1
|
Kim JH, Seo HJ, Pang QQ, Kwon YR, Kim JH, Cho EJ. Protective effects of krill oil on high fat diet-induced cognitive impairment by regulation of oxidative stress. Free Radic Res 2021; 55:799-809. [PMID: 34181501 DOI: 10.1080/10715762.2021.1944623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Consumption of high fat diet (HFD) increases risk of cognitive impairment and memory deficit by elevation of oxidative stress in the brain. In this study, we investigated the protective effects of krill oil (KO) against HFD-induced cognitive impairment in mice. The mice were fed with HFD for 10 weeks, and then KO was orally administered at doses of 100, 200, or 500 mg/kg/d for 4 weeks. To evaluate the cognitive abilities, we carried out the behavior tests, such as T-maze, novel object recognition test, and Morris water maze test. The HFD-induced cognitive impairment mice showed impairments in both spatial memory and novel object cognitive abilities. However, administration of KO at doses of 100, 200, or 500 mg/kg/d improved spatial memory ability and novel object cognition by increase of the exploration of new route and novel object. In addition, KO-administered group improved learning and memory abilities, showing shorter latency to reach hidden platform compared with control group. Furthermore, levels of reactive oxygen species (ROS), lipid peroxidation, and nitric oxide (NO) were significantly elevated by consumption of HFD, indicating that consumption of HFD induces oxidative stress in the brain. However, administration of KO attenuated oxidative stress by decrease of the ROS levels, lipid peroxidation, and NO. This study suggests that KO improves HFD-induced cognitive impairment by attenuation of oxidative stress in the brain. Therefore, KO may play as a promising agent in treatment and prevention of HFD-induced cognitive impairment.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea.,Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyo Jeong Seo
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Qi Qi Pang
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Yu Ri Kwon
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
2
|
Mukohara S, Mifune Y, Inui A, Nishimoto H, Kurosawa T, Yamaura K, Yoshikawa T, Kuroda R. In vitro and in vivo tenocyte-protective effectiveness of dehydroepiandrosterone against high glucose-induced oxidative stress. BMC Musculoskelet Disord 2021; 22:519. [PMID: 34090401 PMCID: PMC8180149 DOI: 10.1186/s12891-021-04398-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dehydroepiandrosterone (DHEA), an adrenal steroid, has a protective role against diabetes. This study aimed to investigate the in vitro and in vivo protective effects of DHEA against high glucose-induced oxidative stress in tenocytes and tendons. METHODS Tenocytes from normal Sprague-Dawley rats were cultured in low-glucose (LG) or high-glucose (HG) medium with or without DHEA. The experimental groups were: control group (LG without DHEA), LG with DHEA, HG without DHEA, and HG with DHEA. Reactive oxygen species (ROS) production, apoptosis, and messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, and interleukin-6 (IL-6) were determined. Further, diabetic rats were divided into a control group and a DHEA-injected group (DHEA group). NOX1 and NOX4 protein expression and mRNA expression of NOX1, NOX4, IL-6, matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-2, and type I and III collagens in the Achilles tendon were determined. RESULTS In rat tenocytes, DHEA decreased the expression of NOX1 and IL-6, ROS accumulation, and apoptotic cells. In the diabetic rat Achilles tendon, NOX1 protein expression and mRNA expression of NOX1, IL-6, MMP-2, TIMP-2, and type III collagen were significantly lower while type I collagen expression was significantly higher in the DHEA group than in the control group. CONCLUSIONS DHEA showed antioxidant and anti-inflammatory effects both in vitro and in vivo. Moreover, DHEA improved tendon matrix synthesis and turnover, which are affected by hyperglycemic conditions. DHEA is a potential preventive drug for diabetic tendinopathy.
Collapse
Affiliation(s)
- Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan.
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Takashi Kurosawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Tomoya Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| |
Collapse
|
3
|
Strac DS, Konjevod M, Perkovic MN, Tudor L, Erjavec GN, Pivac N. Dehydroepiandrosterone (DHEA) and its Sulphate (DHEAS) in Alzheimer's Disease. Curr Alzheimer Res 2020; 17:141-157. [PMID: 32183671 DOI: 10.2174/1567205017666200317092310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Neurosteroids Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone Sulphate (DHEAS) are involved in many important brain functions, including neuronal plasticity and survival, cognition and behavior, demonstrating preventive and therapeutic potential in different neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease. OBJECTIVE The aim of the article was to provide a comprehensive overview of the literature on the involvement of DHEA and DHEAS in Alzheimer's disease. METHODS PubMed and MEDLINE databases were searched for relevant literature. The articles were selected considering their titles and abstracts. In the selected full texts, lists of references were searched manually for additional articles. RESULTS We performed a systematic review of the studies investigating the role of DHEA and DHEAS in various in vitro and animal models, as well as in patients with Alzheimer's disease, and provided a comprehensive discussion on their potential preventive and therapeutic applications. CONCLUSION Despite mixed results, the findings of various preclinical studies are generally supportive of the involvement of DHEA and DHEAS in the pathophysiology of Alzheimer's disease, showing some promise for potential benefits of these neurosteroids in the prevention and treatment. However, so far small clinical trials brought little evidence to support their therapy in AD. Therefore, large-scale human studies are needed to elucidate the specific effects of DHEA and DHEAS and their mechanisms of action, prior to their applications in clinical practice.
Collapse
Affiliation(s)
- Dubravka S Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Matea N Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Gordana N Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
4
|
Nucleus–cytoplasm cross‐talk in the aging brain. J Neurosci Res 2019; 98:247-261. [DOI: 10.1002/jnr.24446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
5
|
Powrie YSL, Smith C. Central intracrine DHEA synthesis in ageing-related neuroinflammation and neurodegeneration: therapeutic potential? J Neuroinflammation 2018; 15:289. [PMID: 30326923 PMCID: PMC6192186 DOI: 10.1186/s12974-018-1324-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023] Open
Abstract
It is a well-known fact that DHEA declines on ageing and that it is linked to ageing-related neurodegeneration, which is characterised by gradual cognitive decline. Although DHEA is also associated with inflammation in the periphery, the link between DHEA and neuroinflammation in this context is less clear. This review drew from different bodies of literature to provide a more comprehensive picture of peripheral vs central endocrine shifts with advanced age—specifically in terms of DHEA. From this, we have formulated the hypothesis that DHEA decline is also linked to neuroinflammation and that increased localised availability of DHEA may have both therapeutic and preventative benefit to limit neurodegeneration. We provide a comprehensive discussion of literature on the potential for extragonadal DHEA synthesis by neuroglial cells and reflect on the feasibility of therapeutic manipulation of localised, central DHEA synthesis.
Collapse
Affiliation(s)
- Y S L Powrie
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - C Smith
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
6
|
Press M, Jung T, König J, Grune T, Höhn A. Protein aggregates and proteostasis in aging: Amylin and β-cell function. Mech Ageing Dev 2018; 177:46-54. [PMID: 29580826 DOI: 10.1016/j.mad.2018.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/22/2018] [Indexed: 01/07/2023]
Abstract
The ubiquitin-proteasomal-system (UPS) and the autophagy-lysosomal-system (ALS) are both highly susceptible for disturbances leading to the accumulation of cellular damage. A decline of protein degradation during aging results in the formation of oxidatively damaged and aggregated proteins finally resulting in failure of cellular functionality. Besides protein aggregation in response to oxidative damage, amyloids are a different type of protein aggregates able to distract proteostasis and interfere with cellular functionality. Amyloids are clearly linked to the pathogenesis of age-related degenerative diseases such as Alzheimer's disease. Human amylin is one of the peptides forming fibrils in β-sheet conformation finally leading to amyloid formation. In contrast to rodent amylin, human amylin is prone to form amyloidogenic aggregates, proposed to play a role in the pathogenesis of Type 2 Diabetes by impairing β-cell functionality. Since aggregates such as lipofuscin and β-amyloid are known to impair proteostasis, it is likely to assume similar effects for human amylin. In this review, we focus on the effects of IAPP on UPS and ALS and their role in amylin degradation, since both systems play a crucial role in maintaining proteome balance thereby influencing, at least in part, cellular fate and aging.
Collapse
Affiliation(s)
- Michaela Press
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany.
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany.
| | - Jeannette König
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany; Institute of Nutrition, University of Potsdam, 14558 Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany.
| |
Collapse
|
7
|
Arbo BD, Ribeiro FS, Ribeiro MF. Astrocyte Neuroprotection and Dehydroepiandrosterone. VITAMINS AND HORMONES 2018; 108:175-203. [PMID: 30029726 DOI: 10.1016/bs.vh.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) are the most abundant steroid hormones in the systemic circulation of humans. Due to their abundance and reduced production during aging, these hormones have been suggested to play a role in many aspects of health and have been used as drugs for a multiple range of therapeutic actions, including hormonal replacement and the improvement of aging-related diseases. In addition, several studies have shown that DHEA and DHEAS are neuroprotective under different experimental conditions, including models of ischemia, traumatic brain injury, spinal cord injury, glutamate excitotoxicity, and neurodegenerative diseases. Since astrocytes are responsible for the maintenance of neural tissue homeostasis and the control of neuronal energy supply, changes in astrocytic function have been associated with neuronal damage and the progression of different pathologies. Therefore, the aim of this chapter is to discuss the neuroprotective effects of DHEA against different types of brain and spinal cord injuries and how the modulation of astrocytic function by DHEA could represent an interesting therapeutic approach for the treatment of these conditions.
Collapse
Affiliation(s)
- Bruno D Arbo
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Felipe S Ribeiro
- Laboratório de Interação Neuro-Humoral, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria F Ribeiro
- Laboratório de Interação Neuro-Humoral, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
8
|
Trypsin Slows the Aging of Mice due to Its Novel Superoxide Scavenging Activity. Appl Biochem Biotechnol 2016; 181:1549-1560. [DOI: 10.1007/s12010-016-2301-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/20/2016] [Indexed: 01/08/2023]
|
9
|
Eleawa S, Bin-Jaliah I, Alkhateeb M, Bayoumy N, Alessa R, Sakr H. The impact of dehydroepiandrosterone on indomethacin-induced gastric lesions in rats. ACTA ACUST UNITED AC 2014; 101:77-87. [DOI: 10.1556/aphysiol.101.2014.1.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
|
11
|
Farahmand SK, Samini F, Samini M, Samarghandian S. Safranal ameliorates antioxidant enzymes and suppresses lipid peroxidation and nitric oxide formation in aged male rat liver. Biogerontology 2012. [DOI: 10.1007/s10522-012-9409-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Kumar P, Kale RK, Baquer NZ. Estradiol modulates membrane-linked ATPases, antioxidant enzymes, membrane fluidity, lipid peroxidation, and lipofuscin in aged rat liver. J Aging Res 2011; 2011:580245. [PMID: 22007298 PMCID: PMC3191768 DOI: 10.4061/2011/580245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/11/2011] [Accepted: 07/08/2011] [Indexed: 12/19/2022] Open
Abstract
Free radical production and oxidative stress are known to increase in liver during aging, and may contribute to the oxidative damage. These changes increase during menopausal condition in females when the level of estradiol is decreased. The objective of this study was to observe the changes in activities of membrane linked ATPases (Na+K+ ATPase, Ca2+ ATPase), antioxidant enzymes (superoxide dismutase, glutathione-S-transferase), lipid peroxidation levels, lipofuscin content and membrane fluidity occurring in livers of female rats of 3, 12 and 24 months age groups, and to see whether these changes are restored to 3 months control levels rats after exogenous administration of 17-β-estradiol (E2). The aged rats (12 and 24 months) were given subcutaneous injection of E2 (0.1 μg/g body weight) daily for one month. The results obtained in the present work revealed that normal aging was associated with significant decrease in the activities of membrane linked ATPases, antioxidant enzymes, membrane fluidity and an increase in lipid peroxidation and lipofuscin content in livers of aging female rats. The present study showed that E2 treatment reversed the changes to normal levels. E2 treatment may be beneficial in preventing some of the age related changes in the liver by increasing antioxidant defenses.
Collapse
Affiliation(s)
- Pardeep Kumar
- School of Life Sciences, Jawaharlal Nehru University, 110067 New Delhi, India
| | | | | |
Collapse
|
13
|
Xu R, Shang N, Li P. In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. Anaerobe 2011; 17:226-31. [PMID: 21875680 DOI: 10.1016/j.anaerobe.2011.07.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 06/30/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022]
Affiliation(s)
- Rihua Xu
- Key Lab of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | | | | |
Collapse
|
14
|
Kumar P, Kale RK, McLean P, Baquer NZ. Protective effects of 17β estradiol on altered age related neuronal parameters in female rat brain. Neurosci Lett 2011; 502:56-60. [PMID: 21802496 DOI: 10.1016/j.neulet.2011.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/02/2011] [Accepted: 07/13/2011] [Indexed: 12/15/2022]
Abstract
Biological aging is a fundamental process observed in almost all living beings. During aging the brain experiences structural, molecular, and functional alterations. Aging in females and males is considered as the end of natural protection against age related diseases like osteoporosis, coronary heart disease, diabetes, Alzheimer's and Parkinson's disease. These changes increase during menopausal condition in females when the level of estradiol is decreased. The aim of the present study was to investigate the anti-aging and protective potential of 17β estradiol (E2) treatment on activities of membrane linked ATPases (Na⁺K⁺ ATPase, Ca²⁺ATPase), antioxidant enzymes (superoxide dismutases, glutathione-S-transferases), intrasynaptosomal calcium levels, membrane fluidity and neurolipofuscin in the brain of aging female rats of 3 months (young), 12 months (adult) and 24 months (old) age groups, and to see whether these changes are restored to normal levels after exogenous administration of E2 (0.1 μg/g body weight for one month).The results obtained in the present work revealed that normal aging was associated with significant decrease in the activities of membrane linked ATPases, antioxidant enzymes and an increase in neurolipofuscin, intrasynaptosomal calcium levels in brain of aging female rats. The present study showed that E2 treatment reversed the changes to near normal levels. E2 treatment appears to be beneficial in preventing some of the age related changes in the brain, an important anti-aging effect of the hormone.
Collapse
Affiliation(s)
- Pardeep Kumar
- School of Life Sciences, Jawaharlal Nehru University, 110067 New Delhi, India
| | | | | | | |
Collapse
|
15
|
Sorwell KG, Urbanski HF. Dehydroepiandrosterone and age-related cognitive decline. AGE (DORDRECHT, NETHERLANDS) 2010; 32:61-7. [PMID: 19711196 PMCID: PMC2829637 DOI: 10.1007/s11357-009-9113-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 08/03/2009] [Indexed: 05/15/2023]
Abstract
In humans the circulating concentrations of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) decrease markedly during aging, and have been implicated in age-associated cognitive decline. This has led to the hypothesis that DHEA supplementation during aging may improve memory. In rodents, a cognitive anti-aging effect of DHEA and DHEAS has been observed but it is unclear whether this effect is mediated indirectly through conversion of these steroids to estradiol. Moreover, despite the demonstration of correlations between endogenous DHEA concentrations and cognitive ability in certain human patient populations, such correlations have yet to be convincingly demonstrated during normal human aging. This review highlights important differences between rodents and primates in terms of their circulating DHEA and DHEAS concentrations, and suggests that age-related changes within the human DHEA metabolic pathway may contribute to the relative inefficacy of DHEA replacement therapies in humans. The review also highlights the value of using nonhuman primates as a pragmatic animal model for testing the therapeutic potential of DHEA for age-associate cognitive decline in humans.
Collapse
Affiliation(s)
- Krystina G. Sorwell
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
| |
Collapse
|
16
|
Pérez-Neri I, Montes S, Ríos C. Inhibitory effect of dehydroepiandrosterone on brain monoamine oxidase activity: in vivo and in vitro studies. Life Sci 2009; 85:652-6. [PMID: 19772862 DOI: 10.1016/j.lfs.2009.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/28/2009] [Accepted: 09/10/2009] [Indexed: 12/30/2022]
Abstract
AIMS To evaluate the acute effect of dehydroepiandrosterone (DHEA) on monoamine oxidase (MAO) activity in the corpus striatum (CS) and the nucleus accumbens (NAc) in vivo and in vitro. MAIN METHODS Male Wistar rats received an i.p. injection of DHEA (30, 60 and 120mg/kg) and MAO activity was assayed by formation of 4-hydroxyquinoline 2h later. For in vitro studies, DHEA (100nM-1mM) was added to brain tissue homogenates to assay MAO activity. KEY FINDINGS DHEA significantly reduced (-24%) total MAO activity in the NAc (F=8.5, p<0.001), but not in the CS, at 120mg/kg dose. No significant difference was observed when MAO A and MAO B activities were independently analyzed. When assayed in vitro, total MAO, MAO A and MAO B activities were reduced by DHEA to 55.7, 28.2 and 54.4% in the NAc and to 71.9, 44.2 and 61.2% in the CS, respectively (IC(50) 4.7-56.1microM). SIGNIFICANCE An inhibitory effect of DHEA on MAO activity may be involved in the antidepressant and neuroprotective effects of the steroid. Since MAO inhibition reduces neurodegeneration in clinical trials for Parkinson's disease, our results suggest that DHEA may be useful to treat depression and to prevent neuronal death in this disorder.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, Mexico City, Mexico
| | | | | |
Collapse
|
17
|
A metabolic and functional overview of brain aging linked to neurological disorders. Biogerontology 2009; 10:377-413. [DOI: 10.1007/s10522-009-9226-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/02/2009] [Indexed: 12/21/2022]
|
18
|
Mitochondrial alterations in aging rat brain: effective role of (−)‐epigallo catechin gallate. Int J Dev Neurosci 2009; 27:223-31. [DOI: 10.1016/j.ijdevneu.2009.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/08/2009] [Accepted: 01/13/2009] [Indexed: 01/02/2023] Open
|