1
|
He H, Lu H, Liu S, Cai J, Tang X, Mo C, Xu X, Chen Q, Xu M, Nong C, Liu Q, Zhang J, Qin J, Zhang Z. Effects of the association between APOE rs405509 polymorphisms and gene-environment interactions on hand grip strength among middle-aged and elderly people in a rural population in southern China. J Orthop Surg Res 2021; 16:372. [PMID: 34116692 PMCID: PMC8194121 DOI: 10.1186/s13018-021-02522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/03/2021] [Indexed: 08/30/2023] Open
Abstract
Background Hand grip strength is a complex phenotype. The current study aimed to identify the effects of the association between APOE rs405509 polymorphisms and gene-environment interactions on hand grip strength among middle-aged and elderly people in a rural population in Gongcheng, southern China. Methods APOE rs405509 polymorphisms in 1724 participants (695 men and 1029 women, aged 45–97 years old) were genotyped using the Sequenom MassARRAY platform. Statistical analysis was conducted using SPSS 21.0 and Plink 1.90. Results The APOE rs405509 G allele was associated with lower hand grip strength in all participants (β = −1.04, P value <0.001), and the correlation seemed to be even stronger among women. A significant gene-environment interaction was observed between APOE rs405509 and smoking, especially in men. The hand grip strength of male smokers carrying the GG genotype was significantly higher than that of nonsmokers (P value = 0.004). Conclusions APOE rs405509 polymorphisms might be genetic factors that affect hand grip strength in a rural population in Gongcheng, southern China. The APOE rs405509-smoking interaction has an impact on hand grip strength.
Collapse
Affiliation(s)
- Haoyu He
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.,Department of Quality Management, The Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Huaxiang Lu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.,Department of Guangxi Science and Technology Major Project, Guangxi Zhuang Autonomous Region Center for Diseases Control and Prevention, 18 Jinzhou Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shuzhen Liu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiansheng Cai
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xu Tang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chunbao Mo
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xia Xu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Quanhui Chen
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Min Xu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chuntao Nong
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qiumei Liu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Junling Zhang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jian Qin
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Zhiyong Zhang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China. .,School of Public Health, Guilin Medical University, 20 Lequn Road, Guilin, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
2
|
Pratt J, Boreham C, Ennis S, Ryan AW, De Vito G. Genetic Associations with Aging Muscle: A Systematic Review. Cells 2019; 9:E12. [PMID: 31861518 PMCID: PMC7016601 DOI: 10.3390/cells9010012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
The age-related decline in skeletal muscle mass, strength and function known as 'sarcopenia' is associated with multiple adverse health outcomes, including cardiovascular disease, stroke, functional disability and mortality. While skeletal muscle properties are known to be highly heritable, evidence regarding the specific genes underpinning this heritability is currently inconclusive. This review aimed to identify genetic variants known to be associated with muscle phenotypes relevant to sarcopenia. PubMed, Embase and Web of Science were systematically searched (from January 2004 to March 2019) using pre-defined search terms such as "aging", "sarcopenia", "skeletal muscle", "muscle strength" and "genetic association". Candidate gene association studies and genome wide association studies that examined the genetic association with muscle phenotypes in non-institutionalised adults aged ≥50 years were included. Fifty-four studies were included in the final analysis. Twenty-six genes and 88 DNA polymorphisms were analysed across the 54 studies. The ACTN3, ACE and VDR genes were the most frequently studied, although the IGF1/IGFBP3, TNFα, APOE, CNTF/R and UCP2/3 genes were also shown to be significantly associated with muscle phenotypes in two or more studies. Ten DNA polymorphisms (rs154410, rs2228570, rs1800169, rs3093059, rs1800629, rs1815739, rs1799752, rs7412, rs429358 and 192 bp allele) were significantly associated with muscle phenotypes in two or more studies. Through the identification of key gene variants, this review furthers the elucidation of genetic associations with muscle phenotypes associated with sarcopenia.
Collapse
Affiliation(s)
- Jedd Pratt
- Institute for Sport and Health, University College Dublin, Dublin, Ireland; (C.B.); (G.D.V.)
- Genomics Medicine Ireland, Dublin, Ireland; (S.E.); (A.W.R.)
| | - Colin Boreham
- Institute for Sport and Health, University College Dublin, Dublin, Ireland; (C.B.); (G.D.V.)
| | - Sean Ennis
- Genomics Medicine Ireland, Dublin, Ireland; (S.E.); (A.W.R.)
- UCD ACoRD, Academic Centre on Rare Diseases, University College Dublin, Dublin, Ireland
| | - Anthony W. Ryan
- Genomics Medicine Ireland, Dublin, Ireland; (S.E.); (A.W.R.)
| | - Giuseppe De Vito
- Institute for Sport and Health, University College Dublin, Dublin, Ireland; (C.B.); (G.D.V.)
- Department of Biomedical Sciences, University of Padova, Via F. Marzolo 3, 35131 Padova, Italy
| |
Collapse
|
3
|
Taormina G, Ferrante F, Vieni S, Grassi N, Russo A, Mirisola MG. Longevity: Lesson from Model Organisms. Genes (Basel) 2019; 10:genes10070518. [PMID: 31324014 PMCID: PMC6678192 DOI: 10.3390/genes10070518] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022] Open
Abstract
Research on longevity and healthy aging promises to increase our lifespan and decrease the burden of degenerative diseases with important social and economic effects. Many aging theories have been proposed, and important aging pathways have been discovered. Model organisms have had a crucial role in this process because of their short lifespan, cheap maintenance, and manipulation possibilities. Yeasts, worms, fruit flies, or mammalian models such as mice, monkeys, and recently, dogs, have helped shed light on aging processes. Genes and molecular mechanisms that were found to be critical in simple eukaryotic cells and species have been confirmed in humans mainly by the functional analysis of mammalian orthologues. Here, we review conserved aging mechanisms discovered in different model systems that are implicated in human longevity as well and that could be the target of anti-aging interventions in human.
Collapse
Affiliation(s)
- Giusi Taormina
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Federica Ferrante
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Salvatore Vieni
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Nello Grassi
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Antonio Russo
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Mario G Mirisola
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy.
| |
Collapse
|
4
|
Mitochondria and mitochondria-induced signalling molecules as longevity determinants. Mech Ageing Dev 2017; 165:115-128. [DOI: 10.1016/j.mad.2016.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
|
5
|
Dato S, De Rango F, Crocco P, Passarino G, Rose G. Pleiotropic effects of UCP2–UCP3 variability on leucocyte telomere length and glucose homeostasis. Biogerontology 2017; 18:347-355. [DOI: 10.1007/s10522-017-9690-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/06/2017] [Indexed: 01/06/2023]
|
6
|
Bozsodi A, Boja S, Szilagyi A, Somhegyi A, Varga PP, Lazary A. Muscle strength is associated with vitamin D receptor gene variants. J Orthop Res 2016; 34:2031-2037. [PMID: 26932507 DOI: 10.1002/jor.23220] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/24/2016] [Indexed: 02/04/2023]
Abstract
Vitamin D receptor (VDR) is an important candidate gene in muscle function. Scientific reports on the effect of its genetic variants on muscle strength are contradictory likely due to the inconsistent study designs. Hand grip strength (HGS) is a highly heritable phenotype of muscle strength but only limited studies are available on its genetic background. Association between VDR polymorphisms and HGS has been poorly investigated and previous reports are conflicting. We studied the effect of VDR gene variants on HGS in a sample of 706 schoolchildren. Genomic DNA was extracted from saliva samples and six candidate single nucleotide polymorphisms (SNPs) across the VDR gene were genotyped with Sequenom MassARRAY technique. HGS was measured with a digital dynamometer in both hands. Single marker and haplotype associations were adjusted for demographic parameters. Three SNPs, rs4516035 (A1012G; p = 0.009), rs1544410 (BsmI; p = 0.010), and rs731236 (TaqI; p = 0.038) and a 3' UTR haploblock constructed by three SNPs (Bsml-Taq1-rs10783215; p < 0.005) showed significantly associations with HGS of the dominant hand. In the non-dominant hand, the effects of the A1012G (p = 0.034) and the 3' UTR haploblock (p < 0.01) on HGS were also significant. Since the promoter SNP (A10112G) and the 3' UTR haplotype were proved to be associated with the expression and the stability of the VDR mRNA in earlier studies, VDR variants can be supposed to have a direct effect on muscle strength. The individual genetic patterns can also explain the inconsistency of the previously published clinical results on the association between vitamin D and muscle function. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2031-2037, 2016.
Collapse
Affiliation(s)
- Arpad Bozsodi
- National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary.,School of Ph.D Studies, Semmelweis University, Budapest, Hungary
| | - Sara Boja
- National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
| | - Agnes Szilagyi
- National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
| | - Annamaria Somhegyi
- National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
| | - Peter Pal Varga
- National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
| | - Aron Lazary
- National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
| |
Collapse
|
7
|
Kim S, Myers L, Ravussin E, Cherry KE, Jazwinski SM. Single nucleotide polymorphisms linked to mitochondrial uncoupling protein genes UCP2 and UCP3 affect mitochondrial metabolism and healthy aging in female nonagenarians. Biogerontology 2016; 17:725-36. [PMID: 26965008 DOI: 10.1007/s10522-016-9643-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/03/2016] [Indexed: 12/22/2022]
Abstract
Energy expenditure decreases with age, but in the oldest-old, energy demand for maintenance of body functions increases with declining health. Uncoupling proteins have profound impact on mitochondrial metabolic processes; therefore, we focused attention on mitochondrial uncoupling protein genes. Alongside resting metabolic rate (RMR), two SNPs in the promoter region of UCP2 were associated with healthy aging. These SNPs mark potential binding sites for several transcription factors; thus, they may affect expression of the gene. A third SNP in the 3'-UTR of UCP3 interacted with RMR. This UCP3 SNP is known to impact UCP3 expression in tissue culture cells, and it has been associated with body weight and mitochondrial energy metabolism. The significant main effects of the UCP2 SNPs and the interaction effect of the UCP3 SNP were also observed after controlling for fat-free mass (FFM) and physical-activity related energy consumption. The association of UCP2/3 with healthy aging was not found in males. Thus, our study provides evidence that the genetic risk factors for healthy aging differ in males and females, as expected from the differences in the phenotypes associated with healthy aging between the two sexes. It also has implications for how mitochondrial function changes during aging.
Collapse
Affiliation(s)
- Sangkyu Kim
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, 1430 Tulane Ave, SL-12, New Orleans, LA, 70112, USA.
| | - Leann Myers
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Katie E Cherry
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| | - S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, 1430 Tulane Ave, SL-12, New Orleans, LA, 70112, USA
| |
Collapse
|
8
|
Chan JPL, Thalamuthu A, Oldmeadow C, Armstrong NJ, Holliday EG, McEvoy M, Kwok JB, Assareh AA, Peel R, Hancock SJ, Reppermund S, Menant J, Trollor JN, Brodaty H, Schofield PR, Attia JR, Sachdev PS, Scott RJ, Mather KA. Genetics of hand grip strength in mid to late life. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9745. [PMID: 25637336 PMCID: PMC4312310 DOI: 10.1007/s11357-015-9745-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Hand grip strength (GS) is a predictor of mortality in older adults and is moderately to highly heritable, but no genetic variants have been consistently identified. We aimed to identify single nucleotide polymorphisms (SNPs) associated with GS in middle-aged to older adults using a genome-wide association study (GWAS). GS was measured using handheld dynamometry in community-dwelling men and women aged 55-85 from the Hunter Community Study (HCS, N = 2088) and the Sydney Memory and Ageing Study (Sydney MAS, N = 541). Genotyping was undertaken using Affymetrix microarrays with imputation to HapMap2. Analyses were performed using linear regression. No genome-wide significant results were observed in HCS nor were any of the top signals replicated in Sydney MAS. Gene-based analyses in HCS identified two significant genes (ZNF295, C2CD2), but these results were not replicated in Sydney MAS. One out of eight SNPs previously associated with GS, rs550942, located near the CNTF gene, was significantly associated with GS (p = 0.005) in the HCS cohort only. Study differences may explain the lack of consistent results between the studies, including the smaller sample size of the Sydney MAS cohort. Our modest sample size also had limited power to identify variants of small effect. Our results suggest that similar to various other complex traits, many genetic variants of small effect size may influence GS. Future GWAS using larger samples and consistent measures may prove more fruitful at identifying genetic contributors for GS in middle-aged to older adults.
Collapse
Affiliation(s)
- Jessica P. L. Chan
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
| | - Anbupalam Thalamuthu
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
| | | | - Nicola J. Armstrong
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
- />School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Elizabeth G. Holliday
- />Public Health Program, Hunter Medical Research Institute, Newcastle, Australia
- />Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales Australia
| | - Mark McEvoy
- />Public Health Program, Hunter Medical Research Institute, Newcastle, Australia
- />Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales Australia
| | - John B. Kwok
- />Neuroscience Research Australia, Sydney, Australia
- />School of Medical Sciences, UNSW, Sydney, Australia
| | - Amelia A. Assareh
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
| | - Rosanne Peel
- />Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales Australia
| | - Stephen J. Hancock
- />Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales Australia
| | - Simone Reppermund
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
| | | | - Julian N. Trollor
- />Department of Developmental Disability Neuropsychiatry, UNSW, Sydney, Australia
| | - Henry Brodaty
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
- />Primary Dementia Collaborative Research Centre, UNSW, Sydney, Australia
| | - Peter R. Schofield
- />Neuroscience Research Australia, Sydney, Australia
- />School of Medical Sciences, UNSW, Sydney, Australia
| | - John R. Attia
- />Public Health Program, Hunter Medical Research Institute, Newcastle, Australia
- />Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales Australia
| | - Perminder S. Sachdev
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
- />Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia
| | - Rodney J. Scott
- />School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales Australia
- />Division of Molecular Medicine, Pathology North, Newcastle, Australia
- />Information Based Medicine, Hunter Medical Research Institute, Newcastle, Australia
| | - Karen A. Mather
- />Centre for Healthy Brain Ageing, Psychiatry, University of New South Wales (UNSW), NPI, Euroa Centre, Barker St, Randwick, Sydney, NSW 2031 Australia
| |
Collapse
|
9
|
Dato S, Soerensen M, Lagani V, Montesanto A, Passarino G, Christensen K, Tan Q, Christiansen L. Contribution of genetic polymorphisms on functional status at very old age: a gene-based analysis of 38 genes (311 SNPs) in the oxidative stress pathway. Exp Gerontol 2014; 52:23-9. [PMID: 24462499 DOI: 10.1016/j.exger.2014.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/03/2014] [Accepted: 01/11/2014] [Indexed: 01/08/2023]
Abstract
Preservation of functional ability is a well-recognized marker of longevity. At a molecular level, a major determinant of the physiological decline occurring with aging is the imbalance between production and accumulation of oxidative damage to macromolecules, together with a decreased efficiency of stress response to avoid or repair such damage. In this paper we investigated the association of 38 genes (311 SNPs) belonging to the pro-antioxidant pathways with physical and cognitive performances, by analyzing single SNP and gene-based associations with Hand Grip strength (HG), Activities of Daily Living (ADL), Walking Speed (WS), Mini Mental State Examination (MMSE) and Composite Cognitive Score (CCS) in a Cohort of 1089 Danish nonagenarians. Moreover, for each gene analyzed in the pro-antioxidant pathway, we tested the influence on longitudinal survival. In the whole sample, nominal associations were found for TXNRD1 variability with ADL and WS, NDUFS1 and UCP3 with HG and WS, GCLC and UCP2 with WS (p<0.05). Stronger associations although not holding the multiple comparison correction, were observed between MMSE and NDUFV1, MT1A and GSTP1 variability (p<0.009). Moreover, we found that association between genetic variability in the pro-antioxidant pathway and functional status at old age is influenced by sex. In particular, most significant associations were observed in nonagenarian females, between HG scores and GLRX and UCP3 variability, between ADL levels and TXNRD1, MMSE and MT1A genetic variability. In males, a borderline statistically significant association with ADL level was found for UQCRFS1 gene. Nominally significant associations in relation to survival were found in the female sample only with SOD2, NDUFS1, UCP3 and TXNRD1 variability, the latter two confirming previous observations reported in the same cohort. Overall, our work supports the evidence that genes belonging to the pro-anti-oxidant pathway are able to modulate physical and cognitive performance after the ninth decade of life, finally influencing extreme survival.
Collapse
Affiliation(s)
- S Dato
- Department of Biology, Ecology and Heart Sciences, University of Calabria, Ponte Pietro Bucci cubo 4C, 87036 Rende, CS, Italy; The Danish Aging Research Center, Epidemiology, Institute of Public Health, University of Southern Denmark, J.B. Winslows Vej 9B, 5000 Odense C, Denmark.
| | - M Soerensen
- The Danish Aging Research Center, Epidemiology, Institute of Public Health, University of Southern Denmark, J.B. Winslows Vej 9B, 5000 Odense C, Denmark; Department of Clinical Genetics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark.
| | - V Lagani
- Bio Informatics Laboratory, Institute of Computer Science, Foundation for Research and Technology (Hellas), Heraklion, Greece.
| | - A Montesanto
- Department of Biology, Ecology and Heart Sciences, University of Calabria, Ponte Pietro Bucci cubo 4C, 87036 Rende, CS, Italy.
| | - G Passarino
- Department of Biology, Ecology and Heart Sciences, University of Calabria, Ponte Pietro Bucci cubo 4C, 87036 Rende, CS, Italy.
| | - K Christensen
- The Danish Aging Research Center, Epidemiology, Institute of Public Health, University of Southern Denmark, J.B. Winslows Vej 9B, 5000 Odense C, Denmark; Department of Clinical Genetics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark; Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark.
| | - Q Tan
- The Danish Aging Research Center, Epidemiology, Institute of Public Health, University of Southern Denmark, J.B. Winslows Vej 9B, 5000 Odense C, Denmark; Department of Clinical Genetics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark.
| | - L Christiansen
- The Danish Aging Research Center, Epidemiology, Institute of Public Health, University of Southern Denmark, J.B. Winslows Vej 9B, 5000 Odense C, Denmark; Department of Clinical Genetics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark.
| |
Collapse
|
10
|
Dato S, Crocco P, D'Aquila P, de Rango F, Bellizzi D, Rose G, Passarino G. Exploring the role of genetic variability and lifestyle in oxidative stress response for healthy aging and longevity. Int J Mol Sci 2013; 14:16443-72. [PMID: 23965963 PMCID: PMC3759920 DOI: 10.3390/ijms140816443] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is both the cause and consequence of impaired functional homeostasis characterizing human aging. The worsening efficiency of stress response with age represents a health risk and leads to the onset and accrual of major age-related diseases. In contrast, centenarians seem to have evolved conservative stress response mechanisms, probably derived from a combination of a diet rich in natural antioxidants, an active lifestyle and a favorable genetic background, particularly rich in genetic variants able to counteract the stress overload at the level of both nuclear and mitochondrial DNA. The integration of these factors could allow centenarians to maintain moderate levels of free radicals that exert beneficial signaling and modulator effects on cellular metabolism. Considering the hot debate on the efficacy of antioxidant supplementation in promoting healthy aging, in this review we gathered the existing information regarding genetic variability and lifestyle factors which potentially modulate the stress response at old age. Evidence reported here suggests that the integration of lifestyle factors (moderate physical activity and healthy nutrition) and genetic background could shift the balance in favor of the antioxidant cellular machinery by activating appropriate defense mechanisms in response to exceeding external and internal stress levels, and thus possibly achieving the prospect of living a longer life.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Heart Science, University of Calabria, Ponte Pietro Bucci cubo 4c, Rende 87036, CS, Italy.
| | | | | | | | | | | | | |
Collapse
|
11
|
Garatachea N, Lucia A. Genes, physical fitness and ageing. Ageing Res Rev 2013; 12:90-102. [PMID: 23022740 DOI: 10.1016/j.arr.2012.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/25/2022]
Abstract
Persons aged 80 years and older are the fastest growing segment of the population. As more individuals live longer, we should try to understand the mechanisms involved in healthy ageing and preserving functional independence in later life. In elderly people, functional independence is directly dependent on physical fitness, and ageing is inevitably associated with the declining functions of systems and organs (heart, lungs, blood vessels, skeletal muscles) that determine physical fitness. Thus, age-related diminished physical fitness contributes to the development of sarcopenia, frailty or disability, all of which severely deteriorate independent living and thus quality of life. Ageing is a complex process involving many variables that interact with one another, including - besides lifestyle factors or chronic diseases - genetics. Thus, several studies have examined the contribution of genetic endowment to a decline in physical fitness and subsequent loss of independence in later life. In this review, we compile information, including data from heritability, candidate-gene association, linkage and genome-wide association studies, on genetic factors that could influence physical fitness in the elderly.
Collapse
Affiliation(s)
- Nuria Garatachea
- Faculty of Health and Sport Science, University of Zaragoza, Huesca, Spain.
| | | |
Collapse
|
12
|
Ling CHY, de Craen AJM, Slagboom PE, Westendorp RGJ, Maier AB. Handgrip strength at midlife and familial longevity : The Leiden Longevity Study. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1261-8. [PMID: 21833741 PMCID: PMC3448992 DOI: 10.1007/s11357-011-9295-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 07/25/2011] [Indexed: 05/21/2023]
Abstract
Low handgrip strength has been linked with premature mortality in diverse samples of middle-aged and elderly subjects. The value of handgrip strength as marker of "exceptional" human longevity has not been previously explored. We postulated that the genetic influence on extreme survival might also be involved in the muscular strength determination pathway. Therefore, the objective of this study was to assess the muscle strength in a sample of middle-aged adults who are genetically enriched for exceptional survival and comparing them to a control group. We included 336 offspring of the nonagenarian from the Leiden Longevity Study who were enriched for heritable exceptional longevity, and 336 of their partners were used as controls. The Leiden Longevity study was a prospective follow up study of long-living siblings pairs together with their offspring and their partners. Handgrip strength was used as a proxy for overall muscle strength. No significant difference in handgrip strength was seen between the offspring of the nonagenarian and their partners after adjustment for potential confounders including body compositions, sum score of comorbidities, medication use, smoking and alcohol history. The main determinants of midlife handgrip strength were age, gender, total body percentage fat and relative appendicular lean mass. Although midlife handgrip strength has previously been shown to be an important prognostic indicator of survival, it is not a marker of exceptional familial longevity in middle-aged adults. This finding suggests that genetic component of susceptibility to extreme survival is likely to be separate from that of muscular strength.
Collapse
Affiliation(s)
- Carolina H. Y. Ling
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Anton J. M. de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands
| | - P. Eline Slagboom
- Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rudi G. J. Westendorp
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrea B. Maier
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Roth SM, Rankinen T, Hagberg JM, Loos RJF, Pérusse L, Sarzynski MA, Wolfarth B, Bouchard C. Advances in exercise, fitness, and performance genomics in 2011. Med Sci Sports Exerc 2012; 44:809-17. [PMID: 22330029 DOI: 10.1249/mss.0b013e31824f28b6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review of the exercise genomics literature emphasizes the highest quality articles published in 2011. Given this emphasis on the best publications, only a small number of published articles are reviewed. One study found that physical activity levels were significantly lower in patients with mitochondrial DNA mutations compared with controls. A two-stage fine-mapping follow-up of a previous linkage peak found strong associations between sequence variation in the activin A receptor, type-1B (ACVRIB) gene and knee extensor strength, with rs2854464 emerging as the most promising candidate polymorphism. The association of higher muscular strength with the rs2854464 A allele was confirmed in two separate cohorts. A study using a combination of transcriptomic and genomic data identified a comprehensive map of the transcriptomic features important for aerobic exercise training-induced improvements in maximal oxygen consumption, but no genetic variants derived from candidate transcripts were associated with trainability. A large-scale de novo meta-analysis confirmed that the effect of sequence variation in the fat mass and obesity-associated (FTO) gene on the risk of obesity differs between sedentary and physically active adults. Evidence for gene-physical activity interactions on type 2 diabetes risk was found in two separate studies. A large study of women found that physical activity modified the effect of polymorphisms in the lipoprotein lipase (LPL), hepatic lipase (LIPC), and cholesteryl ester transfer protein (CETP) genes, identified in previous genome-wide association study reports, on HDL cholesterol. We conclude that a strong exercise genomics corpus of evidence would not only translate into powerful genomic predictors but also have a major effect on exercise biology and exercise behavior research.
Collapse
Affiliation(s)
- Stephen M Roth
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Dato S, Soerensen M, Montesanto A, Lagani V, Passarino G, Christensen K, Christiansen L. UCP3 polymorphisms, hand grip performance and survival at old age: association analysis in two Danish middle aged and elderly cohorts. Mech Ageing Dev 2012; 133:530-7. [PMID: 22743239 DOI: 10.1016/j.mad.2012.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/22/2012] [Accepted: 06/16/2012] [Indexed: 11/16/2022]
Abstract
An efficient uncoupling process is generally considered to have a protective effect on the aging muscle by slowing down its age-related decay. Genetic polymorphisms in the Uncoupling Protein 3 (UCP3) gene, whose product is mainly expressed in skeletal muscle, were suggested to be associated with hand grip (HG) performances in elderly populations. Considering the population specificity of the quality of aging, we aimed to add further support to this evidence by analyzing the association between four SNPs in the UCP3 gene and relative haplotypes in two large cohorts of middle aged (N=708) and oldest old Danes (N=908). We found that the variability at rs1685354 and rs11235972 was associated with HG levels both at single and haplotypic level in both cohorts. Furthermore, taking advantage of large cohort and period survival data of the oldest cohort, we tested the association of each SNP with survival at 10years from the baseline visit. Interestingly, we found that allele A at rs11235972, associated in this cohort with lowest HG scores, influences also the survival patterns, with people carrying this allele showing higher mortality rates. On the whole, our work supports the role of UCP3 gene in functional status and survival at old age.
Collapse
Affiliation(s)
- Serena Dato
- Department of Cell Biology, University of Calabria, Ponte Pietro Bucci cubo 4C, 87036 Rende (CS), Italy.
| | | | | | | | | | | | | |
Collapse
|
15
|
Rose G, Crocco P, De Rango F, Montesanto A, Passarino G. Further support to the uncoupling-to-survive theory: the genetic variation of human UCP genes is associated with longevity. PLoS One 2011; 6:e29650. [PMID: 22216339 PMCID: PMC3246500 DOI: 10.1371/journal.pone.0029650] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/02/2011] [Indexed: 12/26/2022] Open
Abstract
In humans Uncoupling Proteins (UCPs) are a group of five mitochondrial inner membrane transporters with variable tissue expression, which seem to function as regulators of energy homeostasis and antioxidants. In particular, these proteins uncouple respiration from ATP production, allowing stored energy to be released as heat. Data from experimental models have previously suggested that UCPs may play an important role on aging rate and lifespan. We analyzed the genetic variability of human UCPs in cohorts of subjects ranging between 64 and 105 years of age (for a total of 598 subjects), to determine whether specific UCP variability affects human longevity. Indeed, we found that the genetic variability of UCP2, UCP3 and UCP4 do affect the individual's chances of surviving up to a very old age. This confirms the importance of energy storage, energy use and modulation of ROS production in the aging process. In addition, given the different localization of these UCPs (UCP2 is expressed in various tissues including brain, hearth and adipose tissue, while UCP3 is expressed in muscles and Brown Adipose Tissue and UCP4 is expressed in neuronal cells), our results may suggest that the uncoupling process plays an important role in modulating aging especially in muscular and nervous tissues, which are indeed very responsive to metabolic alterations and are very important in estimating health status and survival in the elderly.
Collapse
Affiliation(s)
- Giuseppina Rose
- Department of Cell Biology, University of Calabria, Rende, Italy
| | - Paolina Crocco
- Department of Cell Biology, University of Calabria, Rende, Italy
| | | | | | | |
Collapse
|
16
|
Rose G, Crocco P, D'Aquila P, Montesanto A, Bellizzi D, Passarino G. Two variants located in the upstream enhancer region of human UCP1 gene affect gene expression and are correlated with human longevity. Exp Gerontol 2011; 46:897-904. [PMID: 21827845 DOI: 10.1016/j.exger.2011.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/31/2011] [Accepted: 07/24/2011] [Indexed: 11/25/2022]
Abstract
The brown fat specific UnCoupling Protein 1 (UCP1) is involved in thermogenesis, a process by which energy is dissipated as heat in response to cold stress and excess of caloric intake. Thermogenesis has potential implications for body mass control and cellular fat metabolism. In fact, in humans, the variability of the UCP1 gene is associated with obesity, fat gain and metabolism. Since regulation of metabolism is one of the key-pathways in lifespan extension, we tested the possible effects of UCP1 variability on survival. Two polymorphisms (A-3826G and C-3740A), falling in the upstream promoter region of UCP1, were analyzed in a sample of 910 subjects from southern Italy (475 women and 435 men; age range 40-109). By analyzing haplotype specific survival functions we found that the A-C haplotype favors survival in the elderly. Consistently, transfection experiments showed that the luciferase activity of the construct containing the A-C haplotype was significantly higher than that containing the G-A haplotype. Interestingly, the different UCP1 haplotypes responded differently to hormonal stimuli. The results we present suggest a correlation between the activity of UCP1 and human survival, indicating once again the intricacy of mechanisms involved in energy production, storage and consumption as the key to understanding human aging and longevity.
Collapse
Affiliation(s)
- Giuseppina Rose
- Department of Cell Biology, University of Calabria, Rende, Italy.
| | | | | | | | | | | |
Collapse
|