1
|
Kunutsor SK, Lehoczki A, Laukkanen JA. The untapped potential of cold water therapy as part of a lifestyle intervention for promoting healthy aging. GeroScience 2025; 47:387-407. [PMID: 39078461 PMCID: PMC11872954 DOI: 10.1007/s11357-024-01295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
Healthy aging is a crucial goal in aging societies of the western world, with various lifestyle strategies being employed to achieve it. Among these strategies, hydrotherapy stands out for its potential to promote cardiovascular and mental health. Cold water therapy, a hydrotherapy technique, has emerged as a lifestyle strategy with the potential capacity to evoke a wide array of health benefits. This review aims to synthesize the extensive body of research surrounding cold water therapy and its beneficial effects on various health systems as well as the underlying biological mechanisms driving these benefits. We conducted a search for interventional and observational cohort studies from MEDLINE and EMBASE up to July 2024. Deliberate exposure of the body to cold water results in distinct physiological responses that may be linked to several health benefits. Evidence, primarily from small interventional studies, suggests that cold water therapy positively impacts cardiometabolic risk factors, stimulates brown adipose tissue and promotes energy expenditure-potentially reducing the risk of cardiometabolic diseases. It also triggers the release of stress hormones, catecholamines and endorphins, enhancing alertness and elevating mood, which may alleviate mental health conditions. Cold water therapy also reduces inflammation, boosts the immune system, promotes sleep and enhances recovery following exercise. The optimal duration and temperature needed to derive maximal benefits is uncertain but current evidence suggests that short-term exposure and lower temperatures may be more beneficial. Overall, cold water therapy presents a potential lifestyle strategy to enhancing physical and mental well-being, promoting healthy aging and extending the healthspan, but definitive interventional evidence is warranted.
Collapse
Affiliation(s)
- Setor K Kunutsor
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R2H 2A6, Canada.
- Leicester Real World Evidence Unit, Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
| | - Andrea Lehoczki
- Department of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Jari A Laukkanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Department of Medicine, University of Eastern Finland, Kuopio, Finland
- Wellbeing Services County of Central Finland, Department of Medicine, Finland District, Jyväskylä, Finland
| |
Collapse
|
2
|
Singh A, Yilmaz D, Wehrle E, Kuhn GA, Müller R. Daily rhythms in metabolic and locomotor behaviour of prematurely ageing PolgA mice. FEBS Open Bio 2024; 14:1668-1681. [PMID: 39073017 PMCID: PMC11452303 DOI: 10.1002/2211-5463.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Ageing is an inherent and intricate biological process that takes place in living organisms as time progresses. It involves the decline of multiple physiological functions, leading to body structure and overall performance modifications. The ageing process differs among individuals and is influenced by various factors, including lifestyle, environment and genetic makeup. Metabolic changes and reduced locomotor activity are common hallmarks of ageing. Our study focuses on exploring these phenomena in prematurely ageing PolgA(D257A/D257A) mice (also known as PolgA) aged 41-42 weeks, as they closely mimic human ageing. We assess parameters such as oxygen consumption (VO2), carbon dioxide production (VCO2), respiratory exchange ratio (RER) and locomotor activity using a metabolic cage for 4 days and comparing them with age-matched wild-type littermates (WT). Our findings revealed that VO2, VCO2, RER, locomotor activities, water intake and feeding behaviour show a daily rhythm, aligning with roughly a 24-h cycle. We observed that the RER was significantly increased in PolgA mice compared to WT mice during the night-time of the light-dark cycle, suggesting a shift towards a higher reliance on carbohydrate metabolism due to more food intake during the active phase. Additionally, female PolgA mice displayed a distinct phenotype with reduced walking speed, walking distance, body weight and grip strength in comparison to male PolgA and WT mice, indicating an early sign of ageing. Taken together, our research highlights the impact of sex-specific patterns on ageing traits in PolgA mice aged 41-42 weeks, which may be attributable to human ageing phenotypes. The unique genetic composition and accelerated ageing characteristics of PolgA mice make them invaluable in ageing studies, facilitating the investigation of underlying biological mechanisms and the identification of potential therapeutic targets for age-related diseases.
Collapse
Affiliation(s)
- Amit Singh
- Institute for BiomechanicsETH ZurichSwitzerland
| | | | - Esther Wehrle
- Institute for BiomechanicsETH ZurichSwitzerland
- AO Research Institute DavosSwitzerland
| | | | | |
Collapse
|
3
|
Satoh K, Ohno Y, Nagase H, Kashimata M, Adachi K. Age-related alteration of the involvement of CD36 for salivary secretion from the parotid gland in mice. J Physiol Sci 2024; 74:38. [PMID: 39075341 PMCID: PMC11285320 DOI: 10.1186/s12576-024-00931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
This in vivo mouse model study was conducted to investigate the temporal alteration of the function of CD36 in salivary secretion. CD36 was highly expressed in the parotid gland of BALB/c mice. No significant variations were shown in the CD36 levels in the 8-, 48-, and 72-week-old animals. However, pilocarpine-induced salivary secretion was reduced in an age-dependent manner, showing a significantly low level at the age of 72 weeks. Pilocarpine-induced salivary secretion was significantly reduced by pretreatment with a CD36 inhibitor at 8 and 48 weeks, but not at 72 weeks. In senescence-accelerated mice (SAM), the pilocarpine-induced salivary secretion was significantly reduced at the age of 56 weeks, and a significantly lower amount of CD36 was demonstrated in the parotid gland, compared with the control. These results suggest that the involvement of parotid CD36 in mouse salivary secretion is altered with age.
Collapse
Affiliation(s)
- Keitaro Satoh
- Division of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan.
- Division of Pharmacology, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan.
| | - Yuta Ohno
- Division of Pharmacology, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Haruna Nagase
- Division of Pharmacology, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Masanori Kashimata
- Division of Pharmacology, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Kazunori Adachi
- Division of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| |
Collapse
|
4
|
Fernandez ME, Martinez-Romero J, Aon MA, Bernier M, Price NL, de Cabo R. How is Big Data reshaping preclinical aging research? Lab Anim (NY) 2023; 52:289-314. [PMID: 38017182 DOI: 10.1038/s41684-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
The exponential scientific and technological progress during the past 30 years has favored the comprehensive characterization of aging processes with their multivariate nature, leading to the advent of Big Data in preclinical aging research. Spanning from molecular omics to organism-level deep phenotyping, Big Data demands large computational resources for storage and analysis, as well as new analytical tools and conceptual frameworks to gain novel insights leading to discovery. Systems biology has emerged as a paradigm that utilizes Big Data to gain insightful information enabling a better understanding of living organisms, visualized as multilayered networks of interacting molecules, cells, tissues and organs at different spatiotemporal scales. In this framework, where aging, health and disease represent emergent states from an evolving dynamic complex system, context given by, for example, strain, sex and feeding times, becomes paramount for defining the biological trajectory of an organism. Using bioinformatics and artificial intelligence, the systems biology approach is leading to remarkable advances in our understanding of the underlying mechanism of aging biology and assisting in creative experimental study designs in animal models. Future in-depth knowledge acquisition will depend on the ability to fully integrate information from different spatiotemporal scales in organisms, which will probably require the adoption of theories and methods from the field of complex systems. Here we review state-of-the-art approaches in preclinical research, with a focus on rodent models, that are leading to conceptual and/or technical advances in leveraging Big Data to understand basic aging biology and its full translational potential.
Collapse
Affiliation(s)
- Maria Emilia Fernandez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jorge Martinez-Romero
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
5
|
Balietti M, Conti F. Environmental enrichment and the aging brain: is it time for standardization? Neurosci Biobehav Rev 2022; 139:104728. [PMID: 35691473 DOI: 10.1016/j.neubiorev.2022.104728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/01/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Aging entails a progressive decline of cognitive abilities. However, since the brain is endowed with considerable plasticity, adequate stimulation can delay or partially compensate for age-related structural and functional impairment. Environmental enrichment (EE) has been reported to determine a wide range of cerebral changes. Although most findings have been obtained in young and adult animals, research has recently turned to aged individuals. Notably, EE can contribute identifying key lifestyle factors whose change can help extend the "mind-span", i.e., the time an individual lives in a healthy cognitive condition. Here we discuss specific methodological issues that can affect the outcomes of EE interventions applied to aged rodents, summarize the main variables that would need standardization (e.g., timing and duration, enrichment items, control animals and setting), and offer some suggestions on how this goal may be achieved. Reaching a consensus on EE experiment design would significantly reduce differences between and within laboratories, enable constructive discussions among researchers, and improve data interpretation.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy; Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
6
|
An assessment of the spontaneous locomotor activity of BALB/c mice. J Pharmacol Sci 2022; 149:46-52. [DOI: 10.1016/j.jphs.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022] Open
|
7
|
Kawakami S, Yoshitane H, Morimura T, Kimura W, Fukada Y. Diurnal shift of mouse activity by the deficiency of an aging-related gene Lmna. J Biochem 2022; 171:509-518. [PMID: 35137145 DOI: 10.1093/jb/mvac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nuclear lamina is a fundamental structure of the cell nucleus and regulates a wide range of molecular pathways. Defects of components of the nuclear lamina cause aging-like physiological disorders, called laminopathy. Generally, aging and diseases are often associated with perturbation of various time-of-day-dependent regulations, but it remains still elusive whether laminopathy induces any changes of the circadian clock and physiological rhythms. Here we demonstrated that deficiency of Lmna gene in mice caused an obvious shift of locomotor activities to the daytime. The abnormal activity profile was accompanied by a remarkable change in phase-angle between the central clock in the suprachiasmatic nucleus (SCN) and lung peripheral clocks, leaving the phase of the SCN clock unaffected by the mutation. These observations suggest that Lmna deficiency causes a change of the habitat from nocturnal to diurnal behaviors. On the other hand, molecular oscillation and its phase resetting mechanism were intact in both the Lmna-deficient cells and progeria-mimicking cells. Intriguingly, high-fat diet feeding extended the short lifespan and ameliorated the abnormalities of the behaviors and the phase of the peripheral clock in the Lmna-deficient mice. The present study supports the important contribution of the energy conditions to a shift between the diurnal and nocturnal activities.
Collapse
Affiliation(s)
- Satoshi Kawakami
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Taiki Morimura
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Wataru Kimura
- RIKEN Center for Biosystems Dynamics Research, Minatojima-minamimachi 2-2-3, Chuo-ku, Kobe, Hyogo 650-0043, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan.,Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Petrus P, Sassone-Corsi P. Circadian Analysis of Rodent Locomotor Activity in Home Cages. Methods Mol Biol 2022; 2482:211-215. [PMID: 35610429 DOI: 10.1007/978-1-0716-2249-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rhythmic locomotor activity is a commonly used readout of general circadian function in animals. For instance, measuring the activity of rodents in their home cages can provide information about circadian phase and period in response to genetic, pharmacological, and environmental manipulations. Herein, the use of infrared light sensors to measure circadian locomotor activity is described. Furthermore, we provide information about data handling, analysis and software use as well as points to consider when performing the experiment.
Collapse
Affiliation(s)
- Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA, USA.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
9
|
Grohn KJ, Moyer BS, Wortel DC, Fisher CM, Lumen E, Bianchi AH, Kelly K, Campbell PS, Hagrman DE, Bagg RG, Clement J, Wolfe AJ, Basso A, Nicoletti C, Lai G, Provinciali M, Malavolta M, Moody KJ. C 60 in olive oil causes light-dependent toxicity and does not extend lifespan in mice. GeroScience 2021; 43:579-591. [PMID: 33123847 PMCID: PMC8110650 DOI: 10.1007/s11357-020-00292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022] Open
Abstract
C60 is a potent antioxidant that has been reported to substantially extend the lifespan of rodents when formulated in olive oil (C60-OO) or extra virgin olive oil (C60-EVOO). Despite there being no regulated form of C60-OO, people have begun obtaining it from online sources and dosing it to themselves or their pets, presumably with the assumption of safety and efficacy. In this study, we obtain C60-OO from a sample of online vendors, and find marked discrepancies in appearance, impurity profile, concentration, and activity relative to pristine C60-OO formulated in-house. We additionally find that pristine C60-OO causes no acute toxicity in a rodent model but does form toxic species that can cause significant morbidity and mortality in mice in under 2 weeks when exposed to light levels consistent with ambient light. Intraperitoneal injections of C60-OO did not affect the lifespan of CB6F1 female mice. Finally, we conduct a lifespan and health span study in males and females C57BL/6 J mice comparing oral treatment with pristine C60-EVOO and EVOO alone versus untreated controls. We failed to observe significant lifespan and health span benefits of C60-EVOO or EVOO supplementation compared to untreated controls, both starting the treatment in adult or old age. Our results call into question the biological benefit of C60-OO in aging.
Collapse
Affiliation(s)
- Kristopher J Grohn
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
- Department of Chemistry, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Brandon S Moyer
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| | - Danique C Wortel
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| | - Cheyanne M Fisher
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| | - Ellie Lumen
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
- Betterhumans Inc., Gainesville, FL, USA
| | - Anthony H Bianchi
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| | - Kathleen Kelly
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| | - Paul S Campbell
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| | - Douglas E Hagrman
- Department of Chemistry and Physical Sciences, State University of New York, Onondaga Community College, Syracuse, NY, 13215, USA
| | - Roger G Bagg
- BioSenex, Ltd., Lyndhurst, 1 Cranmer Street, Nottingham, Nottinghamshire, NG10 1NJ, UK
| | | | - Aaron J Wolfe
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| | - Andrea Basso
- Advanced Technology Center for Aging Research, IRCCS INRCA, via Birarelli 8, 60121, Ancona, Italy
| | - Cristina Nicoletti
- Advanced Technology Center for Aging Research, IRCCS INRCA, via Birarelli 8, 60121, Ancona, Italy
| | - Giovanni Lai
- Advanced Technology Center for Aging Research, IRCCS INRCA, via Birarelli 8, 60121, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, via Birarelli 8, 60121, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, via Birarelli 8, 60121, Ancona, Italy.
| | - Kelsey J Moody
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, NY, 13084, USA
| |
Collapse
|
10
|
Receno CN, Eassa BE, Cunningham CM, DeRuisseau LR. Young and middle-aged mouse breathing behavior during the light and dark cycles. Physiol Rep 2020; 7:e14060. [PMID: 31004390 PMCID: PMC6474843 DOI: 10.14814/phy2.14060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
Unrestrained barometric plethysmography is a common method used for characterizing breathing patterns in small animals. One source of variation between unrestrained barometric plethysmography studies is the segment of baseline. Baseline may be analyzed as a predetermined time‐point, or using tailored segments when each animal is visually calm. We compared a quiet, minimally active (no sniffing/grooming) breathing segment to a predetermined time‐point at 1 h for baseline measurements in young and middle‐aged mice during the dark and light cycles. Additionally, we evaluated the magnitude of change for gas challenges based on these two baseline segments. C57BL/6JEiJ x C3Sn.BliA‐Pde6b+/DnJ male mice underwent unrestrained barometric plethysmography with the following baselines used to determine breathing frequency, tidal volume (VT) and minute ventilation (VE): (1) 30‐sec of quiet breathing and (2) a 10‐min period from 50 to 60 min. Animals were also exposed to 10 min of hypoxic (10% O2, balanced N2), hypercapnic (5% CO2, balanced air) and hypoxic hypercapnic (10% O2, 5% CO2, balanced N2) gas. Both frequency and VE were higher during the predetermined 10‐min baseline versus the 30‐sec baseline, while VT was lower (P < 0.05). However, VE/VO2 was similar between the baseline time segments (P > 0.05) in an analysis of one cohort. During baseline, dark cycle testing had increased VT values versus those in the light (P < 0.05). For gas challenges, both frequency and VE showed higher percent change from the 30‐sec baseline compared to the predetermined 10‐min baseline (P < 0.05), while VT showed a greater change from the 10‐min baseline (P < 0.05). Dark cycle hypoxic exposure resulted in larger percent change in breathing frequency versus the light cycle (P < 0.05). Overall, light and dark cycle pattern of breathing differences emerged along with differences between the 30‐sec behavior observational method versus a predetermined time segment for baseline.
Collapse
Affiliation(s)
- Candace N Receno
- Department of Biological Sciences, Le Moyne College, Syracuse, New York
| | - Brianna E Eassa
- Department of Biological Sciences, Le Moyne College, Syracuse, New York
| | - Caitlin M Cunningham
- Department of Mathematics, Statistics and Computer Science, Le Moyne College, Syracuse, New York
| | - Lara R DeRuisseau
- Department of Biological Sciences, Le Moyne College, Syracuse, New York
| |
Collapse
|
11
|
LAV-BPIFB4 associates with reduced frailty in humans and its transfer prevents frailty progression in old mice. Aging (Albany NY) 2019; 11:6555-6568. [PMID: 31461407 PMCID: PMC6738439 DOI: 10.18632/aging.102209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022]
Abstract
Background: There is an increasing concern about age-related frailty because of the growing number of elderly people in the general population. The Longevity-Associated Variant (LAV) of the human BPIFB4 gene was found to correct endothelial dysfunction, one of the mechanisms underlying frailty, in aging mice whereas the RV-BPIFB4 variant induced opposite effects. Thus, we newly hypothesize that, besides being associated with life expectancy, BPIFB4 polymorphisms can predict frailty. Aim and Results: Here we investigated if the BPIFB4 haplotypes, LAV, wild-type (WT) and RV, differentially associate with frailty in a cohort of 237 elderly subjects from Calabria region in Southern Italy. Moreover, we studied the effect of systemic adeno-associated viral vector-mediated LAV-BPIFB4 gene transfer on the progression of frailty in aging mice. We found an inverse correlation of the homozygous LAV-BPIFB4 haplotype with frailty in elderly subjects. Conversely, carriers of the RV-BPIFB4 haplotype showed an increase in the frailty status and risk of death. Moreover, in old mice, LAV-BPIFB4 gene transfer delayed frailty progression. Conclusions: These data indicate that specific BPIFB4 haplotypes could represent useful genetic markers of frailty. In addition, horizontal transfer of a healthy gene variant can attenuate frailty in aging organisms.
Collapse
|
12
|
Chikamoto A, Sekizawa SI, Tochinai R, Kuwahara M. Early attenuation of autonomic nervous function in senescence accelerated mouse-prone 8 (SAMP8). Exp Anim 2019; 68:511-517. [PMID: 31168043 PMCID: PMC6842801 DOI: 10.1538/expanim.19-0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The senescence-accelerated mouse (SAM) strain has been established as an inbred strain with an accelerated aging phenotype. SAM prone-8 (SAMP8), one of the SAM strain, exhibits learning disability, immune deficiency, and circadian rhythm loss at a relatively young age. However, it has not been clarified whether aging affects the autonomic nervous activity in SAMP8. The aim of this study was to clarify the utility of SAMP8 in age-related studies of autonomic nervous function. Electrocardiogram (ECG), body temperature, and locomotor activity were recorded to evaluate bio-behavioral activities. Autonomic nervous activity was evaluated via power spectral analysis of heart rate variability from ECG recordings. SAMP8 significantly decreased both biological and autonomic nervous functions, and the animals exhibited circadian rhythm loss of locomotive activity at as early as 40 weeks of age compared with a control strain at the same age. We concluded that the SAMP8 strain can be used as an animal model for age-related studies of autonomic nervous function.
Collapse
Affiliation(s)
- Akitoshi Chikamoto
- Laboratory of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shin-Ichi Sekizawa
- Laboratory of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryota Tochinai
- Laboratory of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masayoshi Kuwahara
- Laboratory of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Malavolta M, Basso A, Giacconi R, Orlando F, Pierpaoli E, Cardelli M, Leoni F, Chierichetti S, Bray D, Benlhassan K, Provinciali M. Recovery from mild Escherichia coli O157:H7 infection in young and aged C57BL/6 mice with intact flora estimated by fecal shedding, locomotor activity and grip strength. Comp Immunol Microbiol Infect Dis 2018; 63:1-9. [PMID: 30961802 DOI: 10.1016/j.cimid.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 02/04/2023]
Abstract
Escherichia coli 0157:H7 is a food-borne pathogen that can cause severe complications in vulnerable populations. Mouse infection models of E. coli 0157:H7 are usually developed under severe animal suffering classification by depleting the normal flora, in which age plays a role. OBJECTIVE To develop a refined method for longitudinal monitoring of E. coli 0157:H7 in young and old mice with intact flora. METHODS We applied discriminant analysis and computed composite standardized scores from 19 variables obtained from physiological parameters, analysis of locomotor activity, grip strength measurement and fecal shedding in 16 aged and 16 young C57BL/6 mice after two mild oral challenges of E. coli 0157:H7. The resulting scores were validated in another experiment performed in 24 aged and 24 young mice including a group (8 aged and 8 young mice) treated with oxytetracycline. RESULTS We show that our scores are significantly affected in the post-infection period and that can be used to measure and compare the recovery time after a treatment. The scores are most sensitive when separately developed in young and aged mice. CONCLUSIONS We developed a method that minimizes the level of animal suffering and that can be applied in preclinical testing of new therapies.
Collapse
Affiliation(s)
- Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Italy.
| | - Andrea Basso
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Italy
| | - Fiorenza Orlando
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Italy
| | - Elisa Pierpaoli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Italy
| | - Francesca Leoni
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Ancona, Italy
| | - Serena Chierichetti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Ancona, Italy
| | | | | | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, Italy
| |
Collapse
|
14
|
Intranasal oxytocin administration promotes emotional contagion and reduces aggression in a mouse model of callousness. Neuropharmacology 2018; 143:250-267. [DOI: 10.1016/j.neuropharm.2018.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 12/30/2022]
|
15
|
Abstract
The types of changes in physical appearance and behavior that occur in elderly people similarly develop in elderly animals. Signs and symptoms that might cause concern in younger people or mice may be normal in their elderly but generally healthy counterparts. Although numerous scoring methods have been developed to assess rodent health, these systems were often designed for young adults used in specific types of research, such as cancer or neurologic studies, and therefore may be suboptimal for assessing aging rodents. Approaches known as frailty assessments provide a global evaluation of the health of aged mice, rats, and people, and mouse frailty scores correlate well with the likelihood of death. Complementing frailty assessment, prediction of imminent death in aged mice can often be accomplished by focusing on 2 objective parameters-body weight and temperature. Before they die, many (but not all) mice develop marked reductions in body weight and temperature, thus providing signs that close monitoring, intervention, or preemptive euthanasia may be necessary. Timely preemptive euthanasia allows antemortem collection of data and samples that would be lost if spontaneous death occurred; preemptive euthanasia also limits terminal suffering. These approaches to monitoring declining health and predicting death in elderly research mice can aid in establishing and implementing timely interventions that both benefit the research and reduce antemortem suffering.
Collapse
Affiliation(s)
- Linda A Toth
- Emeritus Faculty, Southern Illinois University School of Medicine, Springfield, Illinois, USA.
| |
Collapse
|
16
|
Zhao J, Warman GR, Cheeseman JF. Clock gene expression and locomotor activity predict death in the last days of life in Drosophila melanogaster. Sci Rep 2018; 8:11923. [PMID: 30093652 PMCID: PMC6085321 DOI: 10.1038/s41598-018-30323-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
The importance of the circadian clock for the regulation of behaviour and physiology, and the molecular control of these rhythms by a set of clock genes are well defined. The circadian clock deteriorates with advancing age but the mechanism underlying is unclear. Here we recorded the expression of two key clock genes in young, middle-aged and old Drosophila using transgenic luciferase lines reporting period and timeless in vivo. We report a novel marker of imminent death in the expression of TIMELESS. In the days immediately preceding death TIMELESS expression increased to at least 150% of previous acrophase values (88.0% of n = 217) and lost circadian rhythmicity, which predicted death equally well in flies of different ages and under light and temperature cycles. We suggest this transient aberrant clock-gene expression is central to the mechanism of the disturbance in circadian behaviour before death (82.7% of n = 342). We also find that PERIOD expression in central-clock neurons remained robust with age, however PERIOD and TIMELESS in peripheral clocks showed a reduction in both expression level and rhythmicity. In conclusion, as flies age the molecular clock gradually declines at the peripheral level but continues to function at the central until days before death.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Anaesthesiology, School of Medicine, the University of Auckland, Park Road, Grafton, Auckland, 1023, New Zealand
| | - Guy Robert Warman
- Department of Anaesthesiology, School of Medicine, the University of Auckland, Park Road, Grafton, Auckland, 1023, New Zealand
| | - James Frederick Cheeseman
- Department of Anaesthesiology, School of Medicine, the University of Auckland, Park Road, Grafton, Auckland, 1023, New Zealand.
| |
Collapse
|