1
|
Nakagawa K, Kodama K, Nagata W, Takahashi S, Satoh Y, Ishizuka T. Molecular hydrogen inhibits neuroinflammation and ameliorates depressive-like behaviors and short-term cognitive impairment in senescence-accelerated mouse prone 8 mice. Behav Brain Res 2025; 478:115330. [PMID: 39522774 DOI: 10.1016/j.bbr.2024.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS Neuroinflammation, a low-grade chronic inflammation of the central nervous system, is linked to age-related neuropsychiatric disorders such as senile depression and Alzheimer's disease. Recent studies have explored controlling neuroinflammation as a novel treatment strategy. Molecular hydrogen shows anti-inflammatory effects. However, its impacts on neuroinflammation and age-related neuropsychiatric disorders remain unelucidated. We investigated molecular hydrogen's effects on microglial activation, neuroinflammation, depressive-like behavior, and short-term cognitive decline in senescence-accelerated mouse-prone 8 (SAMP8) mice. METHODS Six-week-old SAMP8 or senescence-accelerated mouse-resistant 1 (SAMR1) mice received hydrogen-rich jelly (HRJ) or placebo jelly (PJ) from six weeks of age for 26-28 weeks. Depressive-like behavior was assessed using tail suspension and forced swimming tests, while cognitive function was evaluated using the Y-maze and object recognition tests. Brain tissues were used for immunohistochemical studies or to measure pro-inflammatory cytokine levels via enzyme-linked immunosorbent assay (ELISA). RESULTS HRJ intake reduced immobility time in both tail suspension and forced swimming tests and enhanced visual cognitive and spatial working memory in SAMP8 mice. Additionally, HRJ intake suppressed the 8-hydroxy-2'-deoxyguanosine (8-OHdG), Iba1, and cleaved caspase 3 expression levels in the medial prefrontal cortex and hippocampal dentate gyrus. Furthermore, HRJ intake significantly lowered IL-6 levels in brain tissues of SAMP8 mice. CONCLUSIONS These findings suggest that molecular hydrogen treatment may regulate neuroinflammation induced by activated microglia and improve depressive-like behavior and short-term cognitive impairment in SAMP8 mice.
Collapse
Affiliation(s)
- Keiichi Nakagawa
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan
| | - Kayoko Kodama
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan
| | - Wataru Nagata
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan
| | - Sayaka Takahashi
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan.
| |
Collapse
|
2
|
Fidalgo S, Yeoman MS. Age-Related Changes in Central Nervous System 5-Hydroxytryptamine Signalling and Its Potential Effects on the Regulation of Lifespan. Subcell Biochem 2023; 102:379-413. [PMID: 36600141 DOI: 10.1007/978-3-031-21410-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is an important neurotransmitter in the central nervous system and the periphery. Most 5-HT (~99%) is found in the periphery where it regulates the function of the gastrointestinal (GI) tract and is an important regulator of platelet aggregation. However, the remaining 1% that is found in the central nervous system (CNS) can regulate a range of physiological processes such as learning and memory formation, mood, food intake, sleep, temperature and pain perception. More recent work on the CNS of invertebrate model systems has shown that 5-HT can directly regulate lifespan.This chapter will focus on detailing how CNS 5-HT signalling is altered with increasing age and the potential consequences this has on its ability to regulate lifespan.
Collapse
Affiliation(s)
| | - Mark S Yeoman
- Centre for Stress and Age-Related Disease, School of Applied Sciences, University of Brighton, Brighton, United Kingdom.
| |
Collapse
|
3
|
Vasilopoulou F, Bellver-Sanchis A, Companys-Alemany J, Jarne-Ferrer J, Irisarri A, Palomera-Ávalos V, Gonzalez-Castillo C, Ortuño-Sahagún D, Sanfeliu C, Pallàs M, Griñán-Ferré C. Cognitive Decline and BPSD Are Concomitant with Autophagic and Synaptic Deficits Associated with G9a Alterations in Aged SAMP8 Mice. Cells 2022; 11:cells11162603. [PMID: 36010679 PMCID: PMC9406492 DOI: 10.3390/cells11162603] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Behavioural and psychological symptoms of dementia (BPSD) are presented in 95% of Alzheimer’s Disease (AD) patients and are also associated with neurotrophin deficits. The molecular mechanisms leading to age-related diseases are still unclear; however, emerging evidence has suggested that epigenetic modulation is a key pathophysiological basis of ageing and neurodegeneration. In particular, it has been suggested that G9a methyltransferase and its repressive histone mark (H3K9me2) are important in shaping learning and memory by modulating autophagic activity and synaptic plasticity. This work deepens our understanding of the epigenetic mechanisms underlying the loss of cognitive function and BPSD in AD. For this purpose, several tasks were performed to evaluate the parameters of sociability (three-chamber test), aggressiveness (resident intruder), anxiety (elevated plus maze and open field) and memory (novel object recognition test) in mice, followed by the evaluation of epigenetic, autophagy and synaptic plasticity markers at the molecular level. The behavioural alterations presented by senescence-accelerated mice prone 8 (SAMP8) of 12 months of age compared with their senescence-accelerated mouse resistant mice (SAMR1), the healthy control strain was accompanied by age-related cognitive deficits and alterations in epigenetic markers. Increased levels of G9a are concomitant to the dysregulation of the JNK pathway in aged SAMP8, driving a failure in autophagosome formation. Furthermore, lower expression of the genes involved in the memory-consolidation process modulated by ERK was observed in the aged male SAMP8 model, suggesting the implication of G9a. In any case, two of the most important neurotrophins, namely brain-derived neurotrophic factor (Bdnf) and neurotrophin-3 (NT3), were found to be reduced, along with a decrease in the levels of dendritic branching and spine density presented by SAMP8 mice. Thus, the present study characterizes and provides information regarding the non-cognitive and cognitive states, as well as molecular alterations, in aged SAMP8, demonstrating the AD-like symptoms presented by this model. In any case, our results indicate that higher levels of G9a are associated with autophagic deficits and alterations in synaptic plasticity, which could further explain the BPSD and cognitive decline exhibited by the model.
Collapse
Affiliation(s)
- Foteini Vasilopoulou
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
| | - Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
| | - Júlia Jarne-Ferrer
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
| | - Alba Irisarri
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
| | - Verónica Palomera-Ávalos
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
| | | | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunología Molecular, Instituto de Investigación de Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Coral Sanfeliu
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona, Avda. Joan XXIII, 27, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
4
|
Microbiota Targeted Interventions of Probiotic Lactobacillus as an Anti-Ageing Approach: A Review. Antioxidants (Basel) 2021; 10:antiox10121930. [PMID: 34943033 PMCID: PMC8750034 DOI: 10.3390/antiox10121930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
With the implementation of modern scientific protocols, the average human lifespan has significantly improved, but age-related problems remain a challenge. With the advent of ageing, there are alterations in gut microbiota and gut barrier functions, weak immune responses, increased oxidative stress, and other age-related disorders. This review has highlighted and discussed the current understanding on the significance of gut microbiota dysbiosis and ageing and its inherent effects against age-related oxidative stress as well as on the gut health and gut-brain axis. Further, we have discussed the key mechanism of action of Lactobacillus strains in the longevity of life, alleviating gut dysbiosis, and improving oxidative stress and inflammation to provide an outline of the role of Lactobacillus strains in restoration of gut microbiota dysbiosis and alleviating certain conditions during ageing. Microbiota-targeted interventions of some characterized strains of probiotic Lactobacillus for the restoration of gut microbial community are considered as a potential approach to improve several neurological conditions. However, very limited human studies are available on this alarmed issue and recommend further studies to identify the unique Lactobacillus strains with potential anti-ageing properties and to discover its novel core microbiome-association, which will help to increase the therapeutic potential of probiotic Lactobacillus strains to ageing.
Collapse
|
5
|
Neuroinflammaging underlies emotional disturbances and circadian rhythm disruption in young male senescence-accelerated mouse prone 8 mice. Exp Gerontol 2020; 142:111109. [PMID: 33069781 DOI: 10.1016/j.exger.2020.111109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Aging causes psychological dysfunction and neurodegeneration, and can lead to cognitive impairments. Although numerous studies have reported that neurodegeneration and subsequent cognitive impairments are involved in neuroinflammation, relationship between psychological disturbance and neuroinflammation with aging (neuroinflammaging) remains unclear. Here, to clarify the relationship, we examined whether neuroinflammaging affects emotional behaviors in senescence-accelerated mouse prone 8 (SAMP8) mice. Microglial inflammatory responses to a subsequent lipopolysaccharide (LPS) challenge were significantly enhanced in male SAMP8 mice relative to normal aging senescence-accelerated mouse resistant 1 (SAMR1) mice at 17 weeks, but not 8 weeks of age. LPS injection also significantly increased brain and systemic inflammation in SAMP8 mice at 17 weeks. In a battery of behavioral tests, SAMP8 mice at 17 weeks, but not 8 weeks, exhibited anxiety- and depression-like behaviors and circadian rhythm disruption. Taken together, SAMP8 mice at 17 weeks possess a brain microenvironment in which it is easier to trigger neuroinflammatory priming; this may lead to an emergence of anxiety- and depression-like behaviors and circadian rhythm disruption. These findings provide new insights into the temporal relationship between neuroinflammaging and emotion.
Collapse
|
6
|
Amelioration of BPSD-Like Phenotype and Cognitive Decline in SAMP8 Mice Model Accompanied by Molecular Changes after Treatment with I 2-Imidazoline Receptor Ligand MCR5. Pharmaceutics 2020; 12:pharmaceutics12050475. [PMID: 32456135 PMCID: PMC7285228 DOI: 10.3390/pharmaceutics12050475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Behavioural and psychological symptoms of dementia (BPSD), including fear-anxiety- and depressive-like behaviour, are present in Alzheimer's disease (AD), together with memory decline. I2-imidazoline receptors (I2-IRs) have been associated with neuropsychiatric and neurodegenerative disorders, further, I2-IR ligands have demonstrated a neuroprotective role in the central nervous system (CNS). In this study, we assessed the effect of the I2-IR ligand MCR5 on both cognitive and non-cognitive symptoms in the Senescence accelerated mice prone 8 (SAMP8) mouse model. Oral administration of I2-IR ligand MCR5 (5 mg/kg/day for four weeks) in 10-month SAMP8 mice ameliorated both BPSD-like phenotype and cognitive decline by attenuating depressive-like behaviour, reducing fear-anxiety-like behaviour and improving cognitive performance using different tasks. Interaction of I2-IR ligand MCR5 with serotoninergic system did not account for behavioural or cognitive improvement, although changes in molecular pathways underlying depression and anxiety phenotype were observed. MCR5 increased levels of p-AKT, phosphorylated glycogen synthase kinase 3 β (GSK3β) at Ser9 and phosphorylated mammalian target of rapamycin complex 1 (mTORC1) levels in SAMP8 treated mice compared to SAMP8 control. Moreover, MCR5 treatment altered N-methyl-d-aspartate receptor (NMDA) 2B phosphorylation, and decreased the protein levels of phosphorylated cyclin-dependent kinase 5 (p-CDK5) and dopamine- and cyclic adenosine monophosphate (cAMP)-regulated phosphoprotein of Mr 32 kDa phosphorylated at Thr75 (p-DARPP32), with a parallel increase in protein kinase A (PKA) and p-cAMP response element-binding (pCREB) levels. Consistent with these changes MCR5 attenuated neuroinflammation by decreasing expression of pro-inflammatory markers such as Tumor necrosis factor-alpha (Tnf-α), Interleukin 1β (Il-1β), Interleukin 6 (Il-6), and promoted synaptic plasticity by increasing levels of postsynaptic density protein 95 (PSD95) as well as ameliorating tropomyosin-related kinase B (TrkB) and nerve growth factor receptor (NGFR) signalling. Collectively, these results increase the potential of highly selective I2-IR ligands as therapeutic agents in age-related BPSD and cognitive alterations.
Collapse
|
7
|
Griñán-Ferré C, Corpas R, Puigoriol-Illamola D, Palomera-Ávalos V, Sanfeliu C, Pallàs M. Understanding Epigenetics in the Neurodegeneration of Alzheimer's Disease: SAMP8 Mouse Model. J Alzheimers Dis 2019; 62:943-963. [PMID: 29562529 PMCID: PMC5870033 DOI: 10.3233/jad-170664] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetics is emerging as the missing link among genetic inheritance, environmental influences, and body and brain health status. In the brain, specific changes in nucleic acids or their associated proteins in neurons and glial cells might imprint differential patterns of gene activation that will favor either cognitive enhancement or cognitive loss for more than one generation. Furthermore, derangement of age-related epigenetic signaling is appearing as a significant risk factor for illnesses of aging, including neurodegeneration and Alzheimer’s disease (AD). In addition, better knowledge of epigenetic mechanisms might provide hints and clues in the triggering and progression of AD. Intense research in experimental models suggests that molecular interventions for modulating epigenetic mechanisms might have therapeutic applications to promote cognitive maintenance through an advanced age. The SAMP8 mouse is a senescence model with AD traits in which the study of epigenetic alterations may unveil epigenetic therapies against the AD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Dolors Puigoriol-Illamola
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Verónica Palomera-Ávalos
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| |
Collapse
|
8
|
Yu YC, Li J, Zhang M, Pan JC, Yu Y, Zhang JB, Zheng L, Si JM, Xu Y. Resveratrol Improves Brain-Gut Axis by Regulation of 5-HT-Dependent Signaling in the Rat Model of Irritable Bowel Syndrome. Front Cell Neurosci 2019; 13:30. [PMID: 30800058 PMCID: PMC6375832 DOI: 10.3389/fncel.2019.00030] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is at high risk of co-morbid depression and anxiety, which reduces patients' quality of life and increases the burden of health care costs. However, the pathophysiological mechanisms responsible for IBS still remain unknown. This study investigated the effects of resveratrol on stress-related depression, anxiety, intestinal and visceral dysfunction in rat model of IBS. Rats received chronic acute combining stress (CACS) for 22 days exhibited depression/anxiety-like behavior, visceral hypersensitivity and altered intestinal motility, as measured by the forced swimming, marble bury, abdominal withdrawal reflex (AWR) and intestinal tract motility (ITM) tests. These abnormalities were accompanied by reduced 5-hydroxytryptamine (5-HT) level in the hippocampus and increased 5-HT expression in the gut (ileum and colon) after CACS. Chronic treatment of IBS rats with resveratrol dose-dependently normalized CACS-induced both central nervous and peripheral dysfunction, which were consistent with its differentially regulating 5-HT contents in the brain and intestine. Pretreatment with the 5-HT1A receptor antagonist NAN-190 hydrobromide (NAN-190) prevented such effects. While sub-threshold of 5-HT1A receptor agonist 8-OH-DPAT potentiated the effects of low dose of resveratrol (10 mg/kg) on CACS-related behavioral abnormalities. Furthermore, resveratrol markedly increased PKA, p-cAMP-response element binding protein (p-CREB) and brain derived neurotrophic factor (BDNF) expression in the hippocampus of IBS rats, while decreased PKA, pCREB and BDNF levels were found in the ileum and colon. These effects were prevented by NAN-190, which were consistent with the behavioral changes. The present results suggested that resveratrol improved anti-IBS-like effects on depression, anxiety, visceral hypersensitivity and intestinal motility abnormality through regulating 5-HT1A-dependent PKA-CREB-BDNF signaling in the brain-gut axis.
Collapse
Affiliation(s)
- Ying-Cong Yu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meixi Zhang
- Pingyang Hospital of Traditional Chinese Medicine, Pingyang, China
| | - Jian-Chun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Ying Yu
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Jian-Bo Zhang
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Liang Zheng
- Department of Gastroenterology, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Jian-Min Si
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
9
|
Huang SY, Chen LH, Wang MF, Hsu CC, Chan CH, Li JX, Huang HY. Lactobacillus paracasei PS23 Delays Progression of Age-Related Cognitive Decline in Senescence Accelerated Mouse Prone 8 (SAMP8) Mice. Nutrients 2018; 10:nu10070894. [PMID: 30002347 PMCID: PMC6073302 DOI: 10.3390/nu10070894] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/26/2018] [Accepted: 07/09/2018] [Indexed: 12/26/2022] Open
Abstract
Probiotic supplements are potential therapeutic agents for age-related disorders due to their antioxidant and anti-inflammatory properties. However, the effect of probiotics on age-related brain dysfunction remains unclear. To investigate the effects of Lactobacillus paracasei PS23 (LPPS23) on the progression of age-related cognitive decline, male and female senescence-accelerated mouse prone 8 (SAMP8) mice were divided into two groups (n = 6 each): the control and PS23 groups. From the age of 16 weeks, these groups were given saline and LPPS23, respectively, because SAMP8 mice start aging rapidly after four months of age. After 12 weeks of treatment, we evaluated the effect of LPPS23 by analyzing their appearance, behavior, neural monoamines, anti-oxidative enzymes, and inflammatory cytokines. The PS23 group showed lower scores of senescence and less serious anxiety-like behaviors and memory impairment compared to the control group. The control mice also showed lower levels of neural monoamines in the striatum, hippocampus, and serum. Moreover, LPPS23 induced the anti-oxidative enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx). Higher levels of tumor necrosis factor (TNF)-α and monocyte chemotactic protein-1 (MCP1) and lower levels of interleukin (IL)-10 indicated that LPPS23 modulated the inflammation. Our results suggest that LPPS23 supplements could delay age-related cognitive decline, possibly by preventing oxidation and inflammation and modulating gut–brain axis communication.
Collapse
Affiliation(s)
- Shih-Yi Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan.
| | - Li-Han Chen
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan.
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan.
| | | | - Ching-Hung Chan
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan.
| | - Jia-Xian Li
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan.
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 10462, Taiwan.
| |
Collapse
|
10
|
Alimohammadi S, Hosseini MS, Behbood L. Prenatal Exposure to Zinc Oxide Nanoparticles Can Induce Depressive-Like Behaviors in Mice Offspring. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9686-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
The contribution of transgenic and nontransgenic animal models in Alzheimer's disease drug research and development. Behav Pharmacol 2018; 28:95-111. [PMID: 28177983 DOI: 10.1097/fbp.0000000000000296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the last few years, several papers have become available in the literature on both the main hallmarks of Alzheimer's disease (AD) and the several intracellular pathways whose alteration is responsible for its onset and progression. The use of transgenic and nontransgenic animal models has played a key role in achieving such a remarkable amount of preclinical data, allowing researchers to dissect the cellular changes occurring in the AD brain. In addition, the huge amount of preclinical evidence arising from these animal models was necessary for the further clinical development of pharmacological agents capable of interfering with most of the impaired neural pathways in AD patients. In this respect, a significant role is played by the dysfunction of excitatory and inhibitory neurotransmission responsible for the cognitive and behavioral symptoms described in AD patients. The aim of this review is to summarize the main animal models that contributed toward unraveling the pathological changes in neurotransmitter synthesis, release, and receptor binding in AD preclinical studies. The review also provides an updated description of the current pharmacological agents - still under clinical development - acting on the neurotransmitter systems.
Collapse
|
12
|
Chen Y, Xu H, Zhu M, Liu K, Lin B, Luo R, Chen C, Li M. Stress inhibits tryptophan hydroxylase expression in a rat model of depression. Oncotarget 2017; 8:63247-63257. [PMID: 28968985 PMCID: PMC5609917 DOI: 10.18632/oncotarget.18780] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/21/2017] [Indexed: 12/30/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) dysfunction is associated with the pathophysiology of depression. Tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT biosynthesis, is believed to have essential role in many mental disorders, including depression. In the present study, we generated a rat model of depression by exposing the animals to stress, and the rats were then treated with paroxetine. The results indicated that the concentration of 5-HT in the brain and liver tissues were significantly lower in the rat model of depression than in healthy or treated rats. Immunohistochemical analyses of TPH1/2 showed less TPH1 and TPH2 expression, specifically TPH2, in the brain, liver and kidney of the depressive rats than in the healthy rats; In addition, the two TPH isoforms, TPH1 and TPH2, had different spatial distributions,the mRNAs of the TPH1/2 genes were significantly decreased and TPH1/2 were highly methylated in the depressive model rat, but treatment with paroxetine ameliorated the expression and methylation of TPH1/2. All together, stress was able to inhibit expression of TPH1/2 in brain tissue and decrease concentration of 5-HT, the mechanism maybe involve in increasing the methylation of TPH2 genes promoter; Paroxetine has a role in confronting the effect of stress in depressive rat model.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Haixia Xu
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Mingyue Zhu
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Kun Liu
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Bo Lin
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Ruxian Luo
- Department of Psychiatry, Hainan Provincial Anning Hospital, Haikou 571199, Hainan Province, P. R. China
| | - Chuanbai Chen
- Department of Psychiatry, Hainan Provincial Anning Hospital, Haikou 571199, Hainan Province, P. R. China
| | - Mengsen Li
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| |
Collapse
|
13
|
Early onset of behavioral alterations in senescence-accelerated mouse prone 8 (SAMP8). Behav Brain Res 2016; 308:187-95. [PMID: 27093926 DOI: 10.1016/j.bbr.2016.04.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Abstract
Senescence-accelerated mouse (SAM) is inbred lines of mice originally developed from AKR/J mice. Among the six SAM prone (SAMP) substrains, 8- to 12-month-old SAMP8 have long been used as a model of age-related cognitive impairments. However, little is still known for younger SAMP8 mice. Here, we examined the phenotypical characteristics of 4-month-old SAMP8 using a battery of behavioral tests. Four-month-old SAMP8 mice failed to recognize spatially displaced object in an object recognition task and performed poorly in the probe test of the Morris water maze task compared to SAMR1, suggesting that SAMP8 have impaired spatial memory. In addition, young SAMP8 exhibited enhanced anxiety-like behavior in an open field test and showed depression-like behavior in the forced-swim test. Their circadian rhythm was also disrupted. These abnormal behaviors of young SAMP8 are similar to behavioral alterations also observed in aged mice. In summary, age-related behavioral alterations occur in SAMP8 as young as 4 months old.
Collapse
|
14
|
When ageing meets the blues: Are current antidepressants effective in depressed aged patients? Neurosci Biobehav Rev 2015; 55:478-97. [DOI: 10.1016/j.neubiorev.2015.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/03/2015] [Indexed: 02/06/2023]
|
15
|
Wang QS, Tian JS, Cui YL, Gao S. Genipin is active via modulating monoaminergic transmission and levels of brain-derived neurotrophic factor (BDNF) in rat model of depression. Neuroscience 2014; 275:365-73. [DOI: 10.1016/j.neuroscience.2014.06.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 12/17/2022]
|