1
|
Laurie S, Ainslie L, Mitchell S, Morimoto J. Turmeric shortens lifespan in houseflies. FRONTIERS IN INSECT SCIENCE 2024; 4:1376011. [PMID: 38660018 PMCID: PMC11040687 DOI: 10.3389/finsc.2024.1376011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Climate change poses a significant threat to food security and global public health with the increasing likelihood of insect pest outbreaks. Alternative ways to control insect populations, preferably using environmental-friendly compounds, are needed. Turmeric has been suggested as a natural insecticide with toxicity properties in some insect groups. However, empirical evidence of the effects of turmeric - and their interaction with other ecological factors such as diet - on insect survival has been limited. Here, we tested the effects of turmeric and its interactions with diets differing in protein source in the common housefly, Musca domestica. We found that turmeric shortened lifespan independent of diet and sex. Females in turmeric diets were heavier at death, which was likely driven by a combination of relatively lower rates of body mass loss during their lifetime and a higher percentage of water content at death. Each sex responded differently to the protein source in the diet, and the magnitude of the difference in lifespan between sexes were greatest in diets in which protein source was hydrolysed yeast; individuals from both sexes lived longest in sucrose-milk diets and shortest in diets with hydrolysed yeast. There was no evidence of an interaction between turmeric and diet, suggesting that the toxicity effects are independent of protein source in the diet. Given the seemingly opposing effects of turmeric in insects and mammals being uncovered in the literature, our findings provide further evidence in support of turmeric as a potential natural insecticide.
Collapse
Affiliation(s)
- Sophie Laurie
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Leah Ainslie
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Sharon Mitchell
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Juliano Morimoto
- Institute of Mathematics, University of Aberdeen, King’s College, Aberdeen, United Kingdom
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
2
|
Kokate PP, Werner T. Mycotoxin tolerance affects larval competitive ability in Drosophila recens (Diptera: Drosophilidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:18. [PMID: 37339101 DOI: 10.1093/jisesa/iead048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
Certain mycophagous Drosophila species are the only known eukaryotes that can tolerate some highly potent mycotoxins. This association between mycophagy and mycotoxin tolerance is well established because Drosophila species that switch hosts from mushrooms to other food sources lose their mycotoxin tolerance trait without any evolutionary lag. These findings suggest that mycotoxin tolerance may be a costly trait to maintain. In this study, we attempted to identify whether mycotoxin tolerance has a fitness cost. Larval competitive ability is a vital fitness trait, especially in holometabolous insects, where the larvae cannot move to a new host. Furthermore, larval competitive ability is known to be associated with many critical life-history traits. Here we studied whether mycotoxin tolerance adversely affects larval competitive ability on isofemale lines from 2 distinct locations. We observed that the extent of mycotoxin tolerance affected larval competitive ability, but only in isofemale lines from one location. Additionally, we observed that the high mycotoxin-tolerant isofemale lines from the same location showed poor survival to eclosion. This study shows that mycotoxin tolerance is associated with fitness costs and provides preliminary evidence of an association between local adaptation and mycotoxin tolerance.
Collapse
Affiliation(s)
- Prajakta P Kokate
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| |
Collapse
|
3
|
Morimoto J, Wenzel M, Derous D, Henry Y, Colinet H. The transcriptomic signature of responses to larval crowding in Drosophila melanogaster. INSECT SCIENCE 2023; 30:539-554. [PMID: 36115064 PMCID: PMC10947363 DOI: 10.1111/1744-7917.13113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Intraspecific competition at the larval stage is an important ecological factor affecting life-history, adaptation and evolutionary trajectory in holometabolous insects. However, the molecular pathways underpinning these ecological processes are poorly characterized. We reared Drosophila melanogaster at three egg densities (5, 60, and 300 eggs/mL) and sequenced the transcriptomes of pooled third-instar larvae. We also examined emergence time, egg-to-adult viability, adult mass, and adult sex-ratio at each density. Medium crowding had minor detrimental effects on adult phenotypes compared to low density and yielded 24 differentially expressed genes (DEGs), including several chitinase enzymes. In contrast, high crowding had substantial detrimental effects on adult phenotypes and yielded 2107 DEGs. Among these, upregulated gene sets were enriched in sugar, steroid and amino acid metabolism as well as DNA replication pathways, whereas downregulated gene sets were enriched in ABC transporters, taurine, Toll/Imd signaling, and P450 xenobiotics metabolism pathways. Overall, our findings show that larval crowding has a large consistent effect on several molecular pathways (i.e., core responses) with few pathways displaying density-specific regulation (i.e., idiosyncratic responses). This provides important insights into how holometabolous insects respond to intraspecific competition during development.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
- Programa de Pós‐graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
- Institute of MathematicsKing's CollegeUniversity of AberdeenAberdeenUnited Kingdom
| | - Marius Wenzel
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
| | - Davina Derous
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
| | - Youn Henry
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)—UMR 6553University of RennesRennesFrance
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Herve Colinet
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)—UMR 6553University of RennesRennesFrance
| |
Collapse
|
4
|
Morimoto J. Larval crowding effects during early development in the Chinese oak silkmoth Antheraea pernyi (Lepidoptera: Saturniidae). Ecol Evol 2022; 12:e9283. [PMID: 36110887 PMCID: PMC9465191 DOI: 10.1002/ece3.9283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Chinese sericulture relies in part on the rearing of the Chinese oak silkmoth Antheraea pernyi, an insect with key cultural and ecological roles. While feeding primarily on oak, Antheraea species are known to accept alternative hosts such as birch Betula sp with little to no apparent negative fitness consequences. This opens up the range of hostplants that could be used for large-scale rearing of A. pernyi for silk production and food, or used by this species in possible invasions. To date, however, the natural history and ecology of A. pernyi remain subject of investigation. For instance, we still do not know how individuals respond to crowding developmental environments, which is an important factor to consider for the ecology of the species as well as for commercial rearing. Here, I describe the implications of larval crowding to the survival and growth of A. pernyi larvae during early development. I show that higher crowding is associated with stronger negative effects on growth and survival, corroborating findings from other holometabolous insects. I then discuss the implications of this findings for our understanding of optimum larval crowding. Overall, the findings reveal important ecological information for an insect species key for provisioning and cultural ecosystem services.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological SciencesUniversity of Aberdeen, Zoology BuildingAberdeenUK
- Programa de Pós‐graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
| |
Collapse
|
5
|
Rix RR, Cutler GC. Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154085. [PMID: 35218848 DOI: 10.1016/j.scitotenv.2022.154085] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The biphasic hormetic response to stress, defined by low-dose stimulation and high-dose inhibition is frequently observed in insects. Various molecular and biochemical responses associated with hormesis in insects have been reported in many studies, but no synthesis of all these findings has been undertaken. We conducted a systematic literature review, analyzing papers demonstrating phenotypic stimulatory effect(s) following exposure to stress where molecular or biochemical response(s) were also examined. Responses observed included stimulation of reproduction, survival and longevity, growth and development, and tolerance to temperature, chemical, or starvation and desiccation, in response to stressors including pesticides, oxidative stress, temperature, crowding and starvation, and radiation. Phenotypic stimulation ranged from <25% increased above controls to >100%. Reproductive stimulation was frequently <25% increased above controls, while stimulated temperature tolerance was frequently >100% increased. Molecular and biochemical responses had obvious direct connections to phenotypic responses in many cases, although not in all instances. Increased expression of heat shock proteins occurred in association with stimulated temperature tolerance, and increased expression of detoxification genes with stimulated pesticide or chemical tolerance, but also stimulated reproduction. Changes in the expression or activity of antioxidants were frequently associated with stimulation of longevity and reproduction. Stress induced changes in vitellogenin and juvenile hormone and genes in the IIS/TOR signalling pathway - which are directly responsible for regulating growth, development, and reproduction - were also reported. Our analysis showed that coordination of expression of genes or proteins associated with protection from oxidative stress and DNA and protein damage is important in the hormetic responses of insects.
Collapse
Affiliation(s)
- Rachel R Rix
- Department of Plant, Food, and Environmental Science, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - G Christopher Cutler
- Department of Plant, Food, and Environmental Science, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
6
|
Aging-Related Variation of Cuticular Hydrocarbons in Wild Type and Variant Drosophila melanogaster. J Chem Ecol 2022; 48:152-164. [PMID: 35022940 DOI: 10.1007/s10886-021-01344-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The cuticle of all insects is covered with hydrocarbons which have multiple functions. Cuticular hydrocarbons (CHCs) basically serve to protect insects against environmental harm and reduce dehydration. In many species, some CHCs also act as pheromones. CHCs have been intensively studied in Drosophila species and more especially in D. melanogaster. In this species, flies produce about 40 CHCs forming a complex sex- and species-specific bouquet. The quantitative and qualitative pattern of the CHC bouquet was characterized during the first days of adult life but remains unexplored in aging flies. Here, we characterized CHCs during the whole-or a large period of-adult life in males and females of several wild type and transgenic lines. Both types of lines included standard and variant CHC profiles. Some of the genotypes tested here showed very dramatic and unexpected aging-related variation based on their early days' profile. This study provides a concrete dataset to better understand the mechanisms underlying the establishment and maintenance of CHCs on the fly cuticle. It could be useful to determine physiological parameters, including age and response to climate variation, in insects collected in the wild.
Collapse
|
7
|
Le Bourg E. Is lifespan linked with developmental viability in Drosophila melanogaster? Exp Gerontol 2021; 156:111583. [PMID: 34655704 DOI: 10.1016/j.exger.2021.111583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/26/2023]
Abstract
Long-lived lines of flies have been selected by reproduction at older ages and correlated responses observed, and particularly whether development of flies was modified. Using these selected lines or flies subjected to larval crowding of food restriction during development, two studies have computed, among lines, a correlation between viability of eggs and larvae and mean lifespan of adults: mean lifespan was longer when the viability was lower, showing a selection of fittest flies. The present study correlates viability and mean lifespan observed during three decades in a single wild-type strain. Contrary to the previous studies, a slight but not significant positive correlation is observed, showing that lifespan can hardly increase when viability increases. Therefore, it is not clear whether development and lifespan are linked, as hypothesised by some authors.
Collapse
Affiliation(s)
- Eric Le Bourg
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI Toulouse), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
8
|
Musachio EAS, de Freitas Couto S, Poetini MR, Bortolotto VC, Dahleh MMM, Janner DE, Araujo SM, Ramborger BP, Rohers R, Guerra GP, Prigol M. Bisphenol A exposure during the embryonic period: Insights into dopamine relationship and behavioral disorders in Drosophila melanogaster. Food Chem Toxicol 2021; 157:112526. [PMID: 34461193 DOI: 10.1016/j.fct.2021.112526] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Environmental factors are involved in the pathogenesis of neurodevelopmental disorders in addition to genetic factors. In this sense, we demonstrated here that the embryonic exposure of Drosophila melanogaster to Bisphenol A (BPA) 1 mM resulted in changes in development, behavior, and biochemical markers punctuated below. BPA did not alter the oviposition and viability of the eggs, however, it was evidenced a decrease in the rate of pupal eclosion and life span of the hatched flies of the generation filial 1 (F1). F1 flies also developed behavioral changes such as incompatibility in the social interaction between them, and hyperactivity demonstrated by increased locomotion in open field tests, increased grooming, and aggression episodes. Furthermore, decreases in dopamine levels and tyrosine hydroxylase activity have also been observed in flies' heads, possibly related to oxidative damage. Through analyzes of oxidative stress biomarkers, carried out on samples of flies' heads, we observed an increase in malondialdehyde and reactive species, decrease in the activity of the superoxide dismutase and catalase, which possibly culminated in the reduction of cell viability. Thus, it is important to emphasize that BPA developed atypical behaviors in Drosophila melanogaster, reinforce the importance of the environmental factor in the development of neurobehavioral diseases.
Collapse
Affiliation(s)
- Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Shanda de Freitas Couto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil; Department of Nutrition, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Marcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Stífani Machado Araujo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Bruna Piaia Ramborger
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana Campus, RS, Brazil
| | - Rafael Rohers
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana Campus, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil; Department of Nutrition, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil; Department of Nutrition, Federal University of Pampa, Itaqui Campus, RS, Brazil.
| |
Collapse
|
9
|
Fitness consequences of biochemical adaptation in Drosophila melanogaster populations under simultaneous selection for faster pre-adult development and extended lifespan. Sci Rep 2021; 11:16434. [PMID: 34385533 PMCID: PMC8361192 DOI: 10.1038/s41598-021-95951-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
In holometabolous insects like Drosophila melanogaster, critical size is an important time point during larval life, for irreversible commitment to metamorphosis. Here, we studied the impact of restricted growth duration in terms of selection for faster pre-adult development in Drosophila melanogaster populations which resulted in the evolution of reduced critical size on adult life history traits. Selection for faster pre-adult development resulted in biochemical adaptation in larval physiology with no compromise in major biomolecules at critical size time point. The flies from the selected populations seem to not only commit to metamorphosis on the attainment of critical size but also seem to channelize resources to reproduction as indicated by similar life-time fecundity of CS and NS flies from selected populations, while the Control CS flies significantly lower life-time fecundity compared to Control NS flies. The flies from selected populations seem to achieve longevity comparable to control flies despite being significantly smaller in size-thus resource constrained due to faster pre-adult development.
Collapse
|
10
|
Le Bourg E. Neglecting larval rearing conditions in Drosophila melanogaster can negatively impact research on ageing. Biogerontology 2021; 22:369-373. [PMID: 33725227 DOI: 10.1007/s10522-021-09917-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022]
Abstract
The developmental conditions of Drosophila melanogaster flies can modify the phenotypic traits of adults. However, the control of these conditions is neglected by some authors in their articles and the readers are unaware, for instance, whether flies developed in crowded cultures or fed on a new or used medium. Controlling developmental conditions allows to know precisely the viability of flies, their duration of development and sex-ratio, which can be warning signals of bad rearing conditions. As developmental conditions can modify the results of experiments on the effects of ageing it is necessary to strictly control them.
Collapse
Affiliation(s)
- Eric Le Bourg
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI Toulouse), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
11
|
VandenBrooks JM, Ford CF, Harrison JF. Responses to Alteration of Atmospheric Oxygen and Social Environment Suggest Trade-Offs among Growth Rate, Life Span, and Stress Susceptibility in Giant Mealworms ( Zophobas morio). Physiol Biochem Zool 2021; 93:358-368. [PMID: 32758057 DOI: 10.1086/710726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Growth rate, development time, and response to environmental stressors vary tremendously across organisms, suggesting trade-offs that are affected by evolutionary or ecological factors, but such trade-offs are poorly understood. Prior studies using artificially selected lines of Manduca sexta suggest that insects with high growth rates, long development time, and large body size are more sensitive to hypoxic or hyperoxic stresses, such as reactive oxygen species (ROS) production, but the mechanisms and specific life-history associations remain unclear. Here, we manipulated the social environment to differentiate the effects of size, growth rate, and development time on oxygen sensitivity of the giant mealworm, Zophobas morio. Crowding reduced growth rates but yielded larger adults as a result of supernumerary molts and longer development times. The juvenile performance (growth rate, development time, adult mass) of crowd-reared mealworms was less sensitive to variation in atmospheric oxygen than it was for individually reared animals, consistent with the hypothesis that high growth rates are associated with increased sensitivity to ROS. Life span in normoxia was extended by crowd rearing, perhaps due to the larger size and/or increased resources of the larger adults. Life spans of crowd-reared animals were more negatively affected by hypoxia or hyperoxia than life spans of individually reared animals, possibly due to the longer total stress exposure of crowd-reared animals. These data suggest that animals with high growth rates experience a negative trade-off of performance with greater sensitivity to stress during the juvenile phase, while animals with long development times or life spans experience a negative trade-off of greater susceptibility of life span to environmental stress.
Collapse
|
12
|
Morimoto J, Pietras Z. Natural history of model organisms: The secret (group) life of Drosophila melanogaster larvae and why it matters to developmental ecology. Ecol Evol 2020; 10:13593-13601. [PMID: 33391665 PMCID: PMC7771115 DOI: 10.1002/ece3.7003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/07/2022] Open
Abstract
Model organisms such as Drosophila melanogaster have been key tools for advancing our fundamental and applied knowledge in biological and biomedical sciences. However, model organisms have become intertwined with the idea of controlled and stable laboratory environments, and their natural history has been overlooked.In holometabolous insects, lack of natural history information on larval ecology has precluded major advances in the field of developmental ecology, especially in terms of manipulations of population density early in life (i.e., larval density). This is because of relativistic and to some extent, arbitrary methodologies employed to manipulate larval densities in laboratory studies. As a result, these methodologies render comparisons between species impossible, precluding our understanding of macroevolutionary responses to population densities during development that can be derived from comparative studies.We recently proposed a new conceptual framework to address this issue, and here, we provide the first natural history investigation of Drosophila melanogaster larval density under such framework. First, we characterized the distribution of larval densities in a wild population of D. melanogaster using rotting apples as breeding substrate in a suburban area in Sweden.Next, we compiled the commonly used methodologies for manipulating larval densities in laboratory studies from the literature and found that the majority of laboratory studies identified did not manipulate larval densities below or above the densities observed in nature, suggesting that we have yet to study true life history and physiological responses to low and high population densities during D. melanogaster development.This is, to our knowledge, the first direct natural history account of larval density in nature for this model organism. Our study paves the way for a more integrated view of organismal biology which re-incorporates natural history of model organisms into hypothesis-driven research in developmental ecology.
Collapse
Affiliation(s)
| | - Zuzanna Pietras
- Department of Physics, Chemistry and Biology (IFM)Linköping UniversityLinköpingSweden
| |
Collapse
|
13
|
Integrative developmental ecology: a review of density-dependent effects on life-history traits and host-microbe interactions in non-social holometabolous insects. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10073-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractPopulation density modulates a wide range of eco-evolutionary processes including inter- and intra-specific competition, fitness and population dynamics. In holometabolous insects, the larval stage is particularly susceptible to density-dependent effects because the larva is the resource-acquiring stage. Larval density-dependent effects can modulate the expression of life-history traits not only in the larval and adult stages but also downstream for population dynamics and evolution. Better understanding the scope and generality of density-dependent effects on life-history traits of current and future generations can provide useful knowledge for both theory and experiments in developmental ecology. Here, we review the literature on larval density-dependent effects on fitness of non-social holometabolous insects. First, we provide a functional definition of density to navigate the terminology in the literature. We then classify the biological levels upon which larval density-dependent effects can be observed followed by a review of the literature produced over the past decades across major non-social holometabolous groups. Next, we argue that host-microbe interactions are yet an overlooked biological level susceptible to density-dependent effects and propose a conceptual model to explain how density-dependent effects on host-microbe interactions can modulate density-dependent fitness curves. In summary, this review provides an integrative framework of density-dependent effects across biological levels which can be used to guide future research in the field of ecology and evolution.
Collapse
|
14
|
Berry R, López-Martínez G. A dose of experimental hormesis: When mild stress protects and improves animal performance. Comp Biochem Physiol A Mol Integr Physiol 2020; 242:110658. [PMID: 31954863 PMCID: PMC7066548 DOI: 10.1016/j.cbpa.2020.110658] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/22/2023]
Abstract
The adaptive response characterized by a biphasic curve is known as hormesis. In a hormesis framework, exposure to low doses leads to protective and beneficial responses while exposures to high doses are damaging and detrimental. Comparative physiologists have studied hormesis for over a century, but our understanding of hormesis is fragmented due to rifts in consensus and taxonomic-specific terminology. Hormesis has been and is currently known by multiple names; preconditioning, conditioning, pretreatment, cross tolerance, adaptive homeostasis, and rapid stress hardening (mostly low temperature: rapid cold hardening). These are the most common names used to describe adaptive stress responses in animals. These responses are mechanistically similar, while having stress-specific responses, but they all can fall under the umbrella of hormesis. Here we review how hormesis studies have revealed animal performance benefits in response to changes in oxygen, temperature, ionizing radiation, heavy metals, pesticides, dehydration, gravity, and crowding. And how almost universally, hormetic responses are characterized by increases in performance that include either increases in reproduction, longevity, or both. And while the field can benefit from additional mechanistic work, we know that many of these responses are rooted in increases of antioxidants and oxidative stress protective mechanisms; including heat shock proteins. There is a clear, yet not fully elucidated, overlap between hormesis and the preparation for oxidative stress theory; which predicts part of the responses associated with hormesis. We discuss this, and the need for additional work into animal hormetic effects particularly focusing on the cost of hormesis.
Collapse
Affiliation(s)
- Raymond Berry
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States of America
| | - Giancarlo López-Martínez
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, United States of America.
| |
Collapse
|
15
|
Saitanis CJ, Agathokleous E. Stress response and population dynamics: Is Allee effect hormesis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:623-628. [PMID: 31128374 DOI: 10.1016/j.scitotenv.2019.05.212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Hormesis is a fundamental notion in ecotoxicology while competition between organisms is an essential notion in population ecology and species adaptation and evolution. Both sub-disciplines of ecology deal with the response of organisms to abiotic and biotic stresses. In ecotoxicology, the Linear-non-Threshold (LNT), Threshold and Hormetic models are used to describe the dominant responses of a plethora of endpoints to abiotic stress. In population ecology, the logistic, theta-logistic and the Allee effect models are used to describe the growth of populations under different responses to (biotic) stress induced by population density. The per capita rate of population increase (r) measures species fitness. When it is used as endpoint, the responses to population density seem to perfectly correspond to LNT, Threshold and Hormetic responses to abiotic stress, respectively. Our analysis suggests the Allee effect is a hormetic-like response of r to population density, an ultimate biotic stress. This biphasic dose-response model appears across different systems and situations (from molecules to tumor growth to population dynamics), is highly supported by ecological and evolutionary theory, and has important implications in most sub-disciplines of biology as well as in environmental and earth sciences. Joined multi-disciplinary efforts would facilitate the development and application of advanced research approaches for better understanding potential planetary-scale implications.
Collapse
Affiliation(s)
- Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens, Votanikos, 11855, Greece
| | - Evgenios Agathokleous
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|