1
|
Stuart A, de Lange T. Replicative senescence is ATM driven, reversible, and accelerated by hyperactivation of ATM at normoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600514. [PMID: 38979390 PMCID: PMC11230194 DOI: 10.1101/2024.06.24.600514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Programmed telomere shortening limits tumorigenesis through the induction of replicative senescence. Here we address three long-standing questions concerning senescence. First, we show that the ATM kinase is solely responsible for the induction of replicative senescence. Senescence was delayed by ATM inhibition (ATMi) or overexpression of TRF2, the shelterin subunit dedicated to ATM repression. In contrast, there was no evidence for ATR signaling contributing to replicative senescence even when ATMi was combined with ATR inhibition. Second, we show ATMi can induce apparently normal cell divisions in a subset of senescent cells, indicating that senescence can be reversed. Third, we show that the extended replicative life span at low (physiological) oxygen is due to diminished ATM activity. At low oxygen, cells show a decreased ATM response to dysfunctional telomeres and genome-wide DSBs compared to 20% oxygen. As this effect could be reversed by NAC, the attenuated response of ATM to critically short telomeres and the resulting extended life span at low oxygen is likely due to ROS-induced formation of cysteine disulfide-bridges that crosslink ATM dimers into a form that is not activated by DSBs. These findings show how primary human cells detect shortened telomeres and reveal the molecular mechanism underlying the telomere tumor suppressor pathway.
Collapse
Affiliation(s)
- Alexander Stuart
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| |
Collapse
|
2
|
Wood EM, Capilla-Lasheras P, Cram DL, Walker LA, York JE, Lange A, Hamilton PB, Tyler CR, Young AJ. Social dominance and rainfall predict telomere dynamics in a cooperative arid-zone bird. Mol Ecol 2022; 31:6141-6154. [PMID: 33657651 DOI: 10.1111/mec.15868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 02/17/2021] [Indexed: 02/02/2023]
Abstract
In many vertebrate societies dominant individuals breed at substantially higher rates than subordinates, but whether this hastens ageing remains poorly understood. While frequent reproduction may trade off against somatic maintenance, the extraordinary fecundity and longevity of some social insect queens highlight that breeders need not always suffer more rapid somatic deterioration than their nonbreeding subordinates. Here, we used extensive longitudinal assessments of telomere dynamics to investigate the impact of dominance status on within-individual age-related changes in somatic integrity in a wild social bird, the white-browed sparrow-weaver (Plocepasser mahali). Dominant birds, who monopolise reproduction, had neither shorter telomeres nor faster telomere attrition rates over the long-term (1-5 years) than their subordinates. However, over shorter (half-year) time intervals dominants with shorter telomeres showed lower rates of telomere attrition (and evidence suggestive of telomere lengthening), while the same was not true among subordinates. Dominants may therefore invest more heavily in telomere length regulation (and/or somatic maintenance more broadly); a strategy that could mitigate the long-term costs of reproductive effort, leaving their long-term telomere dynamics comparable to those of subordinates. Consistent with the expectation that reproduction entails short-term costs to somatic integrity, telomere attrition rates were most severe for all birds during the breeding seasons of wetter years (rainfall is the key driver of reproductive activity in this arid-zone species). Our findings suggest that, even in vertebrate societies in which dominants monopolise reproduction, dominants may experience long-term somatic integrity trajectories indistinguishable from those of their nonreproductive subordinates.
Collapse
Affiliation(s)
- Emma M Wood
- Centre for Ecology & Conservation, University of Exeter, Penryn, UK
| | - Pablo Capilla-Lasheras
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Dominic L Cram
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Lindsay A Walker
- Geoffrey Pope, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Jenny E York
- Department of Zoology, University of Cambridge, Cambridge, UK.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Anke Lange
- Geoffrey Pope, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Patrick B Hamilton
- Geoffrey Pope, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Charles R Tyler
- Geoffrey Pope, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Andrew J Young
- Centre for Ecology & Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
3
|
Zannas AS, Kosyk O, Leung CS. Prolonged Glucocorticoid Exposure Does Not Accelerate Telomere Shortening in Cultured Human Fibroblasts. Genes (Basel) 2020; 11:genes11121425. [PMID: 33261163 PMCID: PMC7760010 DOI: 10.3390/genes11121425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/11/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Psychosocial stress, especially when chronic or excessive, can increase disease risk and accelerate biological aging. Although the underlying mechanisms are unclear, in vivo studies have associated exposure to stress and glucocorticoid stress hormones with shorter telomere length. However, the extent to which prolonged glucocorticoid exposure can shorten telomeres in controlled experimental settings remains unknown. Using a well-characterized cell line of human fibroblasts that undergo gradual telomere shortening during serial passaging in culture, we show that prolonged exposure (up to 51 days) to either naturalistic levels of the human endogenous glucocorticoid cortisol or the more potent synthetic glucocorticoid dexamethasone is not sufficient to accelerate telomere shortening. While our findings await extension in other cell types and biological contexts, they indicate that the in vivo association of psychosocial stress with telomere shortening is unlikely to be mediated by a direct and universal glucocorticoid effect on telomere length.
Collapse
Affiliation(s)
- Anthony S. Zannas
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA; (O.K.); (C.L.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
- Carolina Stress Initiative, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
- Correspondence: ; Tel.: +1-(919)962-4918
| | - Oksana Kosyk
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA; (O.K.); (C.L.)
| | - Calvin S. Leung
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA; (O.K.); (C.L.)
| |
Collapse
|
4
|
Cleal K, Baird DM. Catastrophic Endgames: Emerging Mechanisms of Telomere-Driven Genomic Instability. Trends Genet 2020; 36:347-359. [PMID: 32294415 DOI: 10.1016/j.tig.2020.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
When cells progress to malignancy, they must overcome a final telomere-mediated proliferative lifespan barrier called replicative crisis. Crisis is characterized by extensive telomere fusion that drives widespread genomic instability, mitotic arrest, hyperactivation of autophagy, and cell death. Recently, it has become apparent that that the resolution of dicentric chromosomes, which arise from telomere fusions during crisis, can initiate a sequence of events that leads to chromothripsis, a form of extreme genomic catastrophe. Chromothripsis is characterized by localized genomic regions containing tens to thousands of rearrangements and it is becoming increasingly apparent that chromothripsis occurs widely across tumor types and has a clinical impact. Here we discuss how telomere dysfunction can initiate genomic complexity and the emerging mechanisms of chromothripsis.
Collapse
Affiliation(s)
- Kez Cleal
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
5
|
Crochemore C, Fernández-Molina C, Montagne B, Salles A, Ricchetti M. CSB promoter downregulation via histone H3 hypoacetylation is an early determinant of replicative senescence. Nat Commun 2019; 10:5576. [PMID: 31811121 PMCID: PMC6898346 DOI: 10.1038/s41467-019-13314-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 10/22/2019] [Indexed: 01/03/2023] Open
Abstract
Cellular senescence has causative links with ageing and age-related diseases, however, it remains unclear if progeroid factors cause senescence in normal cells. Here, we show that depletion of CSB, a protein mutated in progeroid Cockayne syndrome (CS), is the earliest known trigger of p21-dependent replicative senescence. CSB depletion promotes overexpression of the HTRA3 protease resulting in mitochondrial impairments, which are causally linked to CS pathological phenotypes. The CSB promoter is downregulated by histone H3 hypoacetylation during DNA damage-response. Mechanistically, CSB binds to the p21 promoter thereby downregulating its transcription and blocking replicative senescence in a p53-independent manner. This activity of CSB is independent of its role in the repair of UV-induced DNA damage. HTRA3 accumulation and senescence are partially rescued upon reduction of oxidative/nitrosative stress. These findings establish a CSB/p21 axis that acts as a barrier to replicative senescence, and link a progeroid factor with the process of regular ageing in human. Senescence of metabolically active cells is a process linked to ageing. Here the authors reveal that CSB is required to block replicative senescence, and epigenetic control of CSB downregulation triggers proliferative arrest in a p21-dependent manner.
Collapse
Affiliation(s)
- Clément Crochemore
- Institut Pasteur, Stem Cells and Development, Department of Developmental and Stem Cell Biology, 75015, Paris, France.,CNRS UMR 3738, Team Stability of Nuclear and Mitochondrial DNA, 75015, Paris, France
| | - Cristina Fernández-Molina
- Institut Pasteur, Stem Cells and Development, Department of Developmental and Stem Cell Biology, 75015, Paris, France.,CNRS UMR 3738, Team Stability of Nuclear and Mitochondrial DNA, 75015, Paris, France.,Sorbonne Universités, UPMC, University of Paris 06, IFD-ED 515, Paris, France
| | - Benjamin Montagne
- Institut Pasteur, Stem Cells and Development, Department of Developmental and Stem Cell Biology, 75015, Paris, France.,CNRS UMR 3738, Team Stability of Nuclear and Mitochondrial DNA, 75015, Paris, France
| | - Audrey Salles
- Institut Pasteur, UTechS Photonic BioImaging PBI (Imagopole), Centre de Recherche et de Ressources Technologiques C2RT, Paris, France
| | - Miria Ricchetti
- Institut Pasteur, Stem Cells and Development, Department of Developmental and Stem Cell Biology, 75015, Paris, France. .,CNRS UMR 3738, Team Stability of Nuclear and Mitochondrial DNA, 75015, Paris, France.
| |
Collapse
|
6
|
Ahmed W, Lingner J. PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase. Genes Dev 2018; 32:658-669. [PMID: 29773556 PMCID: PMC6004070 DOI: 10.1101/gad.313460.118] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/23/2018] [Indexed: 11/29/2022]
Abstract
In this study, Ahmed et al. demonstrate that oxidative damage of telomeres inhibits telomerase activity at chromosome ends in cancer cells. Deletion of two antioxidant enzymes—PRDX1 and MTH1, needed for protecting telomeres from oxidative damage—results in loss of telomeric DNA in an oxygen concentration-dependent manner due to inhibition of telomerase, thus providing new insights into the role of antioxidant systems that are required to protect telomeres from oxidation. Telomerase counteracts telomere shortening and cellular senescence in germ, stem, and cancer cells by adding repetitive DNA sequences to the ends of chromosomes. Telomeres are susceptible to damage by reactive oxygen species (ROS), but the consequences of oxidation of telomeres on telomere length and the mechanisms that protect from ROS-mediated telomere damage are not well understood. In particular, 8-oxoguanine nucleotides at 3′ ends of telomeric substrates inhibit telomerase in vitro, whereas, at internal positions, they suppress G-quadruplex formation and were therefore proposed to promote telomerase activity. Here, we disrupt the peroxiredoxin 1 (PRDX1) and 7,8-dihydro-8-oxoguanine triphosphatase (MTH1) genes in cancer cells and demonstrate that PRDX1 and MTH1 cooperate to prevent accumulation of oxidized guanine in the genome. Concomitant disruption of PRDX1 and MTH1 leads to ROS concentration-dependent continuous shortening of telomeres, which is due to efficient inhibition of telomere extension by telomerase. Our results identify antioxidant systems that are required to protect telomeres from oxidation and are necessary to allow telomere maintenance by telomerase conferring immortality to cancer cells.
Collapse
Affiliation(s)
- Wareed Ahmed
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Young AJ. The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160452. [PMID: 29335379 PMCID: PMC5784072 DOI: 10.1098/rstb.2016.0452] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2017] [Indexed: 12/16/2022] Open
Abstract
Evolutionary biology and biomedicine have seen a surge of recent interest in the possibility that telomeres play a role in life-history trade-offs and ageing. Here, I evaluate alternative hypotheses for the role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing, and highlight outstanding challenges. First, while recent findings underscore the possibility of a proximate causal role for telomeres in current-future trade-offs and ageing, it is currently unclear (i) whether telomeres ever play a causal role in either and (ii) whether any causal role for telomeres arises via shortening or length-independent mechanisms. Second, I consider why, if telomeres do play a proximate causal role, selection has not decoupled such a telomere-mediated trade-off between current and future performance. Evidence suggests that evolutionary constraints have not rendered such decoupling impossible. Instead, a causal role for telomeres would more plausibly reflect an adaptive strategy, born of telomere maintenance costs and/or a function for telomere attrition (e.g. in countering cancer), the relative importance of which is currently unclear. Finally, I consider the potential for telomere biology to clarify the constraints at play in life-history evolution, and to explain the form of the current-future trade-offs and ageing trajectories that we observe today.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Andrew J Young
- School of Biosciences, University of Exeter Penryn Campus, Penryn TR10 9FE, UK
| |
Collapse
|
8
|
Lopez-Anton M, Rudolf A, Baird DM, Roger L, Jones RE, Witowski J, Fraser DJ, Bowen T. Telomere length profiles in primary human peritoneal mesothelial cells are consistent with senescence. Mech Ageing Dev 2017; 164:37-40. [PMID: 28373051 DOI: 10.1016/j.mad.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 12/19/2022]
Abstract
Mesothelial cell (MC) senescence contributes to malignancy and tissue fibrosis. The role of telomere erosion in MC senescence remains controversial, with evidence for both telomere-dependent and telomere-independent mechanisms reported. Single telomere length analysis revealed considerable telomere length heterogeneity in freshly isolated human peritoneal MCs, reflecting a heterogeneous proliferative history and providing high-resolution evidence for telomere-dependent senescence. By contrast the attenuated replicative lifespan, lack of telomere erosion and induction of p16 expression in in vitro-aged cells was consistent with stress-induced senescence. Given the potential pathophysiological impact of senescence in mesothelial tissues, high-resolution MC telomere length analysis may provide clinically useful information.
Collapse
Affiliation(s)
- Melisa Lopez-Anton
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - András Rudolf
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Laureline Roger
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Rhiannon E Jones
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Donald J Fraser
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Museum Place, Cardiff CF10 3BG, UK.
| | - Timothy Bowen
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Museum Place, Cardiff CF10 3BG, UK.
| |
Collapse
|
9
|
Farahzadi R, Mesbah-Namin SA, Zarghami N, Fathi E. L-carnitine Effectively Induces hTERT Gene Expression of Human Adipose Tissue-derived Mesenchymal Stem Cells Obtained from the Aged Subjects. Int J Stem Cells 2016; 9:107-14. [PMID: 27426092 PMCID: PMC4961110 DOI: 10.15283/ijsc.2016.9.1.107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2015] [Indexed: 11/22/2022] Open
Abstract
Background and Objectives Human mesenchymal stem cells (hMSCs) are attractive candidates for cell therapy and regenerative medicine due to their multipotency and ready availability, but their application can be complicated by the factors such as age of the donors and senescence-associated growth arrest during culture conditions. The latter most likely reflects the fact that aging of hMSCs is associated with a rise in intracellular reactive oxygen species, loss of telomerase activity, decrease in human telomerase reverse transcriptase (hTERT) expression and finally eroded telomere ends. Over-expression of telomerase in hMSCs leads to telomere elongation and may help to maintain replicative life–span of these cells. The aim of this study was to evaluate of the effect of L-carnitine (LC) as an antioxidant on the telomerase gene expression and telomere length in aged adipose tissue-derived hMSCs. Methods For this purpose, cells were isolated from healthy aged volunteers and their viabilities were assessed by MTT assay. Quantitative gene expression of hTERT and absolute telomere length measurement were also performed by real-time PCR in the absence and presence of different doses of LC (0.1, 0.2 and 0.4 mM). Results The results indicated that LC could significantly increase the hTERT gene expression and telomere length, especially in dose of 0.2 mM of LC and in 48 h treatment for the aged adipose tissue-derived hMSCs samples. Conclusion It seems that LC would be a good candidate to improve the lifespan of the aged adipose tissue-derived hMSCs due to over-expression of telomerase and lengthening of the telomeres.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tabriz, Iran
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
10
|
Boccardi V, Razdan N, Kaplunov J, Mundra JJ, Kimura M, Aviv A, Herbig U. Stn1 is critical for telomere maintenance and long-term viability of somatic human cells. Aging Cell 2015; 14:372-81. [PMID: 25684230 PMCID: PMC4406666 DOI: 10.1111/acel.12289] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2014] [Indexed: 11/29/2022] Open
Abstract
Disruption of telomere maintenance pathways leads to accelerated entry into cellular senescence, a stable proliferative arrest that promotes aging-associated disorders in some mammals. The budding yeast CST complex, comprising Cdc13, Stn1, and Ctc1, is critical for telomere replication, length regulation, and end protection. Although mammalian homologues of CST have been identified recently, their role and function for telomere maintenance in normal somatic human cells are still incompletely understood. Here, we characterize the function of human Stn1 in cultured human fibroblasts and demonstrate its critical role in telomere replication, length regulation, and function. In the absence of high telomerase activity, shRNA-mediated knockdown of hStn1 resulted in aberrant and fragile telomeric structures, stochastic telomere attrition, increased telomere erosion rates, telomere dysfunction, and consequently accelerated entry into cellular senescence. Oxidative stress augmented the defects caused by Stn1 knockdown leading to almost immediate cessation of cell proliferation. In contrast, overexpression of hTERT suppressed some of the defects caused by hStn1 knockdown suggesting that telomerase can partially compensate for hStn1 loss. Our findings reveal a critical role for human Stn1 in telomere length maintenance and function, supporting the model that efficient replication of telomeric repeats is critical for long-term viability of normal somatic mammalian cells.
Collapse
Affiliation(s)
- Virginia Boccardi
- Department of Geriatric Medicine and Metabolic Diseases Second University of Naples Naples Italy
| | - Neetu Razdan
- Department of Microbiology, Biochemistry & Molecular Genetics Rutgers Biomedical and Health Sciences Newark NJ USA
| | - Jessica Kaplunov
- Department of Microbiology, Biochemistry & Molecular Genetics Rutgers Biomedical and Health Sciences Newark NJ USA
| | - Jyoti J. Mundra
- Department of Biochemistry and Molecular Biology Rutgers Biomedical and Health Sciences Newark NJ USA
| | - Masayuki Kimura
- Center of Human Development and Aging Rutgers Biomedical and Health Sciences Newark NJ USA
| | - Abraham Aviv
- Center of Human Development and Aging Rutgers Biomedical and Health Sciences Newark NJ USA
| | - Utz Herbig
- Department of Microbiology, Biochemistry & Molecular Genetics Rutgers Biomedical and Health Sciences Newark NJ USA
- New Jersey Medical School‐Cancer Center Rutgers Biomedical and Health Sciences Newark NJ USA
| |
Collapse
|
11
|
Fumagalli M, Rossiello F, Mondello C, d’Adda di Fagagna F. Stable cellular senescence is associated with persistent DDR activation. PLoS One 2014; 9:e110969. [PMID: 25340529 PMCID: PMC4207795 DOI: 10.1371/journal.pone.0110969] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/24/2014] [Indexed: 01/04/2023] Open
Abstract
The DNA damage response (DDR) is activated upon DNA damage generation to promote DNA repair and inhibit cell cycle progression in the presence of a lesion. Cellular senescence is a permanent cell cycle arrest characterized by persistent DDR activation. However, some reports suggest that DDR activation is a feature only of early cellular senescence that is then lost with time. This challenges the hypothesis that cellular senescence is caused by persistent DDR activation. To address this issue, we studied DDR activation dynamics in senescent cells. Here we show that normal human fibroblasts retain DDR markers months after replicative senescence establishment. Consistently, human fibroblasts from healthy aged donors display markers of DDR activation even three years in culture after entry into replicative cellular senescence. However, by extending our analyses to different human cell strains, we also observed an apparent DDR loss with time following entry into cellular senescence. This though correlates with the inability of these cell strains to survive in culture upon replicative or irradiation-induced cellular senescence. We propose a model to reconcile these results. Cell strains not suffering the prolonged in vitro culture stress retain robust DDR activation that persists for years, indicating that under physiological conditions persistent DDR is causally involved in senescence establishment and maintenance. However, cell strains unable to maintain cell viability in vitro, due to their inability to cope with prolonged cell culture-associated stress, show an only-apparent reduction in DDR foci which is in fact due to selective loss of the most damaged cells.
Collapse
Affiliation(s)
- Marzia Fumagalli
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Francesca Rossiello
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | | | - Fabrizio d’Adda di Fagagna
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, Milan, Italy
- Istituto di Genetica Molecolare, CNR, Pavia, Italy
- * E-mail:
| |
Collapse
|
12
|
Zhao P, Ni W, Jiang D, Xiong W, Li F, Luo W. Osteogenic potentials of osteophytes in the cervical spine compared with patient matched bone marrow stromal cells. Indian J Orthop 2013; 47:565-71. [PMID: 24379461 PMCID: PMC3868137 DOI: 10.4103/0019-5413.121579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Osteophytes that form adjacent to degenerated disc have osteogeic potential. Studies suggest that their formation is associated with mesenchymal precursors arising from the chondrosynovial junction. This study is aimed to determine the cellular aging and osteogenic differentiation potential of osteophyte-derived mesenchymal cells (oMSCs) when compared to patient-matched bone marrow stromal cells (bMSCs). MATERIALS AND METHODS oMSCs and bMSCs were isolated from tissue samples during anterior cervical discectomy and fusion surgery. Extensive expansion of cell cultures was performed and early and late passage cells (P4 and P9, respectively) were used to study cell senescence and telomerase activity. Furthermore, osteogenic differentiation was applied to detect their osteogenic capacity. RESULTS The proliferation capacity of oMSCs in culture was superior to that of bMSCs and these cells readily underwent osteogenic differentiation. Our results showed that oMSCs had higher telomerase activity in late passages compared with bMSCs, although there was no significant difference in the telomerase activity in the early passages in either cell types. The telomerase activity was detectable only in early passage oMSCs and not in bMSCs. CONCLUSIONS Our results indicate that oMSCs retain a level of telomerase activity in vitro, which may account for the relatively greater longevity of these cells, compared to bMSCs. Furthermore, when compared to bMSCs, oMSCs maintained a higher proliferative capacity and the same osteogenic capacity, which may offer new insights of tissue formation.
Collapse
Affiliation(s)
- Pei Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1, Youyi Road, Yuanjiagang Yuzhong District, Chongqing, China
| | - Weidong Ni
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1, Youyi Road, Yuanjiagang Yuzhong District, Chongqing, China
| | - Dianming Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1, Youyi Road, Yuanjiagang Yuzhong District, Chongqing, China
| | - Wei Xiong
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan - 430030, China
| | - Feng Li
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan - 430030, China
| | - Wei Luo
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1, Youyi Road, Yuanjiagang Yuzhong District, Chongqing, China
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan - 430030, China
| |
Collapse
|
13
|
Harbo M, Koelvraa S, Serakinci N, Bendix L. Telomere dynamics in human mesenchymal stem cells after exposure to acute oxidative stress. DNA Repair (Amst) 2012; 11:774-9. [DOI: 10.1016/j.dnarep.2012.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 12/30/2022]
|
14
|
Zahnreich S, Krunic D, Melnikova L, Szejka A, Drossel B, Sabatier L, Durante M, Ritter S, Fournier C. Duplicated chromosomal fragments stabilize shortened telomeres in normal human IMR-90 cells before transition to senescence. J Cell Physiol 2012; 227:1932-40. [PMID: 21732364 DOI: 10.1002/jcp.22921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To assess why during in vitro aging of fibroblasts the maintenance of chromosomal stability is effective or occasionally fails, a detailed cytogenetic analysis was performed in normal human IMR-90 fetal lung fibroblasts. The onset of senescence was inferred from proliferation activity, expression pattern of cell cycle regulating proteins, activity of β-galactosidase, and morphological features. Over the period of proliferation, a moderate increase of non-transmissible structural chromosomal aberrations was observed. In addition, using fluorescence in situ hybridization (mFISH and mBAND) techniques, we detected clonally expanding translocations in up to 70% of the analyzed metaphases, all involving one homolog of chromosome 9 as an acceptor. Notably, chromosomes are randomly involved as donor-chromosomes of the translocated terminal acentric fragments. These fragments result from duplication because the donor chromosomes are apparently unchanged. Interstitial telomeric signals were detectable at fusion sites, most likely belonging to chromosome 9. Quantitative fluorescence in situ hybridization (QFISH) detecting telomere sequences, followed by mFISH technique revealed that already in young cells the respective telomeres of one chromosome 9 were particularly short. For the first time, we have observed dysfunctional telomeres of one specific chromosome in normal human cells that have been stabilized by duplicated terminal sequences.
Collapse
Affiliation(s)
- Sebastian Zahnreich
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mendez-Bermudez A, Royle NJ. Deficiency in DNA mismatch repair increases the rate of telomere shortening in normal human cells. Hum Mutat 2011; 32:939-46. [PMID: 21538690 DOI: 10.1002/humu.21522] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA mismatch repair (MMR) is essential for genome stability and inheritance of a mutated MMR gene, most frequently MSH2 or MLH1, results in cancer predisposition known as Lynch syndrome or hereditary nonpolyposis colorectal cancer (HNPCC). Tumors that arise through MMR deficiency show instability at simple tandem repeat loci (STRs) throughout the genome, known as microsatellite instability (MSI). The STR instability is dominated by errors that accumulate during replication in the absence of effective MMR. In this study we show that there is a high level of instability within telomeric DNA with a tendency toward deletions in tumor-derived MMR defective cell lines. We downregulated MSH2 expression in a normal fibroblast cell line and isolated four clones, with differing levels of MSH2 depletion. The telomere-shortening rate was measured at the Xp/Yp, 12q, and 17p telomeres in the MSH2 depleted and three control clones. Interestingly the mean telomere-shortening rate in the clones with MSH2 depletion was significantly greater than in the control clones. This is the first demonstration that MSH2 deficiency alone can lead to accelerated telomere shortening in normal human cells.
Collapse
|
16
|
Pitiyage GN, Slijepcevic P, Gabrani A, Chianea YG, Lim KP, Prime SS, Tilakaratne WM, Fortune F, Parkinson EK. Senescent mesenchymal cells accumulate in human fibrosis by a telomere-independent mechanism and ameliorate fibrosis through matrix metalloproteinases. J Pathol 2011; 223:604-17. [DOI: 10.1002/path.2839] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/04/2010] [Accepted: 11/30/2010] [Indexed: 01/05/2023]
|
17
|
Bendix L, Horn PB, Jensen UB, Rubelj I, Kolvraa S. The load of short telomeres, estimated by a new method, Universal STELA, correlates with number of senescent cells. Aging Cell 2010; 9:383-97. [PMID: 20331440 DOI: 10.1111/j.1474-9726.2010.00568.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Short telomeres are thought to trigger senescence, most likely through a single - or a group of few - critically shortened telomeres. Such short telomeres are thought to result from a combination of gradual linear shortening resulting from the end replication problem, reflecting the division history of the cell, superimposed by a more stochastic mechanism, suddenly causing a significant shortening of a single telomere. Previously, studies that have tried to explore the role of critically shortened telomeres have been hampered by methodological problems. With the method presented here, Universal STELA, we have a tool that can directly investigate the relationship between senescence and the load of short telomeres. The method is a variant of the chromosome-specific STELA method but has the advantage that it can demonstrate short telomeres regardless of chromosome. With Universal STELA, we find a strong correlation between the load of short telomeres and cellular senescence. Further we show that the load of short telomeres is higher in senescent cells compared to proliferating cells at the same passage, offering an explanation of premature cell senescence. This new method, Universal STELA, offers some advantages compared to existing methods and can be used to explore many of the unanswered questions in telomere biology including the role that telomeres play in cancer and aging.
Collapse
Affiliation(s)
- Laila Bendix
- Danish Aging Research Center, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Telomerase and the control of telomere length are intimately linked to the process of tumourigenesis in humans. Here I review the evidence that variation at the 5p15.33 locus, which contains theTERTgene (encoding the catalytic subunit of telomerase), might play a role in the determination of cancer risk. Mutations in the coding regions ofTERTcan affect telomerase activity and telomere length, and create severe clinical phenotypes, including bone marrow failure syndromes and a substantive increase in cancer frequency. Variants within theTERTgene have been associated with increased risk of haematological malignancies, including myelodysplastic syndrome and acute myeloid leukaemia as well as chronic lymphocytic leukaemia. Furthermore, there is good evidence from a number of independent genome-wide association studies to implicate variants at the 5p15.33 locus in cancer risk at several different sites: lung cancer, basal cell carcinoma and pancreatic cancer show strong associations, while bladder, prostate and cervical cancer and glioma also show risk alleles in this region. Thus, multiple independent lines of evidence have implicated variation in theTERTgene as a risk factor for cancer. The mechanistic basis of these risk variants is yet to be established; however, the basic biology suggests that telomere length control is a tantalising candidate mechanism underlying cancer risk.
Collapse
|
19
|
Voghel G, Thorin-Trescases N, Mamarbachi AM, Villeneuve L, Mallette FA, Ferbeyre G, Farhat N, Perrault LP, Carrier M, Thorin E. Endogenous oxidative stress prevents telomerase-dependent immortalization of human endothelial cells. Mech Ageing Dev 2010; 131:354-63. [PMID: 20399802 PMCID: PMC3700881 DOI: 10.1016/j.mad.2010.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/26/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
INTRODUCTION With aging, oxidative stress accelerates vascular endothelial cell (EC) telomere shortening-induced senescence, and may promote atherosclerosis in humans. Our aim was to investigate whether an antioxidant treatment combined with telomerase (hTERT) over-expression would prevent senescence of EC isolated from patients with severe atherosclerosis. METHODS Cells were isolated from internal mammary arteries (n=11 donors), cultured until senescence with or without N-acetylcystein (NAC) and infected, or not, with a lentivirus over-expressing hTERT. RESULTS Compared to control EC, hTERT-NAC cells had increased telomerase activity, longer telomeres and underwent more cell divisions. According to the donor, hTERT-NAC either delayed (n=5) or prevented (n=4) EC senescence, the latter leading to cell immortalization. Lack of cell immortalization by hTERT-NAC was accompanied by an absence of beneficial effect of NAC alone in paired EC. Accordingly, lack of EC immortalization by hTERT-NAC was associated with high endogenous susceptibility to oxidation. In EC where hTERT-NAC did not immortalize EC, p53, p21 and p16 expression increased with senescence, while oxidative-dependent DNA damage associated with senescence was not prevented. CONCLUSION Our data suggest that irreversible oxidative stress-dependent damages associated with cardiovascular risk factors are responsible for senescence of EC from atherosclerotic patients.
Collapse
Affiliation(s)
- Guillaume Voghel
- Department of Surgery, Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Thorin-Trescases
- Department of Surgery, Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Aida M. Mamarbachi
- Department of Surgery, Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Louis Villeneuve
- Department of Surgery, Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Nada Farhat
- Department of Surgery, Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Louis P. Perrault
- Department of Surgery, Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Michel Carrier
- Department of Surgery, Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Eric Thorin
- Department of Surgery, Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
20
|
Singh S, Dhaliwal N, Crawford R, Xiao Y. Cellular senescence and longevity of osteophyte-derived mesenchymal stem cells compared to patient-matched bone marrow stromal cells. J Cell Biochem 2010; 108:839-50. [PMID: 19693768 DOI: 10.1002/jcb.22312] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study aimed to determine the cellular aging of osteophyte-derived mesenchymal cells (oMSCs) in comparison to patient-matched bone marrow stromal cells (bMSCs). Extensive expansion of the cell cultures was performed and early and late passage cells (passages 4 and 9, respectively) were used to study signs of cellular aging, telomere length, telomerase activity, and cell-cycle-related gene expression. Our results showed that cellular aging was more prominent in bMSCs than in oMSCs, and that oMSCs had longer telomere length in late passages compared with bMSCs, although there was no significant difference in telomere lengths in the early passages in either cell type. Telomerase activity was detectable only in early passage oMSCs and not in bMSCs. In osteophyte tissues telomerase-positive cells were found to be located perivascularly and were Stro-1 positive. Fifteen cell-cycle regulator genes were investigated and only three genes (APC, CCND2, and BMP2) were differentially expressed between bMSC and oMSC. Our results indicate that oMSCs retain a level of telomerase activity in vitro, which may account for the relatively greater longevity of these cells, compared with bMSCs, by preventing replicative senescence.
Collapse
Affiliation(s)
- Sanjleena Singh
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | | | | | | |
Collapse
|
21
|
Britt-Compton B, Capper R, Rowson J, Baird DM. Short telomeres are preferentially elongated by telomerase in human cells. FEBS Lett 2009; 583:3076-80. [DOI: 10.1016/j.febslet.2009.08.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/20/2009] [Accepted: 08/23/2009] [Indexed: 01/22/2023]
|