important to understand primary motivators stimulating physical activity (PA). There are normal sex differences in PA levels in rodents and humans. The perinatal environment can induce sex-dependent differences in PA disturbances. This Review considers the current evidence for sex differences in PA in rodents and humans. The rodent studies showing that early exposure to environmental chemicals can shape later adult PA responses are discussed. Next, whether there are different motivators stimulating exercise in male vs. female humans are examined. Finally, the brain regions, genes, and pathways that modulate PA in rodents, and possibly by translation in humans, are described. A better understanding of why each sex remains physically active through the life span could open new avenues for preventing and treating obesity in children and adults. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Bond Life Sciences Center University of Missouri, Columbia, Missouri.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri.,Genetics Area Program, University of Missouri, Columbia, Missouri
| |
Collapse
|
8
|
Guidotti S, Meyer N, Przybyt E, Scheurink AJW, Harmsen MC, Garland T, van Dijk G. Diet-induced obesity resistance of adult female mice selectively bred for increased wheel-running behavior is reversed by single perinatal exposure to a high-energy diet. Physiol Behav 2016; 157:246-57. [PMID: 26850290 DOI: 10.1016/j.physbeh.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/19/2016] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
Female mice from independently bred lines previously selected over 50 generations for increased voluntary wheel-running behavior (S1, S2) resist high energy (HE) diet-induced obesity (DIO) at adulthood, even without actual access to running wheels, as opposed to randomly bred controls (CON). We investigated whether adult S mice without wheels remain DIO-resistant when exposed - via the mother - to the HE diet during their perinatal stage (from 2 weeks prior to conception until weaning on post-natal day 21). While S1 and S2 females subjected to HE diet either perinatally or from weaning onwards (post-weaning) resisted increased adiposity at adulthood (as opposed to CON females), they lost this resistance when challenged with HE diet during these periods combined over one single cycle of breeding. When allowed one-week access to wheels (at week 6-8 and at 10 months), however, tendency for increased wheel-running behavior of S mice was unaltered. Thus, the trait for increased wheel-running behavior remained intact following combined perinatal and post-weaning HE exposure, but apparently this did not block HE-induced weight gain. At weaning, perinatal HE diet increased adiposity in all lines, but this was only associated with hyperleptinemia in S lines irrespective of gender. Because leptin has multiple developmental effects at adolescence, we argue that a trait for increased physical activity may advance maturation in times of plenty. This would be adaptive in nature where episodes of increased nutrient availability should be exploited maximally. Associated disturbances in glucose homeostasis and related co-morbidities at adulthood are probably pleiotropic side effects.
Collapse
Affiliation(s)
- Stefano Guidotti
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Unit Behavioral Neuroscience, University of Groningen, The Netherlands; Center for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, The Netherlands.
| | - Neele Meyer
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Unit Behavioral Neuroscience, University of Groningen, The Netherlands.
| | - Ewa Przybyt
- Department of Pathology and Medical Biology, University of Groningen, The Netherlands.
| | - Anton J W Scheurink
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Unit Behavioral Neuroscience, University of Groningen, The Netherlands.
| | - Martin C Harmsen
- Department of Pathology and Medical Biology, University of Groningen, The Netherlands.
| | - Theodore Garland
- Department of Biology, University of California, Riverside, CA, USA.
| | - Gertjan van Dijk
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Unit Behavioral Neuroscience, University of Groningen, The Netherlands; Center for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, The Netherlands.
| |
Collapse
|
9
|
O'Toole CL, Reed TE, Bailie D, Bradley C, Cotter D, Coughlan J, Cross T, Dillane E, McEvoy S, Ó Maoiléidigh N, Prodöhl P, Rogan G, McGinnity P. The signature of fine scale local adaptation in Atlantic salmon revealed from common garden experiments in nature. Evol Appl 2015; 8:881-900. [PMID: 26495041 PMCID: PMC4610385 DOI: 10.1111/eva.12299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/08/2015] [Indexed: 11/18/2022] Open
Abstract
Understanding the extent, scale and genetic basis of local adaptation (LA) is important for conservation and management. Its relevance in salmonids at microgeographic scales, where dispersal (and hence potential gene flow) can be substantial, has however been questioned. Here, we compare the fitness of communally reared offspring of local and foreign Atlantic salmon Salmo salar from adjacent Irish rivers and reciprocal F1 hybrid crosses between them, in the wild ‘home’ environment of the local population. Experimental groups did not differ in wild smolt output but a catastrophic flood event may have limited our ability to detect freshwater performance differences, which were evident in a previous study. Foreign parr exhibited higher, and hybrids intermediate, emigration rates from the natal stream relative to local parr, consistent with genetically based behavioural differences. Adult return rates were lower for the foreign compared to the local group. Overall lifetime success of foreigners and hybrids relative to locals was estimated at 31% and 40% (mean of both hybrid groups), respectively. The results imply a genetic basis to fitness differences among populations separated by only 50 km, driven largely by variation in smolt to adult return rates. Hence even if supplementary stocking programs obtain broodstock from neighbouring rivers, the risk of extrinsic outbreeding depression may be high.
Collapse
Affiliation(s)
- Ciar L O'Toole
- School of Biological, Earth & Environmental Sciences, University College Cork Cork, Ireland
| | - Thomas E Reed
- School of Biological, Earth & Environmental Sciences, University College Cork Cork, Ireland
| | - Deborah Bailie
- Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Northern Ireland
| | - Caroline Bradley
- Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Northern Ireland
| | | | - Jamie Coughlan
- School of Biological, Earth & Environmental Sciences, University College Cork Cork, Ireland
| | - Tom Cross
- School of Biological, Earth & Environmental Sciences, University College Cork Cork, Ireland
| | - Eileen Dillane
- School of Biological, Earth & Environmental Sciences, University College Cork Cork, Ireland
| | - Sarah McEvoy
- Marine Institute, Furnace Newport, Co. Mayo, Ireland
| | | | - Paulo Prodöhl
- Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Northern Ireland
| | - Ger Rogan
- Marine Institute, Furnace Newport, Co. Mayo, Ireland
| | - Philip McGinnity
- School of Biological, Earth & Environmental Sciences, University College Cork Cork, Ireland
| |
Collapse
|
10
|
Guidotti S, Jónás I, Schubert KA, Garland T, Meijer HAJ, Scheurink AJW, van Dijk G. High-saturated fat-sucrose feeding affects lactation energetics in control mice and mice selectively bred for high wheel-running behavior. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1433-40. [PMID: 24089382 DOI: 10.1152/ajpregu.00251.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Feeding a diet high in fat and sucrose (HFS) during pregnancy and lactation is known to increase susceptibility to develop metabolic derangements later in life. A trait for increased behavioral activity may oppose these effects, since this would drain energy from milk produced to be made available to the offspring. To investigate these interactions, we assessed several components of behavioral energetics during lactation in control mice (C) and in mice of two lines selectively bred for high wheel-running activity (S1, S2) subjected to a HFS diet or a low-fat (LF) diet. Energy intake, litter growth, and milk energy output at peak lactation (MEO; assessed by subtracting maternal metabolic rate from energy intake) were elevated in HFS-feeding dams across all lines compared with the LF condition, an effect that was particularly evident in the S dams. This effect was not preceded by improved lactation behaviors assessed between postnatal days 1 and 7 (PND 1-7). In fact, S1 dams had less high-quality nursing, and S2 dams showed poorer pup retrieval than C dams during PND 1-7, and S dams had generally higher levels of physical activity at peak lactation. These data demonstrate that HFS feeding increases MEO underlying increased litter and pup growth, particularly in mice with a trait for increased behavioral physical activity.
Collapse
Affiliation(s)
- Stefano Guidotti
- Center for Behavior and Neurosciences (CBN), Unit Neuroendocrinology, University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
Kennard JA, Brown KL, Woodruff-Pak DS. Aging in the cerebellum and hippocampus and associated behaviors over the adult life span of CB6F1 mice. Neuroscience 2013; 247:335-50. [PMID: 23764510 PMCID: PMC3755498 DOI: 10.1016/j.neuroscience.2013.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/22/2013] [Accepted: 06/02/2013] [Indexed: 10/26/2022]
Abstract
In the present study we examined the effects of normal aging in the hippocampus and cerebellum, as well as behaviors associated with these substrates. A total of 67 CB6F1 hybrid mice were tested at one of five ages (4, 8, 12, 18 or 25 months) on the context pre-exposure facilitation effect (CPFE) modification of fear conditioning, rotorod, Barnes maze, acoustic startle, Morris water maze (MWM) and 500-ms trace eyeblink classical conditioning (EBCC). Behavioral tasks were chosen to increase the ability to detect age-related changes in learning, as trace EBCC is considered a more difficult paradigm (compared to delay EBCC) and the CPFE has been found to be more sensitive to hippocampus insults than standard contextual fear conditioning. To assess the effects of age on the brain, hippocampus volume was calculated and unbiased stereology was used to estimate the number of Purkinje neurons in the cerebellar cortex. A significant, age-related loss of Purkinje neurons was found-beginning at 12 months of age-and hippocampus volume remained stable over the adult life span. Age-related impairment was found, beginning at 12-18 months in the rotorod, and mice with fewer Purkinje neurons showed greater impairment in this task. CB6F1 mice retained auditory acuity across the life span and mice aged 25 months showed significant age-related impairment in the EBCC task; however, deficits were not associated with the loss of Purkinje neurons. Although the CPFE task is considered more sensitive to hippocampus insult, no age-related impairment was found. Spatial memory retention was impaired in the Barnes maze at 25 months, but no significant deficits were seen in the MWM. These results support the finding of differential aging in the hippocampus and cerebellum.
Collapse
Affiliation(s)
- John A. Kennard
- Neuroscience Program and Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| | - Kevin L. Brown
- Neuroscience Program and Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| | - Diana S. Woodruff-Pak
- Neuroscience Program and Department of Psychology, Temple University, 1701 North 13 Street, Philadelphia, PA 19122
| |
Collapse
|
12
|
Careau V, Wolak ME, Carter PA, Garland T. LIMITS TO BEHAVIORAL EVOLUTION: THE QUANTITATIVE GENETICS OF A COMPLEX TRAIT UNDER DIRECTIONAL SELECTION. Evolution 2013; 67:3102-19. [DOI: 10.1111/evo.12200] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/31/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Vincent Careau
- Department of Biology; University of California; Riverside California 92521
| | - Matthew E. Wolak
- Department of Biology; University of California; Riverside California 92521
| | - Patrick A. Carter
- School of Biological Sciences; Washington State University; Pullman Washington 99164
| | - Theodore Garland
- Department of Biology; University of California; Riverside California 92521
| |
Collapse
|
13
|
Keeney BK, Meek TH, Middleton KM, Holness LF, Garland T. Sex differences in cannabinoid receptor-1 (CB1) pharmacology in mice selectively bred for high voluntary wheel-running behavior. Pharmacol Biochem Behav 2012; 101:528-37. [PMID: 22405775 DOI: 10.1016/j.pbb.2012.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 02/07/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
The endocannabinoid system (ECS) is involved in regulation of various physiological functions, including locomotion, antinociception, emotional states, and motivated behaviors. The ECS has been implicated in regulation of voluntary wheel running in mice via actions at the cannabinoid receptor-1 (CB1). Previously, we showed that four replicate lines of mice bred for high levels of voluntary wheel running (high-runner or HR lines) sex-specifically (females only) decreased running in response to antagonism of the CB1 receptor, as compared with four unselected Control lines. Here, we administered a CB1 receptor agonist, WIN 55,212-2 (WIN). We predicted that if CB1 activation is involved in the regulation of voluntary wheel running, then HR mice would show a greater response to CB1 agonism. Following our previous protocols, mice from generation 53 were acclimated to running wheels for 24 days, then received, in random order, either an intra-peritoneal injection of vehicle or a low (0.5 mg/kg), medium (1 mg/kg) or high dosage (3 mg/kg) of WIN. Each mouse received an injection and then experienced two nights without injections, for a total period of 12 days. Response to WIN was quantified as wheel revolutions, time spent running, and average running speed in the 10-120 min immediately following injection. Injection decreased wheel revolutions in all mice, but male HR mice decreased their running to a greater degree relative to Controls in response to the high dose of WIN over the entire period analyzed, whereas HR females showed a differential response relative to Controls only in the latter 70-120 min post-injection. These results, in conjunction with our previous study, show that (a) aspects of endocannabinoid signaling have diverged in four lines of mice bred for high levels of voluntary exercise and (b) male and female HR mice differ from one another in CB1 signaling as it relates to wheel running.
Collapse
Affiliation(s)
- Brooke K Keeney
- University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|