1
|
Abe J, Chau K, Mojiri A, Wang G, Oikawa M, Samanthapudi VSK, Osborn AM, Ostos-Mendoza KC, Mariscal-Reyes KN, Mathur T, Jain A, Herrmann J, Yusuf SW, Krishnan S, Deswal A, Lin SH, Kotla S, Cooke JP, Le NT. Impacts of Radiation on Metabolism and Vascular Cell Senescence. Antioxid Redox Signal 2025. [PMID: 40233257 DOI: 10.1089/ars.2024.0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Significance: This review investigates how radiation therapy (RT) increases the risk of delayed cardiovascular disease (CVD) in cancer survivors. Understanding the mechanisms underlying radiation-induced CVD is essential for developing targeted therapies to mitigate these effects and improve long-term outcomes for patients with cancer. Recent Advances: Recent studies have primarily focused on metabolic alterations induced by irradiation in various cancer cell types. However, there remains a significant knowledge gap regarding the role of chronic metabolic alterations in normal cells, particularly vascular cells, in the progression of CVD after RT. Critical Issues: This review centers on RT-induced metabolic alterations in vascular cells and their contribution to senescence accumulation and chronic inflammation across the vasculature post-RT. We discuss key metabolic pathways, including glycolysis, the tricarboxylic acid cycle, lipid metabolism, glutamine metabolism, and redox metabolism (nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADP+)/NADPH). We further explore the roles of regulatory proteins such as p53, adenosine monophosphate-activated protein kinase, and mammalian target of rapamycin in driving these metabolic dysregulations. The review emphasizes the impact of immune-vascular crosstalk mediated by the senescence-associated secretory phenotype, which perpetuates metabolic dysfunction, enhances chronic inflammation, drives senescence accumulation, and causes vascular damage, ultimately contributing to cardiovascular pathogenesis. Future Directions: Future research should prioritize identifying therapeutic targets within these metabolic pathways or the immune-vascular interactions influenced by RT. Correcting metabolic dysfunction and reducing chronic inflammation through targeted therapies could significantly improve cardiovascular outcomes in cancer survivors. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Junichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khanh Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anahita Mojiri
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Venkata S K Samanthapudi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abigail M Osborn
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Tammay Mathur
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Abhishek Jain
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
2
|
Shi C, Wang Y, Guo J, Zhang D, Zhang Y, Zhang X, Gong Z. Role of malate dehydrogenase 1 and isocitrate dehydrogenase 1 and their posttranslational modifications in diseases. Biochem Biophys Res Commun 2025; 754:151535. [PMID: 40022816 DOI: 10.1016/j.bbrc.2025.151535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Malate dehydrogenase 1 (MDH1) and isocitrate dehydrogenase 1 (IDH1) are two crucial enzymes in the process of energy metabolism. MDH1 plays a crucial role in the malate-aspartate shuttle in the cytoplasm by utilizing the coenzyme NAD/NADH to catalyze the interconversion of malate and oxaloacetate. IDH1 utilizes the coenzyme NADP/NADPH to facilitate the reciprocal transformation between isocitrate and α-ketoglutarate and plays a significant role in the metabolic processes of carbohydrates, lipids, and proteins in the liver. MDH1 and IDH1, along with their posttranslational modifications such as methylation and acetylation can influence the development of many diseases. This article reviews the function of MDH1, IDH1, and their posttranslational changes in various illnesses, aiming to offer new perspectives on disease diagnosis and therapy.
Collapse
Affiliation(s)
- Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Xiaoya Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
| |
Collapse
|
3
|
Li LM, Kodosaki E, Heslegrave A, Zetterberg H, Graham N, Zimmerman K, Soreq E, Parker T, Garbero E, Moro F, Magnoni S, Bertolini G, Loane DJ, Sharp DJ. High-dimensional proteomic analysis for pathophysiological classification of traumatic brain injury. Brain 2025; 148:1015-1030. [PMID: 39323289 PMCID: PMC11884744 DOI: 10.1093/brain/awae305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/06/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
Pathophysiology and outcomes after traumatic brain injury (TBI) are complex and heterogeneous. Current classifications are uninformative about pathophysiology. Proteomic approaches with fluid-based biomarkers are ideal for exploring complex disease mechanisms, because they enable sensitive assessment of an expansive range of processes potentially relevant to TBI pathophysiology. We used novel high-dimensional, multiplex proteomic assays to assess altered plasma protein expression in acute TBI. We analysed samples from 88 participants from the BIO-AX-TBI cohort [n = 38 moderate-severe TBI (Mayo Criteria), n = 22 non-TBI trauma and n = 28 non-injured controls] on two platforms: Alamar NULISA™ CNS Diseases and OLINK® Target 96 Inflammation. Patient participants were enrolled after hospital admission, and samples were taken at a single time point ≤10 days post-injury. Participants also had neurofilament light, GFAP, total tau, UCH-L1 (all Simoa®) and S100B (Millipore) data. The Alamar panel assesses 120 proteins, most of which were previously unexplored in TBI, plus proteins with known TBI specificity, such as GFAP. A subset (n = 29 TBI and n = 24 non-injured controls) also had subacute (10 days to 6 weeks post-injury) 3 T MRI measures of lesion volume and white matter injury (fractional anisotropy). Differential expression analysis identified 16 proteins with TBI-specific significantly different plasma expression. These were neuronal markers (calbindin 2, UCH-L1 and visinin-like protein 1), astroglial markers (S100B and GFAP), neurodegenerative disease proteins (total tau, pTau231, PSEN1, amyloid-beta-42 and 14-3-3γ), inflammatory cytokines (IL16, CCL2 and ficolin 2) and cell signalling- (SFRP1), cell metabolism- (MDH1) and autophagy-related (sequestome 1) proteins. Acute plasma levels of UCH-L1, PSEN1, total tau and pTau231 were correlated with subacute lesion volume. Sequestome 1 was positively correlated with white matter fractional anisotropy, whereas CCL2 was inversely correlated. Neuronal, astroglial, tau and neurodegenerative proteins were correlated with each other, IL16, MDH1 and sequestome 1. Exploratory clustering (k means) by acute protein expression identified three TBI subgroups that differed in injury patterns, but not in age or outcome. One TBI cluster had significantly lower white matter fractional anisotropy than control-predominant clusters but had significantly lower lesion subacute lesion volumes than another TBI cluster. Proteins that overlapped on two platforms had excellent (r > 0.8) correlations between values. We identified TBI-specific changes in acute plasma levels of proteins involved in neurodegenerative disease, inflammatory and cellular processes. These changes were related to patterns of injury, thus demonstrating that processes previously studied only in animal models are also relevant in human TBI pathophysiology. Our study highlights how proteomic approaches might improve classification and understanding of TBI pathophysiology, with implications for prognostication and treatment development.
Collapse
Affiliation(s)
- Lucia M Li
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Eleftheria Kodosaki
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute, UCL, London W1T 7NF, UK
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute, UCL, London W1T 7NF, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, UCL, London W1T 7NF, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 413 45, Sweden
| | - Neil Graham
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Karl Zimmerman
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Eyal Soreq
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Thomas Parker
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Elena Garbero
- Department of Medical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Bergamo 21056, Italy
| | - Federico Moro
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Bergamo 21056, Italy
| | - Sandra Magnoni
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Guido Bertolini
- Department of Medical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Bergamo 21056, Italy
| | - David J Loane
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology (STAR) Research Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| |
Collapse
|
4
|
Yousef A, Fang L, Heidari M, Kranrod J, Seubert JM. The role of CYP-sEH derived lipid mediators in regulating mitochondrial biology and cellular senescence: implications for the aging heart. Front Pharmacol 2024; 15:1486717. [PMID: 39703395 PMCID: PMC11655241 DOI: 10.3389/fphar.2024.1486717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
Cellular senescence is a condition characterized by stable, irreversible cell cycle arrest linked to the aging process. The accumulation of senescent cells in the cardiac muscle can contribute to various cardiovascular diseases (CVD). Telomere shortening, epigenetic modifications, DNA damage, mitochondrial dysfunction, and oxidative stress are known contributors to the onset of cellular senescence in the heart. The link between mitochondrial processes and cellular senescence contributed to the age-related decline in cardiac function. These include changes in mitochondrial functions and behaviours that arise from various factors, including impaired dynamics, dysregulated biogenesis, mitophagy, mitochondrial DNA (mtDNA), reduced respiratory capacity, and mitochondrial structural changes. Thus, regulation of mitochondrial biology has a role in cellular senescence and cardiac function in aging hearts. Targeting senescent cells may provide a novel therapeutic approach for treating and preventing CVD associated with aging. CYP epoxygenases metabolize N-3 and N-6 polyunsaturated fatty acids (PUFA) into epoxylipids that are readily hydrolyzed to diol products by soluble epoxide hydrolase (sEH). Increasing epoxylipids levels or inhibition of sEH has demonstrated protective effects in the aging heart. Evidence suggests they may play a role in cellular senescence by regulating mitochondria, thus reducing adverse effects of aging in the heart. In this review, we discuss how mitochondria induce cellular senescence and how epoxylipids affect the senescence process in the aged heart.
Collapse
Affiliation(s)
- Ala Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Liye Fang
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mobina Heidari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Somasundaram I, Jain SM, Blot-Chabaud M, Pathak S, Banerjee A, Rawat S, Sharma NR, Duttaroy AK. Mitochondrial dysfunction and its association with age-related disorders. Front Physiol 2024; 15:1384966. [PMID: 39015222 PMCID: PMC11250148 DOI: 10.3389/fphys.2024.1384966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Aging is a complex process that features a functional decline in many organelles. Various factors influence the aging process, such as chromosomal abnormalities, epigenetic changes, telomere shortening, oxidative stress, and mitochondrial dysfunction. Mitochondrial dysfunction significantly impacts aging because mitochondria regulate cellular energy, oxidative balance, and calcium levels. Mitochondrial integrity is maintained by mitophagy, which helps maintain cellular homeostasis, prevents ROS production, and protects against mtDNA damage. However, increased calcium uptake and oxidative stress can disrupt mitochondrial membrane potential and permeability, leading to the apoptotic cascade. This disruption causes increased production of free radicals, leading to oxidative modification and accumulation of mitochondrial DNA mutations, which contribute to cellular dysfunction and aging. Mitochondrial dysfunction, resulting from structural and functional changes, is linked to age-related degenerative diseases. This review focuses on mitochondrial dysfunction, its implications in aging and age-related disorders, and potential anti-aging strategies through targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Indumathi Somasundaram
- Biotechnology Engineering, Kolhapur Institute of Technology’s College of Engineering, Kolhapur, India
| | - Samatha M. Jain
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | | | - Surajit Pathak
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Antara Banerjee
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Sonali Rawat
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Ansari MM, Ghosh M, Lee DS, Son YO. Senolytic therapeutics: An emerging treatment modality for osteoarthritis. Ageing Res Rev 2024; 96:102275. [PMID: 38494091 DOI: 10.1016/j.arr.2024.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Osteoarthritis (OA), a chronic joint disease affecting millions of people aged over 65 years, is the main musculoskeletal cause of diminished joint mobility in the elderly. It is characterized by lingering pain and increasing deterioration of articular cartilage. Aging and accumulation of senescent cells (SCs) in the joints are frequently associated with OA. Apoptosis resistance; irreversible cell cycle arrest; increased p16INK4a expression, secretion of senescence-associated secretory phenotype factors, senescence-associated β-galactosidase levels, secretion of extracellular vesicles, and levels of reactive oxygen and reactive nitrogen species; and mitochondrial dysregulation are some common changes in cellular senescence in joint tissues. Development of OA correlates with an increase in the density of SCs in joint tissues. Senescence-associated secretory phenotype has been linked to OA and cartilage breakdown. Senolytics and therapeutic pharmaceuticals are being focused upon for OA management. SCs can be selectively eliminated or killed by senolytics to halt the pathogenesis and progression of OA. Comprehensive understanding of how aging affects joint dysfunction will benefit OA patients. Here, we discuss age-related mechanisms associated with OA pathogenesis and senolytics as an emerging modality in the management of age-related SCs and pathogenesis of OA in preclinical and clinical studies.
Collapse
Affiliation(s)
- Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Dong-Sun Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju 63243, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
7
|
Chen Q, Young L, Barsotti R. Mitochondria in cell senescence: A Friend or Foe? ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:35-91. [PMID: 37437984 DOI: 10.1016/bs.apcsb.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Cell senescence denotes cell growth arrest in response to continuous replication or stresses damaging DNA or mitochondria. Mounting research suggests that cell senescence attributes to aging-associated failing organ function and diseases. Conversely, it participates in embryonic tissue maturation, wound healing, tissue regeneration, and tumor suppression. The acute or chronic properties and microenvironment may explain the double faces of senescence. Senescent cells display unique characteristics. In particular, its mitochondria become elongated with altered metabolomes and dynamics. Accordingly, mitochondria reform their function to produce more reactive oxygen species at the cost of low ATP production. Meanwhile, destructed mitochondrial unfolded protein responses further break the delicate proteostasis fostering mitochondrial dysfunction. Additionally, the release of mitochondrial damage-associated molecular patterns, mitochondrial Ca2+ overload, and altered NAD+ level intertwine other cellular organelle strengthening senescence. These findings further intrigue researchers to develop anti-senescence interventions. Applying mitochondrial-targeted antioxidants reduces cell senescence and mitigates aging by restoring mitochondrial function and attenuating oxidative stress. Metformin and caloric restriction also manifest senescent rescuing effects by increasing mitochondria efficiency and alleviating oxidative damage. On the other hand, Bcl2 family protein inhibitors eradicate senescent cells by inducing apoptosis to facilitate cancer chemotherapy. This review describes the different aspects of mitochondrial changes in senescence and highlights the recent progress of some anti-senescence strategies.
Collapse
Affiliation(s)
- Qian Chen
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States.
| | - Lindon Young
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Robert Barsotti
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Kwon HJ, Hahn KR, Kang MS, Choi JH, Moon SM, Yoon YS, Hwang IK, Kim DW. Tat-malate dehydrogenase fusion protein protects neurons from oxidative and ischemic damage by reduction of reactive oxygen species and modulation of glutathione redox system. Sci Rep 2023; 13:5653. [PMID: 37024665 PMCID: PMC10079925 DOI: 10.1038/s41598-023-32812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Malate dehydrogenase (MDH) plays an important role in the conversion of malate to oxaloacetate during the tricarboxylic acid cycle. In this study, we examined the role of cytoplasmic MDH (MDH1) in hydrogen peroxide (H2O2)-induced oxidative stress in HT22 cells and ischemia-induced neuronal damage in the gerbil hippocampus. The Tat-MDH1 fusion protein was constructed to enable the delivery of MDH1 into the intracellular space and penetration of the blood-brain barrier. Tat-MDH1, but not MDH1 control protein, showed significant cellular delivery in HT22 cells in a concentration- and time-dependent manner and gradual intracellular degradation in HT22 cells. Treatment with 4 μM Tat-MDH1 significantly ameliorated 200 μM H2O2-induced cell death, DNA fragmentation, and reactive oxygen species formation in HT22 cells. Transient increases in MDH1 immunoreactivity were detected in the hippocampal CA1 region 6-12 h after ischemia, but MDH1 activity significantly decreased 2 days after ischemia. Supplementation of Tat-MDH1 immediately after ischemia alleviated ischemia-induced hyperlocomotion and neuronal damage 1 and 4 days after ischemia. In addition, treatment with Tat-MDH1 significantly ameliorated the increases in hydroperoxides, lipid peroxidation, and reactive oxygen species 2 days after ischemia. Tat-MDH1 treatment maintained the redox status of the glutathione system in the hippocampus 2 days after ischemia. These results suggest that Tat-MDH1 exerts neuroprotective effects by reducing oxidative stress and maintaining glutathione redox system in the hippocampus.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Min Soo Kang
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 07441, South Korea
- Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon, 24253, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| |
Collapse
|
9
|
Martini H, Passos JF. Cellular senescence: all roads lead to mitochondria. FEBS J 2023; 290:1186-1202. [PMID: 35048548 PMCID: PMC9296701 DOI: 10.1111/febs.16361] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 01/10/2023]
Abstract
Senescence is a multi-functional cell fate, characterized by an irreversible cell-cycle arrest and a pro-inflammatory phenotype, commonly known as the senescence-associated secretory phenotype (SASP). Emerging evidence indicates that accumulation of senescent cells in multiple tissues drives tissue dysfunction and several age-related conditions. This has spurred the academic community and industry to identify new therapeutic interventions targeting this process. Mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence which plays important roles not only in the senescence growth arrest but also in the development of the SASP and resistance to cell-death. Here, we review the evidence that supports a role for mitochondria in the development of senescence and describe the underlying mechanisms. Finally, we propose that a detailed road map of mitochondrial biology in senescence will be crucial to guide the future development of senotherapies.
Collapse
Affiliation(s)
- Hélène Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905 USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905 USA
| | - João F. Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905 USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905 USA
| |
Collapse
|
10
|
Whitehall JC, Smith ALM, Greaves LC. Mitochondrial DNA Mutations and Ageing. Subcell Biochem 2023; 102:77-98. [PMID: 36600130 DOI: 10.1007/978-3-031-21410-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondria are subcellular organelles present in most eukaryotic cells which play a significant role in numerous aspects of cell biology. These include carbohydrate and fatty acid metabolism to generate cellular energy through oxidative phosphorylation, apoptosis, cell signalling, haem biosynthesis and reactive oxygen species production. Mitochondrial dysfunction is a feature of many human ageing tissues, and since the discovery that mitochondrial DNA mutations were a major underlying cause of changes in oxidative phosphorylation capacity, it has been proposed that they have a role in human ageing. However, there is still much debate on whether mitochondrial DNA mutations play a causal role in ageing or are simply a consequence of the ageing process. This chapter describes the structure of mammalian mitochondria, and the unique features of mitochondrial genetics, and reviews the current evidence surrounding the role of mitochondrial DNA mutations in the ageing process. It then focusses on more recent discoveries regarding the role of mitochondrial dysfunction in stem cell ageing and age-related inflammation.
Collapse
Affiliation(s)
- Julia C Whitehall
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Anna L M Smith
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
11
|
Hu X, Guo L, Liu G, Dai Z, Wang L, Zhang J, Wang J. Novel cellular senescence-related risk model identified as the prognostic biomarkers for lung squamous cell carcinoma. Front Oncol 2022; 12:997702. [DOI: 10.3389/fonc.2022.997702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
BackgroundLung cancer is one of the top causes of cancer-related death worldwide. Cellular senescence is a characteristic of cell cycle arrest that plays a role in carcinogenesis and immune microenvironment modulation. Despite this, the clinical and immune cell infiltration features of senescence in lung squamous cell carcinoma (LUSC) are unknown.MethodsThe Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were used to get RNA-seq data and clinical information for LUSC. The least absolute shrinkage and selection operator (LASSO)-Cox regression, receiver operating characteristic (ROC), and Kaplan-Meier analysis were used to evaluate a risk model for predicting overall survival based on six differentially expressed genes. The tumor microenvironment (TME) and immunotherapy response were also studied.ResultsTo discriminate LUSC into high- and low-risk subgroups, a risk model comprised of six cellular senescence-related genes (CDKN1A, CEBPB, MDH1, SIX1, SNAI1, and SOX5) was developed. The model could stratify patients into high-risk and low-risk groups, according to ROC and Kaplan-Meier analysis. In the TCGA-LUSC and GSE73403 cohorts, the high-risk group had a worse prognosis (P<0.05), and was associated with immune cell inactivation and being insensitive to immunotherapy in IMvigor210.ConclusionsWe discovered a new LUSC classification based on six cellular senescence-related genes, which will aid in identifying patients who will benefit from anti-PD-1 treatment. Targeting senescence-related genes appears to be another option for improving clinical therapy for LUSC.
Collapse
|
12
|
Miwa S, Kashyap S, Chini E, von Zglinicki T. Mitochondrial dysfunction in cell senescence and aging. J Clin Invest 2022; 132:158447. [PMID: 35775483 PMCID: PMC9246372 DOI: 10.1172/jci158447] [Citation(s) in RCA: 446] [Impact Index Per Article: 148.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction and cell senescence are hallmarks of aging and are closely interconnected. Mitochondrial dysfunction, operationally defined as a decreased respiratory capacity per mitochondrion together with a decreased mitochondrial membrane potential, typically accompanied by increased production of oxygen free radicals, is a cause and a consequence of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. Here, we summarize pathways that cause mitochondrial dysfunction in senescence and aging and discuss the major consequences of mitochondrial dysfunction and how these consequences contribute to senescence and aging. We also highlight the potential of senescence-associated mitochondrial dysfunction as an antiaging and antisenescence intervention target, proposing the combination of multiple interventions converging onto mitochondrial dysfunction as novel, potent senolytics.
Collapse
Affiliation(s)
- Satomi Miwa
- Newcastle University Biosciences Institute, Ageing Biology Laboratories, Newcastle upon Tyne, United Kingdom
| | - Sonu Kashyap
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA.,Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Eduardo Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA.,Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Thomas von Zglinicki
- Newcastle University Biosciences Institute, Ageing Biology Laboratories, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
13
|
Wang M, Zhou C, Yu L, Kong D, Ma W, Lv B, Wang Y, Wu W, Zhou M, Cui G. Upregulation of MDH1 acetylation by HDAC6 inhibition protects against oxidative stress-derived neuronal apoptosis following intracerebral hemorrhage. Cell Mol Life Sci 2022; 79:356. [PMID: 35678904 PMCID: PMC11073123 DOI: 10.1007/s00018-022-04341-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 04/30/2022] [Indexed: 11/25/2022]
Abstract
Oxidative stress impairs functional recovery after intracerebral hemorrhage (ICH). Histone deacetylase 6 (HDAC6) plays an important role in the initiation of oxidative stress. However, the function of HDAC6 in ICH and the underlying mechanism of action remain elusive. We demonstrated here that HDAC6 knockout mice were resistant to oxidative stress following ICH, as assessed by the MDA and NADPH/NADP+ assays and ROS detection. HDAC6 deficiency also resulted in reduced neuronal apoptosis and lower expression levels of apoptosis-related proteins. Further mechanistic studies showed that HDAC6 bound to malate dehydrogenase 1 (MDH1) and mediated-MDH1 deacetylation on the lysine residues at position 121 and 298. MDH1 acetylation was inhibited in HT22 cells that were challenged with ICH-related damaging agents (Hemin, Hemoglobin, and Thrombin), but increased when HDAC6 was inhibited, suggesting an interplay between HDAC6 and MDH1. The acetylation-mimetic mutant, but not the acetylation-resistant mutant, of MDH1 protected neurons from oxidative injury. Furthermore, HDAC6 inhibition failed to alleviate brain damage after ICH when MDH1 was knockdown. Taken together, our study showed that HDAC6 inhibition protects against brain damage during ICH through MDH1 acetylation.
Collapse
Affiliation(s)
- Miao Wang
- Department of Geriatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China.
- Department of Neurology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chao Zhou
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Lu Yu
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Delian Kong
- Department of Neurology, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weijing Ma
- Department of Neurology, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bingchen Lv
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Yan Wang
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Weifeng Wu
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Mingyue Zhou
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Guiyun Cui
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China.
| |
Collapse
|
14
|
Abstract
Significance: Aging is a natural process that affects most living organisms, resulting in increased mortality. As the world population ages, the prevalence of age-associated diseases, and their associated health care costs, has increased sharply. A better understanding of the molecular mechanisms that lead to cellular dysfunction may provide important targets for interventions to prevent or treat these diseases. Recent Advances: Although the mitochondrial theory of aging had been proposed more than 40 years ago, recent new data have given stronger support for a central role for mitochondrial dysfunction in several pathways that are deregulated during normal aging and age-associated disease. Critical Issues: Several of the experimental evidence linking mitochondrial alterations to age-associated loss of function are correlative and mechanistic insights are still elusive. Here, we review how mitochondrial dysfunction may be involved in many of the known hallmarks of aging, and how these pathways interact in an intricate net of molecular relationships. Future Directions: As it has become clear that mitochondrial dysfunction plays causative roles in normal aging and age-associated diseases, it is necessary to better define the molecular interactions and the temporal and causal relationship between these changes and the relevant phenotypes seen during the aging process. Antioxid. Redox Signal. 36, 824-843.
Collapse
Affiliation(s)
- Caio M P F Batalha
- Lab. Genética Mitocondrial, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Anibal Eugênio Vercesi
- Departamento de Patologia Clínica, Faculdade de Medicina, Universidade de Campinas, Campinas, Brazil
| | - Nadja C Souza-Pinto
- Lab. Genética Mitocondrial, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Weng Z, Wang Y, Ouchi T, Liu H, Qiao X, Wu C, Zhao Z, Li L, Li B. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:356-371. [PMID: 35485439 PMCID: PMC9052415 DOI: 10.1093/stcltm/szac004] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/19/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xianghe Qiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Bo Li
- Corresponding author: Bo Li, DDS, PhD, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, People’s Republic of China.
| |
Collapse
|
16
|
Seo C, Park S, Kim Y, Ji M, Lee HS, Hwang YH, Choi S, Min J, Oh SJ, Yee ST, Lee W, Paik MJ. Metabolomic analysis of amino acids and organic acids in aging mouse eyes using gas chromatography-tandem mass spectrometry. Biomed Chromatogr 2021; 36:e5298. [PMID: 34913179 DOI: 10.1002/bmc.5298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022]
Abstract
This is a metabolomics study for monitoring of altered amino acid (AA) and organic acid (OA) metabolism of in the eyes from aging mouse model of 8-weeks, 18-weeks, and 18-months. Simultaneous metabolic profiling analysis of OAs and AAs was performed as ethoxycarbonyl/methoxime/tert-butyldimethylsilyl derivatives by gas chromatography-tandem mass spectrometry. A total 42 metabolites of 24 AAs and 18 OAs were determined and their composition values were normalized to the corresponding mean values of 8-week-old mice as control group. Then their normalized values were plotted as star graphs, which were distorted and readily distinguishable for age-related each group. Among 42 metabolites, 18 AAs and 11 OAs were age dependent and significantly different (p < 0.05). Principal component analysis and partial least squares discriminant analysis showed unclear separation between 8- and 18-week-old mice but clear separation between these and 18-month-old mice. Especially, the variables importance in projection (VIP) scores of 4-hydroxyproline, cis-aconitic acid, glycine, isocitric acid, leucine, pipecolic acid and lysine from PLS-DA were higher than 1.3. A heatmap for the classification and visualization of 42 metabolites showed differences in metabolite changes with aging. Altered AA and OA profiles were monitored, which may explain for metabolic disturbance of AA and OA. These findings are related with mitochondrial dysfunctions related with energy metabolism and impaired antioxidant system in the aging eye. Therefore, the present metabolomics results of the association between physiological states and altered metabolism of AA and OA will be useful for understanding aging eye and related diseases.
Collapse
Affiliation(s)
- Chan Seo
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Sehoon Park
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Youngbae Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Moongi Ji
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Hyeon-Seong Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea.,Natural Product Informatics Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do, Republic of Korea
| | - Yun-Ho Hwang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Subin Choi
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Jeuk Min
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Song-Jin Oh
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Sung-Tae Yee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Wonjae Lee
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
17
|
Ahmed R, Reza HM, Shinohara K, Nakahata Y. Cellular Senescence and its Impact on the Circadian Clock. J Biochem 2021; 171:493-500. [PMID: 34668549 DOI: 10.1093/jb/mvab115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 01/10/2023] Open
Abstract
Aging is one of the greatest risk factors for chronic non-communicable diseases, and cellular senescence is one of the major causes of aging and age-related diseases. The persistent presence of senescent cells in late life seems to cause disarray in a tissue-specific manner. Aging disrupts the circadian clock system, which results in the development of many age-related diseases such as metabolic syndrome, cancer, cardiac diseases, and sleep disorders and an increased susceptibility to infections. In this review, we first discuss cellular senescence and some of its basic characteristics and detrimental roles. Then, we discuss a relatively unexplored topic on the link between cellular senescence and the circadian clock and attempt to determine whether cellular senescence could be the underlying factor for circadian clock disruption.
Collapse
Affiliation(s)
- Rezwana Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Kazuyuki Shinohara
- Department of Neurobiology & Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 Japan
| | - Yasukazu Nakahata
- Department of Neurobiology & Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 Japan
| |
Collapse
|
18
|
Wiley CD, Campisi J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab 2021; 3:1290-1301. [PMID: 34663974 PMCID: PMC8889622 DOI: 10.1038/s42255-021-00483-8] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Cellular senescence entails a permanent proliferative arrest, coupled to multiple phenotypic changes. Among these changes is the release of numerous biologically active molecules collectively known as the senescence-associated secretory phenotype, or SASP. A growing body of literature indicates that both senescence and the SASP are sensitive to cellular and organismal metabolic states, which in turn can drive phenotypes associated with metabolic dysfunction. Here, we review the current literature linking senescence and metabolism, with an eye toward findings at the cellular level, including both metabolic inducers of senescence and alterations in cellular metabolism associated with senescence. Additionally, we consider how interventions that target either metabolism or senescent cells might influence each other and mitigate some of the pro-aging effects of cellular senescence. We conclude that the most effective interventions will likely break a degenerative feedback cycle by which cellular senescence promotes metabolic diseases, which in turn promote senescence.
Collapse
Affiliation(s)
- Christopher D Wiley
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, CA, USA.
- Buck Institute for Research on Aging, Novato, CA, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
19
|
Igelmann S, Lessard F, Uchenunu O, Bouchard J, Fernandez-Ruiz A, Rowell MC, Lopes-Paciencia S, Papadopoli D, Fouillen A, Ponce KJ, Huot G, Mignacca L, Benfdil M, Kalegari P, Wahba HM, Pencik J, Vuong N, Quenneville J, Guillon J, Bourdeau V, Hulea L, Gagnon E, Kenner L, Moriggl R, Nanci A, Pollak MN, Omichinski JG, Topisirovic I, Ferbeyre G. A hydride transfer complex reprograms NAD metabolism and bypasses senescence. Mol Cell 2021; 81:3848-3865.e19. [PMID: 34547241 DOI: 10.1016/j.molcel.2021.08.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/25/2021] [Accepted: 08/20/2021] [Indexed: 01/23/2023]
Abstract
Metabolic rewiring and redox balance play pivotal roles in cancer. Cellular senescence is a barrier for tumorigenesis circumvented in cancer cells by poorly understood mechanisms. We report a multi-enzymatic complex that reprograms NAD metabolism by transferring reducing equivalents from NADH to NADP+. This hydride transfer complex (HTC) is assembled by malate dehydrogenase 1, malic enzyme 1, and cytosolic pyruvate carboxylase. HTC is found in phase-separated bodies in the cytosol of cancer or hypoxic cells and can be assembled in vitro with recombinant proteins. HTC is repressed in senescent cells but induced by p53 inactivation. HTC enzymes are highly expressed in mouse and human prostate cancer models, and their inactivation triggers senescence. Exogenous expression of HTC is sufficient to bypass senescence, rescue cells from complex I inhibitors, and cooperate with oncogenic RAS to transform primary cells. Altogether, we provide evidence for a new multi-enzymatic complex that reprograms metabolism and overcomes cellular senescence.
Collapse
Affiliation(s)
- Sebastian Igelmann
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Frédéric Lessard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Oro Uchenunu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T1E2, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H4A3T2, Canada
| | - Jacob Bouchard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | | | | | - David Papadopoli
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T1E2, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A3T2, Canada
| | - Aurélien Fouillen
- Faculté de médecine dentaire, Université de Montréal, Montréal, QC H3C 3J7, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Katia Julissa Ponce
- Faculté de médecine dentaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Geneviève Huot
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Lian Mignacca
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Mehdi Benfdil
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Paloma Kalegari
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Haytham M Wahba
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jan Pencik
- Department of Pathology, Medical University of Vienna, Vienna, Austria; Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Center for Biomarker Research in Medicine, 8010 Graz, Austria
| | - Nhung Vuong
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada
| | - Jordan Quenneville
- Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jordan Guillon
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada
| | - Véronique Bourdeau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada, Département de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Etienne Gagnon
- Institut de recherche en immunologie et en cancérologie (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria; Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria; Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria; CBmed GmbH - Center for Biomarker Research in Medicine, Graz, Styria, Austria
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Antonio Nanci
- Faculté de médecine dentaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Michael N Pollak
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T1E2, Canada
| | - James G Omichinski
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T1E2, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H4A3T2, Canada; Department of Biochemistry, McGill University, Montreal, QC H4A 3T2, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A3T2, Canada.
| | - Gerardo Ferbeyre
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
20
|
Broeks MH, van Karnebeek CDM, Wanders RJA, Jans JJM, Verhoeven‐Duif NM. Inborn disorders of the malate aspartate shuttle. J Inherit Metab Dis 2021; 44:792-808. [PMID: 33990986 PMCID: PMC8362162 DOI: 10.1002/jimd.12402] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Over the last few years, various inborn disorders have been reported in the malate aspartate shuttle (MAS). The MAS consists of four metabolic enzymes and two transporters, one of them having two isoforms that are expressed in different tissues. Together they form a biochemical pathway that shuttles electrons from the cytosol into mitochondria, as the inner mitochondrial membrane is impermeable to the electron carrier NADH. By shuttling NADH across the mitochondrial membrane in the form of a reduced metabolite (malate), the MAS plays an important role in mitochondrial respiration. In addition, the MAS maintains the cytosolic NAD+ /NADH redox balance, by using redox reactions for the transfer of electrons. This explains why the MAS is also important in sustaining cytosolic redox-dependent metabolic pathways, such as glycolysis and serine biosynthesis. The current review provides insights into the clinical and biochemical characteristics of MAS deficiencies. To date, five out of seven potential MAS deficiencies have been reported. Most of them present with a clinical phenotype of infantile epileptic encephalopathy. Although not specific, biochemical characteristics include high lactate, high glycerol 3-phosphate, a disturbed redox balance, TCA abnormalities, high ammonia, and low serine, which may be helpful in reaching a diagnosis in patients with an infantile epileptic encephalopathy. Current implications for treatment include a ketogenic diet, as well as serine and vitamin B6 supplementation.
Collapse
Affiliation(s)
- Melissa H. Broeks
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Clara D. M. van Karnebeek
- Departments of PediatricsAmsterdam University Medical CenterAmsterdamThe Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial DiseasesRadboud University Medical CenterNijmegenThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| | - Ronald J. A. Wanders
- Departments of Pediatrics and Laboratory Medicine, Laboratory Genetic Metabolic DiseasesAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Judith J. M. Jans
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| | - Nanda M. Verhoeven‐Duif
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| |
Collapse
|
21
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
22
|
Numa K, Ueno M, Fujita T, Ueda K, Hiramoto N, Mukai A, Tokuda Y, Nakano M, Sotozono C, Kinoshita S, Hamuro J. Mitochondria as a Platform for Dictating the Cell Fate of Cultured Human Corneal Endothelial Cells. Invest Ophthalmol Vis Sci 2021; 61:10. [PMID: 33275651 PMCID: PMC7718813 DOI: 10.1167/iovs.61.14.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Aiming to clarify the role of mitochondria in cell fate decision of cultured human corneal endothelial cell (cHCEC) subpopulations. Methods The mitochondrial respiratory ability were examined with Mito stress and Mito fuel flex test assays using an extracellular flux analyzer (XFe24; Agilent Technologies; Santa Clara, CA) for human corneal endothelium tissues, mature cHCECs and a variety of cell state transitioned cHCECs. Tricarboxylic acid cycle and acetyl-coenzyme A–related enzymes was analyzed by proteomics for cell lysates using liquid chromatography–tandem mass spectrometry for cHCEC subpopulations. Results The maximum oxygen consumption rate was found to become stable depending on the maturation of cHCECs. In the Mito stress tests, culture supplements, epidermal growth factor, SB203580, and SB431543 significantly repressed oxygen consumption rate, whereas a Rho-associated protein kinase inhibitor Y-27632 increased. Tricarboxylic acid cycle and mitochondria acetyl-coenzyme A–related enzymes were selectively upregulated in mature cHCECs, but not in cell state transitioned cHCECs. The maximum oxygen consumption rate was found to be higher in healthy human corneal endothelium tissues than those with deeply reduced cell density. An upregulated tricarboxylic acid cycle was linked with metabolic rewiring converting cHCECs to acquire the mitochondria-dependent oxidative phenotype. Conclusions Mitochondrial metabolic intermediates and energy metabolism are tightly linked to the endothelial cell fate and function. These findings will help us to standardize a protocol for endothelial cell injection.
Collapse
Affiliation(s)
- Kohsaku Numa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Morio Ueno
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Fujita
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Ueda
- Project for Personalized Cancer Medicine, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Nao Hiramoto
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atushi Mukai
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuichi Tokuda
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junji Hamuro
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
23
|
Selinski J, Scheibe R. Central Metabolism in Mammals and Plants as a Hub for Controlling Cell Fate. Antioxid Redox Signal 2021; 34:1025-1047. [PMID: 32620064 PMCID: PMC8060724 DOI: 10.1089/ars.2020.8121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Significance: The importance of oxidoreductases in energy metabolism together with the occurrence of enzymes of central metabolism in the nucleus gave rise to the active research field aiming to understand moonlighting enzymes that undergo post-translational modifications (PTMs) before carrying out new tasks. Recent Advances: Cytosolic enzymes were shown to induce gene transcription after PTM and concomitant translocation to the nucleus. Changed properties of the oxidized forms of cytosolic glyceraldehyde 3-phosphate dehydrogenase, and also malate dehydrogenases and others, are the basis for a hypothesis suggesting moonlighting functions that directly link energy metabolism to adaptive responses required for maintenance of redox-homeostasis in all eukaryotes. Critical Issues: Small molecules, such as metabolic intermediates, coenzymes, or reduced glutathione, were shown to fine-tune the redox switches, interlinking redox state, metabolism, and induction of new functions via nuclear gene expression. The cytosol with its metabolic enzymes connecting energy fluxes between the various cell compartments can be seen as a hub for redox signaling, integrating the different signals for graded and directed responses in stressful situations. Future Directions: Enzymes of central metabolism were shown to interact with p53 or the assumed plant homologue suppressor of gamma response 1 (SOG1), an NAM, ATAF, and CUC transcription factor involved in the stress response upon ultraviolet exposure. Metabolic enzymes serve as sensors for imbalances, their inhibition leading to changed energy metabolism, and the adoption of transcriptional coactivator activities. Depending on the intensity of the impact, rerouting of energy metabolism, proliferation, DNA repair, cell cycle arrest, immune responses, or cell death will be induced. Antioxid. Redox Signal. 34, 1025-1047.
Collapse
Affiliation(s)
- Jennifer Selinski
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Renate Scheibe
- Department of Plant Physiology, Faculty of Biology/Chemistry, Osnabrueck University, Osnabrueck, Germany
| |
Collapse
|
24
|
Three cytosolic NAD-malate dehydrogenase isoforms of Arabidopsis thaliana: on the crossroad between energy fluxes and redox signaling. Biochem J 2021; 477:3673-3693. [PMID: 32897311 PMCID: PMC7538154 DOI: 10.1042/bcj20200240] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023]
Abstract
In yeast and animal cells, mitochondrial disturbances resulting from imbalances in the respiratory chain require malate dehydrogenase (MDH) activities for re-directing fluxes of reducing equivalents. In plants, in addition to mitochondria, plastids use malate valves to counterbalance and maintain redox-homeostasis. Arabidopsis expresses three cytosolic MDH isoforms, namely cyMDH1, cyMDH2, and cyMDH3, the latter possessing an N-terminal extension carrying a unique cysteine residue C2. In this study, redox-effects on activity and structure of all three cyMDH isoforms were analyzed in vitro. cyMDH1 and cyMDH2 were reversibly inactivated by diamide treatment, accompanied by dimerization via disulfide-bridge formation. In contrast, cyMDH3 forms dimers and higher oligomers upon oxidation, but its low specific activity is redox-independent. In the presence of glutathione, cyMDH1 and cyMDH2 are protected from dimerization and inactivation. In contrast, cyMDH3 still dimerizes but does not form oligomers any longer. From analyses of single and double cysteine mutants and structural modeling of cyMDH3, we conclude that the presence of C2 and C336 allows for multiple cross-links in the higher molecular mass complexes comprising disulfides within the dimer as well as between monomers of two different dimers. Furthermore, nuclear localization of cyMDH isoforms was significantly increased under oxidizing conditions in isolated Arabidopsis protoplasts, in particular of isoform cyMDH3. The unique cyMDH3 C2-C2-linked dimer is, therefore, a good candidate as a redox-sensor taking over moonlighting functions upon disturbances of energy metabolism, as shown previously for the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) where oxidative modification of the sensitive catalytic cysteine residues induces nuclear translocation.
Collapse
|
25
|
Bunik VI, Aleshin VA, Zhou X, Krishnan S, Karlsson A. Regulation of Thiamine (Vitamin B1)-Dependent Metabolism in Mammals by p53. BIOCHEMISTRY (MOSCOW) 2021; 85:801-807. [PMID: 33040724 DOI: 10.1134/s0006297920070081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transcriptional factor p53 is a master regulator of energy metabolism. Energy metabolism strongly depends on thiamine (vitamin B1) and/or its natural derivatives. Thiamine diphosphate (ThDP), which is a major thiamine derivative, affects p53 binding to DNA. In order to elucidate the mechanism of regulation of thiamine-dependent metabolism by p53, we assessed putative p53-binding sites near transcription starting points in genes coding for transporters and enzymes, whose function is associated with thiamine and/or its derivatives. The predictions were validated by studying cell metabolic response to the p53 inducer cisplatin. Expression of p53 and its known target, p21, has been evaluated in cisplatin-treated and control human lung adenocarcinoma A549 cells that possess functional p53 pathway. We also investigated the activity of enzymes involved in the thiamine-dependent energy metabolism. Along with upregulating the expression of p53 and p21, cisplatin affected the activities of metabolic enzymes, whose genes were predicted as carrying the p53-binding sites. The activity of glutamate dehydrogenase GDH2 isoenzyme strongly decreased, while the activities of NADP+-dependent isocitrate dehydrogenase (IDH) and malic enzymes, as well as the activity of 2-oxoglutarate dehydrogenase complex at its endogenous ThDP level, were elevated. Simultaneously, the activities of NAD+-dependent IDH, mitochondrial aspartate aminotransferase, and two malate dehydrogenase isoenzymes, whose genes were not predicted to have the p53-binding sequences near the transcription starting points, were upregulated by cisplatin. The p53-dependent regulation of the assayed metabolic enzymes correlated with induction of p21 by p53 rather than induction of p53 itself.
Collapse
Affiliation(s)
- V I Bunik
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.,Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - V A Aleshin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - X Zhou
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, 141 86, Sweden
| | - S Krishnan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, 141 86, Sweden
| | - A Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, 141 86, Sweden
| |
Collapse
|
26
|
Ren J, Wei D, An H, Zhang J, Zhang Z. Shenqi Yizhi granules protect hippocampus of AD transgenic mice by modulating on multiple pathological processes. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:112869. [PMID: 32315734 DOI: 10.1016/j.jep.2020.112869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine (CHM) draws more attention to explore effective therapeutic strategy for Alzheimer's disease (AD). CHM usually uses combinations of herbs or herbal ingredients to treat diseases, with the components targeting different disease processes. CHM might improve cognition in AD and MCI patients by optimizing network activity, promoting neural plasticity and repairing damaged neurons. Shenqi Yizhi granules (SQYG), a CHM prescription, are mainly consists of Panax ginseng C.A.Mey, Astragalus membranaceus (Fisch.) Bunge, and Scutellaria baicalensis Georgi and have been used to ameliorate cognitive impairment in mild-to-moderate dementia patients. AIM OF THE STUDY To investigate the neuroprotection effect and pharmacological mechanism of SQYG in the hippocampus of 5XFAD transgenic mice. MATERIALS AND METHODS The immunofluorescence detection, 2DE-gels, mass spectrum identification, biological information analysis and Western blot were performed after SQYG treatment. RESULTS SQYG treatment significantly decreased the fluorescence intensities of anti-GFAP and anti-Iba1 in the hippocampus of 5XFAD mice. The expression levels of 31 proteins in the hippocampus were significantly influenced by SQYG, approximately 65% of these proteins are related to energy metabolism, stress response and cytoskeleton, whereas others are related to synaptic transmission, signal transduction, antioxidation, amino acid metabolism, and DNA repair. The expression of these proteins were increased. The changes in the expression levels of malate dehydrogenase (cytoplasmic) and pyruvate kinase M were confirmed by Western blot. CONCLUSIONS The pharmacological mechanism of SQYG on the hippocampus may be related to modulation of multiple pathological processes, including energy metabolism, stress response, cytoskeleton, synaptic transmission, signal transduction, and amino acid metabolism in 5XFAD mice.
Collapse
Affiliation(s)
- Jianting Ren
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Haiting An
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Junying Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; BABRI Centre, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
27
|
Morris O, Deng H, Tam C, Jasper H. Warburg-like Metabolic Reprogramming in Aging Intestinal Stem Cells Contributes to Tissue Hyperplasia. Cell Rep 2020; 33:108423. [PMID: 33238124 PMCID: PMC8011352 DOI: 10.1016/j.celrep.2020.108423] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
In many tissues, stem cell (SC) proliferation is dynamically adjusted to regenerative needs. How SCs adapt their metabolism to meet the demands of proliferation and how changes in such adaptive mechanisms contribute to age-related dysfunction remain poorly understood. Here, we identify mitochondrial Ca2+ uptake as a central coordinator of SC metabolism. Live imaging of genetically encoded metabolite sensors in intestinal SCs (ISCs) of Drosophila reveals that mitochondrial Ca2+ uptake transiently adapts electron transport chain flux to match energetic demand upon proliferative activation. This tight metabolic adaptation is lost in ISCs of old flies, as declines in mitochondrial Ca2+ uptake promote a "Warburg-like" metabolic reprogramming toward aerobic glycolysis. This switch mimics metabolic reprogramming by the oncogene RasV12 and enhances ISC hyperplasia. Our data identify a critical mechanism for metabolic adaptation of tissue SCs and reveal how its decline sets aging SCs on a metabolic trajectory reminiscent of that seen upon oncogenic transformation.
Collapse
Affiliation(s)
- Otto Morris
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hansong Deng
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 20092, China; Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Christine Tam
- Department of Biomolecular Resources, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Heinrich Jasper
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.
| |
Collapse
|
28
|
Hwang CY, Han YH, Lee SM, Cho SM, Yu DY, Kwon KS. Sestrin2 Attenuates Cellular Senescence by Inhibiting NADPH Oxidase 4 Expression. Ann Geriatr Med Res 2020; 24:297-304. [PMID: 33227845 PMCID: PMC7781962 DOI: 10.4235/agmr.20.0051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/21/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Sestrin2 (Sesn2) is involved in the maintenance of metabolic homeostasis and aging via modulation of the 5' AMP-activated protein kinase-mammalian target of rapamycin (AMPK-mTOR) pathway. METHODS Wild-type and Sesn2 knockout (KO) mice of the 129/SvJ background were maintained in a pathogen-free authorized facility under a 12-hour dark/light cycle at 20°C-22°C and 50%-60% humidity. Mouse embryonic fibroblasts (MEFs) were prepared from 13.5-day-old embryos derived from Sesn2-KO mice mated with each other. RESULTS The MEFs from Sesn2-KO mice showed enlarged and flattened morphologies and senescence-associated β-galactosidase activity, accompanied by an elevated level of reactive oxygen species. These senescence phenotypes recovered following treatment with N-acetyl-cysteine. Notably, the mRNA levels of NADPH oxidase 4 (NOX4) and transforming growth factor (TGF)-β were markedly increased in Sesn2-KO MEFs. Treatment of Sesn2-KO MEFs with the NOX inhibitor diphenyleneiodonium and the TGF-β inhibitor SB431542 restored cell growth inhibited by Sesn2-KO. CONCLUSION Sesn2 attenuates cellular senescence via suppression of TGF-β- and NOX4-induced reactive oxygen species generation and subsequent inhibition of AMPK.
Collapse
Affiliation(s)
- Chae Young Hwang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ying-Hao Han
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seung-Min Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sang-Mi Cho
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Dae-Yeul Yu
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,GHBIO Inc., Daejeon, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Aventi Inc., Daejeon, Korea
| |
Collapse
|
29
|
Liang KX, Kristiansen CK, Mostafavi S, Vatne GH, Zantingh GA, Kianian A, Tzoulis C, Høyland LE, Ziegler M, Perez RM, Furriol J, Zhang Z, Balafkan N, Hong Y, Siller R, Sullivan GJ, Bindoff LA. Disease-specific phenotypes in iPSC-derived neural stem cells with POLG mutations. EMBO Mol Med 2020; 12:e12146. [PMID: 32840960 PMCID: PMC7539330 DOI: 10.15252/emmm.202012146] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in POLG disrupt mtDNA replication and cause devastating diseases often with neurological phenotypes. Defining disease mechanisms has been hampered by limited access to human tissues, particularly neurons. Using patient cells carrying POLG mutations, we generated iPSCs and then neural stem cells. These neural precursors manifested a phenotype that faithfully replicated the molecular and biochemical changes found in patient post‐mortem brain tissue. We confirmed the same loss of mtDNA and complex I in dopaminergic neurons generated from the same stem cells. POLG‐driven mitochondrial dysfunction led to neuronal ROS overproduction and increased cellular senescence. Loss of complex I was associated with disturbed NAD+ metabolism with increased UCP2 expression and reduced phosphorylated SirT1. In cells with compound heterozygous POLG mutations, we also found activated mitophagy via the BNIP3 pathway. Our studies are the first that show it is possible to recapitulate the neuronal molecular and biochemical defects associated with POLG mutation in a human stem cell model. Further, our data provide insight into how mitochondrial dysfunction and mtDNA alterations influence cellular fate determining processes.
Collapse
Affiliation(s)
- Kristina Xiao Liang
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Sepideh Mostafavi
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Guro Helén Vatne
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gina Alien Zantingh
- Leiden University Medical Centre, Leiden University, Leiden, The Netherlands
| | - Atefeh Kianian
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Cancer Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Novin Balafkan
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Yu Hong
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Richard Siller
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gareth John Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Institute of Immunology, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Laurence A Bindoff
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
30
|
Battram AM, Bachiller M, Martín-Antonio B. Senescence in the Development and Response to Cancer with Immunotherapy: A Double-Edged Sword. Int J Mol Sci 2020; 21:ijms21124346. [PMID: 32570952 PMCID: PMC7352478 DOI: 10.3390/ijms21124346] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence was first described as a physiological tumor cell suppressor mechanism that leads to cell growth arrest with production of the senescence-associated secretory phenotype known as SASP. The main role of SASP in physiological conditions is to attract immune cells to clear senescent cells avoiding tumor development. However, senescence can be damage-associated and, depending on the nature of these stimuli, additional types of senescence have been described. In the context of cancer, damage-associated senescence has been described as a consequence of chemotherapy treatments that were initially thought of as a tumor suppressor mechanism. However, in certain contexts, senescence after chemotherapy can promote cancer progression, especially when immune cells become senescent and cannot clear senescent tumor cells. Moreover, aging itself leads to continuous inflammaging and immunosenescence which are responsible for rewiring immune cells to become defective in their functionality. Here, we define different types of senescence, pathways that activate them, and functions of SASP in these events. Additionally, we describe the role of senescence in cancer and its treatments, including how aging and chemotherapy contribute to senescence in tumor cells, before focusing on immune cell senescence and its role in cancer. Finally, we discuss potential therapeutic interventions to reverse cell senescence.
Collapse
Affiliation(s)
- Anthony M. Battram
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
| | - Mireia Bachiller
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
| | - Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
- Department of Hematology, Hospital Clinic, IDIBAPS/Josep Carreras Leukaemia Research Institute, Carrer Rosselló 149-153, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-227-45-28; Fax: +34-93-312-94-07
| |
Collapse
|
31
|
Sabbatinelli J, Prattichizzo F, Olivieri F, Procopio AD, Rippo MR, Giuliani A. Where Metabolism Meets Senescence: Focus on Endothelial Cells. Front Physiol 2019; 10:1523. [PMID: 31920721 PMCID: PMC6930181 DOI: 10.3389/fphys.2019.01523] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Despite the decline in their proliferative potential, senescent cells display a high metabolic activity. Senescent cells have been shown to acquire a more glycolytic state even in presence of high oxygen levels, in a way similar to cancer cells. The diversion of pyruvate, the final product of glycolysis, away from oxidative phosphorylation results in an altered bioenergetic state and may occur as a response to the enhanced oxidative stress caused by the accumulation of dysfunctional mitochondria. This metabolic shift leads to increased AMP/ATP and ADP/ATP ratios, to the subsequent AMPK activation, and ultimately to p53-mediated growth arrest. Mounting evidences suggest that metabolic reprogramming is critical to direct considerable amounts of energy toward specific activities related to the senescent state, including the senescence-associated secretory phenotype (SASP) and the modulation of immune responses within senescent cell tissue microenvironment. Interestingly, despite the relative abundance of oxygen in the vascular compartment, healthy endothelial cells (ECs) produce most of their ATP content from the anaerobic conversion of glucose to lactate. Their high glycolytic rate further increases during senescence. Alterations in EC metabolism have been identified in age-related diseases (ARDs) associated with a dysfunctional vasculature, including atherosclerosis, type 2 diabetes and cardiovascular diseases. In particular, higher production of reactive oxygen species deriving from a variety of enzymatic sources, including uncoupled endothelial nitric oxide synthase and the electron transport chain, causes DNA damage and activates the NAD+-consuming enzymes polyADP-ribose polymerase 1 (PARP1). These non-physiological mechanisms drive the impairment of the glycolytic flux and the diversion of glycolytic intermediates into many pathological pathways. Of note, accumulation of senescent ECs has been reported in the context of ARDs. Through their pro-oxidant, pro-inflammatory, vasoconstrictor, and prothrombotic activities, they negatively impact on vascular physiology, promoting both the onset and development of ARDs. Here, we review the current knowledge on the cellular senescence-related metabolic changes and their contribution to the mechanisms underlying the pathogenesis of ARDs, with a particular focus on ECs. Moreover, current and potential interventions aimed at modulating EC metabolism, in order to prevent or delay ARD onset, will be discussed.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | | | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
32
|
Broeks MH, Shamseldin HE, Alhashem A, Hashem M, Abdulwahab F, Alshedi T, Alobaid I, Zwartkruis F, Westland D, Fuchs S, Verhoeven-Duif NM, Jans JJM, Alkuraya FS. MDH1 deficiency is a metabolic disorder of the malate-aspartate shuttle associated with early onset severe encephalopathy. Hum Genet 2019; 138:1247-1257. [PMID: 31538237 DOI: 10.1007/s00439-019-02063-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
The reversible oxidation of L-malate to oxaloacetate is catalyzed by NAD(H)-dependent malate dehydrogenase (MDH). MDH plays essential roles in the malate-aspartate shuttle and the tricarboxylic acid cycle. These metabolic processes are important in mitochondrial NADH supply for oxidative phosphorylation. Recently, bi-allelic mutations in mitochondrial MDH2 were identified in patients with global developmental delay, epilepsy and lactic acidosis. We now report two patients from an extended consanguineous family with a deleterious variant in the cytosolic isoenzyme of MDH (MDH1). The homozygous missense variant in the NAD+-binding domain of MDH1 led to severely diminished MDH protein expression. The patients presented with global developmental delay, epilepsy and progressive microcephaly. Both patients had normal concentrations of plasma amino acids, acylcarnitines, lactate, and urine organic acids. To identify the metabolic consequences of MDH1 deficiency, untargeted metabolomics was performed on dried blood spots (DBS) from the patients and in MDH1 knockout HEK293 cells that were generated by Crispr/Cas9. Increased levels of glutamate and glycerol-3-phosphate were found in DBS of both patients. In MDH1 KO HEK293 cells, increased levels of glycerol-3-phosphate were also observed, as well as increased levels of aspartate and decreased levels of fumarate. The consistent finding of increased concentrations of glycerol-3-phosphate may represent a compensatory mechanism to enhance cytosolic oxidation of NADH by the glycerol-P-shuttle. In conclusion, MDH1 deficiency is a new metabolic defect in the malate-aspartate shuttle characterized by a severe neurodevelopmental phenotype with elevated concentrations of glycerol-3-phosphate as a potential biomarker.
Collapse
Affiliation(s)
- Melissa H Broeks
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, 12713, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, 11159, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, 12713, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, 12713, Saudi Arabia
| | - Tarfa Alshedi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, 12713, Saudi Arabia
| | - Iman Alobaid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, 12713, Saudi Arabia
| | - Fried Zwartkruis
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Denise Westland
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Sabine Fuchs
- Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Nanda M Verhoeven-Duif
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Judith J M Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, 12713, Saudi Arabia.
| |
Collapse
|
33
|
Mitochondrial Homeostasis and Cellular Senescence. Cells 2019; 8:cells8070686. [PMID: 31284597 PMCID: PMC6678662 DOI: 10.3390/cells8070686] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.
Collapse
|
34
|
Chapman J, Fielder E, Passos JF. Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett 2019; 593:1566-1579. [PMID: 31211858 DOI: 10.1002/1873-3468.13498] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/31/2022]
Abstract
Cellular senescence and mitochondrial dysfunction have both been defined as classical hallmarks of the ageing process. Here, we review the intricate relationship between the two. In the context of ageing, it is now well regarded that cellular senescence is a key driver in both ageing and the onset of a number of age-related pathologies. Emerging evidence has pinpointed mitochondria as one of the key modulators in the development of the senescence phenotype, particularly the pro-inflammatory senescence associated secretory phenotype (SASP). This review focuses on the contribution of homeostatic mechanisms, as well as of reactive oxygen species and mitochondrial metabolites in the senescence programme. Furthermore, we discuss emerging pathways and mitochondrial-mediated mechanisms that may be influencing the SASP and, subsequently, explore how these may be exploited to open up new therapeutic avenues.
Collapse
Affiliation(s)
- James Chapman
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Edward Fielder
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - João F Passos
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK.,Department of Physiology and Biochemical Engineering, Mayo Clinic, Rochester, NY, USA
| |
Collapse
|
35
|
Liao GY, Lee MT, Fan JJ, Hsiao PW, Lee CS, Su SY, Hwang JJ, Ke FC. Blockage of glutamine-dependent anaplerosis affects mTORC1/2 activity and ultimately leads to cellular senescence-like response. Biol Open 2019; 8:bio.038257. [PMID: 31097446 PMCID: PMC6550068 DOI: 10.1242/bio.038257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The purpose of study was to explore the role of glutamine-dependent anaplerosis in cell fate determination (proliferation and senescence) and the potential associated mechanism by employing a pharmacological inhibitor of glutamine-dependent anaplerosis, amino-oxyacetate (AOA). Using the WI38 normal human embryonic fibroblast cell line, we found that exposure to AOA induced mTORC1 inactivation−mTORC2 activation (within day 1), cell cycle arrest (day 2–6) and cellular senescence (day 4–6). These AOA effects were blocked by concomitantly providing anaplerotic factors [α-ketoglutarate (αKG), pyruvate or oxaloacetate], and not affected by ROS scavenger N-acetyl-cysteine (NAC). Moreover, AOA-induced cellular senescence in WI38 cells is associated with elevated protein levels of p53, p21CIP1 and p16INK4A and decreased Rb protein level, which was blocked by αKG supplementation. In p16INK4A-deficient U2OS human osteosarcoma cells and p16INK4A-knockdown WI38 cells, AOA exposure also induced similar effects on cell proliferation, and protein level of P-Rb-S807/811 and Rb. Interestingly, no AOA induction of cellular senescence was observed in U2OS cells, yet was still seen in p16INK4A-knockdown WI38 cells accompanied by the presence of p16 antibody-reactive p12. In summary, we disclose that glutamine-dependent anaplerosis is essential to cell growth and closely associated with mTORC1 activation and mTORC2 inactivation, and impedes cellular senescence particularly associated with p16INK4A. Summary: Glutamine-dependent anaplerosis is essential to cell growth and closely associated with mTORC1 activation and mTORC2 inactivation, and impedes cellular senescence particularly associated with p16INK4A.
Collapse
Affiliation(s)
- Geng-You Liao
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan.,Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Ming-Ting Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Jhen-Jia Fan
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Sheng Lee
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shou-Yi Su
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jiuan-Jiuan Hwang
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Ferng-Chun Ke
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
36
|
Proteomic profiling of senescent human diploid fibroblasts treated with gamma-tocotrienol. Altern Ther Health Med 2018; 18:314. [PMID: 30497457 PMCID: PMC6267793 DOI: 10.1186/s12906-018-2383-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/22/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Replicative senescence of human diploid fibroblasts (HDFs) has been used as a model to study mechanisms of cellular aging. Gamma-tocotrienol (γT3) is one of the members of vitamin E family which has been shown to increase proliferation of senescent HDFs. However, the modulation of protein expressions by γT3 in senescent HDFs remains to be elucidated. Therefore, this study aimed to determine the differentially expressed proteins (DEPs) in young and senescent HDFs; and in vehicle- and γT3-treated senescent HDFs using label-free quantitative proteomics. METHODS Whole proteins were extracted and digested in-gel with trypsin. Peptides were detected by Orbitrap liquid chromatography mass spectrometry. Mass spectra were identified and quantitated by MaxQuant software. The data were further filtered and analyzed statistically using Perseus software to identify DEPs. Functional annotations of DEPs were performed using Panther Classification System. RESULTS A total of 1217 proteins were identified in young and senescent cells, while 1218 proteins in vehicle- and γT3-treated senescent cells. 11 DEPs were found in young and senescent cells which included downregulation of platelet-derived growth factor (PDGF) receptor beta and upregulation of tubulin beta-2A chain protein expressions in senescent cells. 51 DEPs were identified in vehicle- and γT3-treated senescent cells which included upregulation of 70 kDa heat shock protein, triosephosphate isomerase and malate dehydrogenase protein expressions in γT3-treated senescent cells. CONCLUSIONS PDGF signaling and cytoskeletal structure may be dysregulated in senescent HDFs. The pro-proliferative effect of γT3 on senescent HDFs may be mediated through the stimulation of cellular response to stress and carbohydrate metabolism. The expressions and roles of these proteins in relation to cellular senescence are worth further investigations. Data are available via ProteomeXchange with identifier PXD009933.
Collapse
|
37
|
Nacarelli T, Sell C. Targeting metabolism in cellular senescence, a role for intervention. Mol Cell Endocrinol 2017; 455:83-92. [PMID: 27591812 DOI: 10.1016/j.mce.2016.08.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/29/2016] [Accepted: 08/30/2016] [Indexed: 01/06/2023]
Abstract
Cellular senescence has gained much attention as a contributor to aging and susceptibility to disease. Senescent cells undergo a stable cell cycle arrest and produce pro-inflammatory cytokines. However, an additional feature of the senescence phenotype is an altered metabolic state. Despite maintaining a non-dividing state, senescent cells display a high metabolic rate. Metabolic changes characteristic of replicative senescence include altered mitochondrial function and perturbations in growth signaling pathways, such as the mTORC1-signaling pathway. Recent evidence has raised the possibility that these metabolic changes may be essential for the induction and maintenance of the senescent state. Interventions such as rapamycin treatment and methionine restriction impact key aspects of metabolism and delay cellular senescence to extend cellular lifespan. Here, we review the metabolic changes and potential metabolic regulators of the senescence program. In addition, we will discuss how lifespan-extending regimens prevent metabolic stress that accompanies and potentially regulates the senescence program.
Collapse
Affiliation(s)
- Timothy Nacarelli
- Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Christian Sell
- Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.
| |
Collapse
|
38
|
Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology 2017; 18:447-476. [PMID: 28258519 PMCID: PMC5514220 DOI: 10.1007/s10522-017-9685-9] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022]
Abstract
Ageing is a plastic process and can be successfully modulated by some biomedical approaches or pharmaceutics. In this manner it is possible to delay or even prevent some age-related pathologies. There are some defined interventions, which give promising results in animal models or even in human studies, resulting in lifespan elongation or healthspan improvement. One of the most promising targets for anti-ageing approaches are proteins belonging to the sirtuin family. Sirtuins were originally discovered as transcription repressors in yeast, however, nowadays they are known to occur in bacteria and eukaryotes (including mammals). In humans the family consists of seven members (SIRT1-7) that possess either mono-ADP ribosyltransferase or deacetylase activity. It is believed that sirtuins play key role during cell response to a variety of stresses, such as oxidative or genotoxic stress and are crucial for cell metabolism. Although some data put in question direct involvement of sirtuins in extending human lifespan, it was documented that proper lifestyle including physical activity and diet can influence healthspan via increasing the level of sirtuins. The search for an activator of sirtuins is one of the most extensive and robust topic of research. Some hopes are put on natural compounds, including curcumin. In this review we summarize the involvement and usefulness of sirtuins in anti-ageing interventions and discuss the potential role of curcumin in sirtuins regulation.
Collapse
Affiliation(s)
- Wioleta Grabowska
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur Str. 3, 02-093, Warsaw, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur Str. 3, 02-093, Warsaw, Poland
| | - Anna Bielak-Zmijewska
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur Str. 3, 02-093, Warsaw, Poland.
| |
Collapse
|
39
|
Mora AL, Bueno M, Rojas M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J Clin Invest 2017; 127:405-414. [PMID: 28145905 DOI: 10.1172/jci87440] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic age-related lung disease with high mortality that is characterized by abnormal scarring of the lung parenchyma. There has been a recent attempt to define the age-associated changes predisposing individuals to develop IPF. Age-related perturbations that are increasingly found in epithelial cells and fibroblasts from IPF lungs compared with age-matched cells from normal lungs include defective autophagy, telomere attrition, altered proteostasis, and cell senescence. These divergent processes seem to converge in mitochondrial dysfunction and metabolic distress, which potentiate maladaptation to stress and susceptibility to age-related diseases such as IPF. Therapeutic approaches that target aging processes may be beneficial for halting the progression of disease and improving quality of life in IPF patients.
Collapse
|
40
|
Wang S, Lu Y, Sun X, Wu D, Fu B, Chen Y, Deng H, Chen X. Identification of common and differential mechanisms of glomerulus and tubule senescence in 24-month-old rats by quantitative LC-MS/MS. Proteomics 2016; 16:2706-2717. [PMID: 27452873 DOI: 10.1002/pmic.201600121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/05/2016] [Accepted: 07/20/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Shiyu Wang
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases; Beijing P.R. China
- Department of Nephrology; The Second Hospital of Jilin University; Changchun Jilin P.R. China
| | - Yang Lu
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases; Beijing P.R. China
| | - Xuefeng Sun
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases; Beijing P.R. China
| | - Di Wu
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases; Beijing P.R. China
| | - Bo Fu
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases; Beijing P.R. China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics; School of Life Sciences; Tsinghua University; Beijing P.R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics; School of Life Sciences; Tsinghua University; Beijing P.R. China
| | - Xiangmei Chen
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases; Beijing P.R. China
| |
Collapse
|
41
|
Wiley CD, Campisi J. From Ancient Pathways to Aging Cells-Connecting Metabolism and Cellular Senescence. Cell Metab 2016; 23:1013-1021. [PMID: 27304503 PMCID: PMC4911819 DOI: 10.1016/j.cmet.2016.05.010] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023]
Abstract
Cellular senescence is a complex stress response that permanently arrests the proliferation of cells at risk for oncogenic transformation. However, senescent cells can also drive phenotypes associated with aging. Although the senescence-associated growth arrest prevents the development of cancer, and the metabolism of cancer cells has been studied in depth, the metabolic causes and consequences of cellular senescence were largely unexplored until recently. New findings reveal key roles for several aspects of cellular metabolism in the establishment and control of senescent phenotypes. These discoveries have important implications for both cancer and aging. In this review, we highlight some of the recent links between metabolism and phenotypes that are commonly associated with senescent cells.
Collapse
Affiliation(s)
- Christopher D Wiley
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
42
|
Oh SJ, Gu DR, Jin SH, Park KH, Lee SH. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling. Biochem Biophys Res Commun 2016; 475:125-32. [PMID: 27179783 DOI: 10.1016/j.bbrc.2016.05.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 01/15/2023]
Abstract
Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5' monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.
Collapse
Affiliation(s)
- Se Jeong Oh
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dong Ryun Gu
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea; Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Su Hyun Jin
- Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Keun Ha Park
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea; Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seoung Hoon Lee
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea; Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea; Wonkwang Institute of Biomaterials and Implant, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.
| |
Collapse
|
43
|
Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, Shirakawa K, Lim HW, Davis SS, Ramanathan A, Gerencser AA, Verdin E, Campisi J. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab 2016; 23:303-14. [PMID: 26686024 PMCID: PMC4749409 DOI: 10.1016/j.cmet.2015.11.011] [Citation(s) in RCA: 846] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/28/2015] [Accepted: 11/11/2015] [Indexed: 01/18/2023]
Abstract
Cellular senescence permanently arrests cell proliferation, often accompanied by a multi-faceted senescence-associated secretory phenotype (SASP). Loss of mitochondrial function can drive age-related declines in the function of many post-mitotic tissues, but little is known about how mitochondrial dysfunction affects mitotic tissues. We show here that several manipulations that compromise mitochondrial function in proliferating human cells induce a senescence growth arrest with a modified SASP that lacks the IL-1-dependent inflammatory arm. Cells that underwent mitochondrial dysfunction-associated senescence (MiDAS) had lower NAD+/NADH ratios, which caused both the growth arrest and prevented the IL-1-associated SASP through AMPK-mediated p53 activation. Progeroid mice that rapidly accrue mtDNA mutations accumulated senescent cells with a MiDAS SASP in vivo, which suppressed adipogenesis and stimulated keratinocyte differentiation in cell culture. Our data identify a distinct senescence response and provide a mechanism by which mitochondrial dysfunction can drive aging phenotypes.
Collapse
Affiliation(s)
- Christopher D Wiley
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Michael C Velarde
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Pacome Lecot
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Su Liu
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Ethan A Sarnoski
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; SENS Research Foundation, 110 Pioneer Way, Mountain View, CA 94041, USA
| | - Adam Freund
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Kotaro Shirakawa
- Gladstone Institutes, University of California San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Hyung W Lim
- Gladstone Institutes, University of California San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Sonnet S Davis
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Arvind Ramanathan
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Akos A Gerencser
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Eric Verdin
- Gladstone Institutes, University of California San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA.
| |
Collapse
|
44
|
de Souza AP, Pedroso AP, Watanabe RLH, Dornellas APS, Boldarine VT, Laure HJ, do Nascimento CMO, Oyama LM, Rosa JC, Ribeiro EB. Gender-specific effects of intrauterine growth restriction on the adipose tissue of adult rats: a proteomic approach. Proteome Sci 2015; 13:32. [PMID: 26633942 PMCID: PMC4667418 DOI: 10.1186/s12953-015-0088-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/26/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) may program metabolic alterations affecting physiological functions and lead to diseases in later life. The adipose tissue is an important organ influencing energy homeostasis. The present study was aimed at exploring the consequences of IUGR on the retroperitoneal adipose tissue of adult male and female rats, using a proteomic approach. METHODS AND RESULTS Pregnant Wistar rats were fed with balanced chow, either ad libitum (control group) or restricted to 50 % of control intake (restricted group) during the whole gestation. The offspring were weaned to ad libitum chow and studied at 4 months of age. Retroperitoneal fat was analyzed by two-dimensional gel electrophoresis followed by mass spectrometry. Both male and female restricted groups had low body weight at birth and at weaning but normal body weight at adulthood. The restricted males had normal fat pads weight and serum glucose levels, with a trend to hyperinsulinemia. The restricted females had increased fat pads weight with normal glucose and insulin levels. The restricted males showed up-regulated levels of proteasome subunit α type 3, branched-chain-amino-acid aminotransferase, elongation 1- alpha 1, fatty acid synthase levels, cytosolic malate dehydrogenase and ATP synthase subunit alpha. These alterations point to increased proteolysis and lipogenesis rates and favoring of ATP generation. The restricted females showed down-regulated levels of L-lactate dehydrogenase perilipin-1, mitochondrial branched-chain alpha-keto acid dehydrogenase E1, and transketolase. These findings suggest impairment of glycemic control, stimulation of lipolysis and inhibition of proteolysis, pentose phosphate pathway and lipogenesis rates. In both genders, several proteins involved in oxidative stress and inflammation were affected, in a pattern compatible with impairment of these responses. CONCLUSIONS The proteomic analysis of adipose tissue showed that, although IUGR affected pathways of substrate and energy metabolism in both males and females, important gender differences were evident. While IUGR males displayed alterations pointing to a predisposition to later development of obesity, the alterations observed in IUGR females pointed to a metabolic status of established obesity, in agreement with their increased fat pads mass.
Collapse
Affiliation(s)
- Adriana Pereira de Souza
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Amanda Paula Pedroso
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Regina Lúcia Harumi Watanabe
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Ana Paula Segantine Dornellas
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Valter Tadeu Boldarine
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Helen Julie Laure
- Centro de Química de Proteínas - Hemocentro, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Claudia Maria Oller do Nascimento
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - José Cesar Rosa
- Centro de Química de Proteínas - Hemocentro, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Eliane Beraldi Ribeiro
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| |
Collapse
|
45
|
Mitochondria: Are they causal players in cellular senescence? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1373-9. [DOI: 10.1016/j.bbabio.2015.05.017] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/25/2022]
|
46
|
Triplett JC, Swomley A, Kirk J, Lewis K, Orr M, Rodriguez K, Cai J, Klein JB, Buffenstein R, Butterfield DA. Metabolic clues to salubrious longevity in the brain of the longest-lived rodent: the naked mole-rat. J Neurochem 2015; 134:538-50. [PMID: 25940666 DOI: 10.1111/jnc.13149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/13/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022]
Abstract
Naked mole-rats (NMRs) are the oldest-living rodent species. Living underground in a thermally stable ecological niche, NMRs have evolved certain exceptional traits, resulting in sustained health spans, negligible cognitive decline, and a pronounced resistance to age-related disease. Uncovering insights into mechanisms underlying these extraordinary traits involved in successful aging may conceivably provide crucial clues to extend the human life span and health span. One of the most fundamental processes inside the cell is the production of ATP, which is an essential fuel in driving all other energy-requiring cellular activities. Not surprisingly, a prominent hallmark in age-related diseases, such as neurodegeneration and cancer, is the impairment and dysregulation of metabolic pathways. Using a two-dimensional polyacrylamide gel electrophoresis proteomics approach, alterations in expression and phosphorylation levels of metabolic proteins in the brains of NMRs, aged 2-24 years, were evaluated in an age-dependent manner. We identified 13 proteins with altered levels and/or phosphorylation states that play key roles in various metabolic pathways including glycolysis, β-oxidation, the malate-aspartate shuttle, the Tricarboxylic Acid Cycle (TCA) cycle, the electron transport chain, NADPH production, as well as the production of glutamate. New insights into potential pathways involved in metabolic aspects of successful aging have been obtained by the identification of key proteins through which the NMR brain responds and adapts to the aging process and how the NMR brain adapted to resist age-related degeneration. This study examines the changes in the proteome and phosphoproteome in the brain of the naked mole-rat aged 2-24 years. We identified 13 proteins (labeled in red) with altered expression and/or phosphorylation levels that are conceivably associated with sustained metabolic functions in the oldest NMRs that may promote a sustained health span and life span.
Collapse
Affiliation(s)
- Judy C Triplett
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Aaron Swomley
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Jessime Kirk
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Katilyn Lewis
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Miranda Orr
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Karl Rodriguez
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jian Cai
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, Kentucky, USA
| | - Jon B Klein
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, Kentucky, USA
| | - Rochelle Buffenstein
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
47
|
Ziegler DV, Wiley CD, Velarde MC. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell 2015; 14:1-7. [PMID: 25399755 PMCID: PMC4310776 DOI: 10.1111/acel.12287] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2014] [Indexed: 12/22/2022] Open
Abstract
Cellular senescence is a process that results from a variety of stresses, leading to a state of irreversible growth arrest. Senescent cells accumulate during aging and have been implicated in promoting a variety of age-related diseases. Mitochondrial stress is an effective inducer of cellular senescence, but the mechanisms by which mitochondria regulate permanent cell growth arrest are largely unexplored. Here, we review some of the mitochondrial signaling pathways that participate in establishing cellular senescence. We discuss the role of mitochondrial reactive oxygen species (ROS), mitochondrial dynamics (fission and fusion), the electron transport chain (ETC), bioenergetic balance, redox state, metabolic signature, and calcium homeostasis in controlling cellular growth arrest. We emphasize that multiple mitochondrial signaling pathways, besides mitochondrial ROS, can induce cellular senescence. Together, these pathways provide a broader perspective for studying the contribution of mitochondrial stress to aging, linking mitochondrial dysfunction and aging through the process of cellular senescence.
Collapse
Affiliation(s)
- Dorian V. Ziegler
- Département de Biologie Ecole Normale Supérieure de Lyon 46 allée d'Italie Lyon 69007 France
- Buck Institute for Research on Aging 8001 Redwood Blvd. Novato CA 94945 USA
| | | | - Michael C. Velarde
- Buck Institute for Research on Aging 8001 Redwood Blvd. Novato CA 94945 USA
| |
Collapse
|
48
|
Konieczna A, Szczepańska A, Sawiuk K, Łyżeń R, Węgrzyn G. Enzymes of the central carbon metabolism: Are they linkers between transcription, DNA replication, and carcinogenesis? Med Hypotheses 2015; 84:58-67. [DOI: 10.1016/j.mehy.2014.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/05/2014] [Accepted: 11/21/2014] [Indexed: 12/16/2022]
|
49
|
Comparison of the ventricle muscle proteome between patients with rheumatic heart disease and controls with mitral valve prolapse: HSP 60 may be a specific protein in RHD. BIOMED RESEARCH INTERNATIONAL 2014; 2014:151726. [PMID: 24738046 PMCID: PMC3971496 DOI: 10.1155/2014/151726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 11/17/2022]
Abstract
Objective. Rheumatic heart disease (RHD) is a serious autoimmune heart disease. The present study was aimed at identifying the differentially expressed proteins between patients with RHD and controls with mitral valve prolapse. Methods. Nine patients with RHD and nine controls with mitral valve prolapsed were enrolled for this study. Two-dimensional difference in-gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were performed. Results. A total of 39 protein spots with differential expressions were identified between the two groups (P < 0.05, Average Ratio > 1.2 or Average Ratio < −1.2) and four upregulated proteins (including heat shock protein 60 (HSP 60), desmin, PDZ and LIM domain protein 1, and proteasome subunit alpha type-1) and three downregulated proteins (including tropomyosin alpha-1 chain, malate dehydrogenase, and chaperone activity of bc1 complex homolog) were determined. Conclusion. These seven proteins, especially HSP 60, may serve as potential biomarkers for the diagnosis of RHD and provide evidence to explain the mechanisms of this complex disease in the future.
Collapse
|
50
|
Wang SH, You ZY, Ye LP, Che J, Qian Q, Nanjo Y, Komatsu S, Zhong BX. Quantitative Proteomic and Transcriptomic Analyses of Molecular Mechanisms Associated with Low Silk Production in Silkworm Bombyx mori. J Proteome Res 2014; 13:735-51. [DOI: 10.1021/pr4008333] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shao-hua Wang
- College
of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Zheng-ying You
- College
of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Lu-peng Ye
- College
of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Jiaqian Che
- College
of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Qiujie Qian
- College
of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Yohei Nanjo
- National
Institute of Crop Science, NARO, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- National
Institute of Crop Science, NARO, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Bo-xiong Zhong
- College
of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| |
Collapse
|