1
|
Fikry H, Saleh LA, Mohammed OA, Doghish AS, Elsakka EGE, Hashish AA, Alfaifi J, Alamri MMS, Adam MIE, Atti MA, Mahmoud FA, Alkhalek HAA. Agmatine alleviates diabetic-induced hyposalivation in rats: A histological and biochemical study. Life Sci 2024; 359:123220. [PMID: 39505296 DOI: 10.1016/j.lfs.2024.123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Diabetic patients commonly experience hyposalivation, which can cause challenges with eating, swallowing, dry mouth, and speaking. It also raises the likelihood of developing periodontal disease. This study aimed to evaluate if agmatine could improve the rate of salivation in rats with hyposalivation induced by streptozotocin (STZ). Five groups of Wistar rats were utilized with 10 animals in each group. They were classified as follows; Negative control group (G1), agmatine (G2) group, and Nicotinamide (NA)-STZ (G3) group; received a single intraperitoneal dose of 65 mg/kg of STZ after NA injection. NA was administered to protect residual β cells and enhance their insulin secretion; NA-STZ + Metformin (G4) Metformin-treated diabetic group; at day 10 diabetic rats received 50mg/kg orally for 28 days, and NA-STZ + Agmatine (G5) at day 10 diabetic rats received a daily intraperitoneal dose of 300 mg/kg Agmatine for 28 days. The salivary flow rate was assessed weekly. Then, the animals were euthanized, both parotid (PG) and submandibular (SMG) salivary glands were dissected, and the following parameters were assessed; salivary glands' histopathology, aquaporin 5 (AQP5), caspase-3, E-cadherin expressions, inflammatory markers and finally, salivary glands' oxidative stress status. Agmatine has alleviated the salivary glands' dysfunction in STZ-induced diabetic rats. It normalized diabetes mellitus-associated salivary glands' abnormalities including histopathological abnormalities, decreased AQP5 and E-cadherin expressions, increased caspase-3 expression, and oxidative stress and inflammatory parameters. Agmatine alleviates diabetes mellitus-associated hyposalivation. It can promote PGs and SMGs function through its histological and AQP5 expression improvements.
Collapse
Affiliation(s)
- Heba Fikry
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
| | - Lobna A Saleh
- Department of Clinical Pharmacology. Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Osama A Mohammed
- Department of Clinical Pharmacology. Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Abdullah A Hashish
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed A Atti
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyiah, Riyadh 13713, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Faten A Mahmoud
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hadwa Ali Abd Alkhalek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
2
|
Takahashi Y, Munemasa T, Nodai T, Mukaibo T, Kondo Y, Masaki C, Hosokawa R. Application of anti-vascular endothelial growth factor antibody restores the function of saliva secretion in a type 2 diabetes mouse model. J Oral Biosci 2024; 66:619-627. [PMID: 38944342 DOI: 10.1016/j.job.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVES Xerostomia, a common complication of type 2 diabetes, leads to an increased risk of caries, dysphagia, and dysgeusia. Although anti-vascular endothelial growth factor (VEGF) antibodies, such as ranibizumab (RBZ), have been used to treat diabetic retinopathy, their effects on the salivary glands are unknown. This study evaluated the effects of RBZ on salivary glands to reduce inflammation and restore salivary function in a mouse model of type 2 diabetes. METHODS Male KK-Ay mice with type 2 diabetes (10-12 weeks old) were used. The diabetes mellitus (DM) group received phosphate-buffered saline, while the DM + RBZ group received an intraperitoneal administration of RBZ (100 μg/kg) 24 h before the experiment. RESULTS Ex vivo perfusion experiments showed a substantial increase in salivary secretion from the submandibular gland (SMG) in the DM + RBZ group. In addition, the mRNA expression levels of TNF-α and IL-1β were considerably lower in this group. In contrast, those of aquaporin 5 were substantially higher in the DM + RBZ group, as revealed by quantitative reverse transcription PCR. Furthermore, the number of lymphocyte infiltration spots in the SMG was notably lower in the DM + RBZ group. Finally, intracellular Ca2+ signaling in acinar cells was considerably higher in the DM + RBZ group than that in the DM group. CONCLUSION Treating a type 2 diabetic mouse model with RBZ restored salivary secretion through its anti-inflammatory effects.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Takashi Munemasa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Tomotaka Nodai
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Taro Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| |
Collapse
|
3
|
Satoh K, Ohno Y, Nagase H, Kashimata M, Adachi K. Age-related alteration of the involvement of CD36 for salivary secretion from the parotid gland in mice. J Physiol Sci 2024; 74:38. [PMID: 39075341 PMCID: PMC11285320 DOI: 10.1186/s12576-024-00931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
This in vivo mouse model study was conducted to investigate the temporal alteration of the function of CD36 in salivary secretion. CD36 was highly expressed in the parotid gland of BALB/c mice. No significant variations were shown in the CD36 levels in the 8-, 48-, and 72-week-old animals. However, pilocarpine-induced salivary secretion was reduced in an age-dependent manner, showing a significantly low level at the age of 72 weeks. Pilocarpine-induced salivary secretion was significantly reduced by pretreatment with a CD36 inhibitor at 8 and 48 weeks, but not at 72 weeks. In senescence-accelerated mice (SAM), the pilocarpine-induced salivary secretion was significantly reduced at the age of 56 weeks, and a significantly lower amount of CD36 was demonstrated in the parotid gland, compared with the control. These results suggest that the involvement of parotid CD36 in mouse salivary secretion is altered with age.
Collapse
Affiliation(s)
- Keitaro Satoh
- Division of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan.
- Division of Pharmacology, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan.
| | - Yuta Ohno
- Division of Pharmacology, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Haruna Nagase
- Division of Pharmacology, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Masanori Kashimata
- Division of Pharmacology, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Kazunori Adachi
- Division of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| |
Collapse
|
4
|
Lin J, Lin M, Du Q, Tu Y, Chen J. Involvement of aquaporin 5 and Na-K-2Cl cotransporter 1 in the pathogenesis of primary focal hyperhidrosis: evidence from the primary sweat gland cell culture. Am J Physiol Cell Physiol 2024; 326:C206-C213. [PMID: 38047298 DOI: 10.1152/ajpcell.00274.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
People with primary focal hyperhidrosis (PFH) usually have an overactive sympathetic nervous system, which can activate the sweat glands through the chemical messenger of acetylcholine. The role of aquaporin 5 (AQP5) and Na-K-2Cl cotransporter 1 (NKCC1) in PFH is still unknown. The relative mRNA and protein levels of AQP5 and NKCC1 in the sweat gland tissues of three subtypes of patients with PFH (primary palmar hyperhidrosis, PPH; primary axillary hyperhidrosis, PAH; and primary craniofacial hyperhidrosis, PCH) were detected with real-time PCR (qPCR) and Western blot. Primary sweat gland cells from healthy controls (NPFH-SG) were incubated with different concentrations of acetylcholine, and the relative mRNA and protein expression of AQP5 and NKCC1 were also detected. NPFH-SG cells were also transfected with si-AQP5 or shNKCC1, and acetylcholine stimulation-induced calcium transients were assayed with Fluo-3 AM calcium assay. Upregulated AQP5 and NKCC1 expression were observed in sweat gland tissues, and AQP5 demonstrated a positive Pearson correlation with NKCC1 in patients with PPH (r = 0.66, P < 0.001), patients with PAH (r = 0.71, P < 0.001), and patients with PCH (r = 0.62, P < 0.001). Upregulated AQP5 and NKCC1 expression were also detected in primary sweat gland cells derived from three subtypes of patients with PFH when compared with primary sweat gland cells derived from healthy control. Acetylcholine stimulation could induce the upregulated AQP5 and NKCC1 expression in NPFH-SG cells, and AQP5 or NKCC1 inhibitions attenuated the calcium transients induced by acetylcholine stimulation in NPFH-SG cells. The dependence of ACh-stimulated calcium transients on AQP5 and NKCC1 expression may be involved in the development of PFH.NEW & NOTEWORTHY The dependence of ACh-stimulated calcium transients on AQP5 and Na-K-2Cl cotransporter 1 (NKCC1) expression may be involved in the development of primary focal hyperhidrosis (PFH).
Collapse
Affiliation(s)
- Jianbo Lin
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Min Lin
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Quan Du
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yuanrong Tu
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jianfeng Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
5
|
Kim S, Kim JM, Jeon EJ, Kim JW, Choi ME, Park JM, Choi JS. Supernatant of activated platelet-rich plasma rejuvenated aging-induced hyposalivation in mouse. Sci Rep 2023; 13:21242. [PMID: 38040732 PMCID: PMC10692196 DOI: 10.1038/s41598-023-46878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023] Open
Abstract
Hyposalivation is a common complaint among the elderly, but no established treatment prevents age-induced hyposalivation. Platelet derivatives such as platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and plasma rich in growth factor (PRGF), are used widely in different areas of regenerative medicine to enhance the wound healing processes. This study examined whether the local injection of the supernatant of activated PRP (saPRP) into the salivary gland (SG) could help prevent aging-induced SG dysfunction and explored the mechanisms responsible for the protective effects on the SG hypofunction. The platelets were separated from the blood of male SD rats (220 ± 20 g). saPRP was manufactured by removing the fibrin clot after activating platelet with calcium ionophore 10 μM (A23187). The total protein and TGF-β1 levels were significantly higher in saPRP than in PRP. Human salivary gland epithelial cell(hSGEC) was treated with saPRP or PRP after senescence through irradiation. The significant proliferation of hSGEC was observed in saPRP treated group compared to irradiation only group and irradiation + PRP group. Cellular senescence, apoptosis, and inflammation significantly reduced in saPRP group. The SG function and structural tissue remodeling by the saPRP were investigated with naturally aged mice. The mice were divided into three groups: 3 months old (3 M), 22 months old (22 M), and 22 months old treated with saPRP (22 M + saPRP). Salivary flow rate and lag time were significantly improved in 22 M + saPRP group compared to 22 M group. The histologic examinations showed the significant proliferation of acinar cell in 22 M + saPRP group. The decrease of senescence, apoptosis, and inflammation observed by western blot in 22 M + saPRP group. The saPRP induced the proliferation of hSGECs, leading to a significant decrease in cellular senescence via decrease inflammation and apoptosis, in vitro. Moreover, the acini cells of the salivary gland were regenerated, and the salivary function increased in aged mice. These results showed that saPRP could be a treatment agent against aging-induced SG dysfunction.
Collapse
Affiliation(s)
- Sungryeal Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Jeong Mi Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, 100 Inharo, Michuholgu, Incheon, 22212, Republic of Korea
| | - Eun Jeong Jeon
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, 100 Inharo, Michuholgu, Incheon, 22212, Republic of Korea
| | - Ji Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Mi Eun Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Jin-Mi Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Jeong-Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, 27 Inhang-ro, Jung-gu, Incheon, 22332, Republic of Korea.
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, 100 Inharo, Michuholgu, Incheon, 22212, Republic of Korea.
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, 100 Inharo, Michuholgu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
6
|
Calamita G, Delporte C. Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 2023; 12:2170. [PMID: 37681902 PMCID: PMC10486417 DOI: 10.3390/cells12172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner's gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
7
|
Kim JW, Kim JM, Choi ME, Jeon EJ, Park JM, Kim YM, Choi JS. Adiponectin is associated with inflammaging and age-related salivary gland lipid accumulation. Aging (Albany NY) 2023; 15:1840-1858. [PMID: 36988495 PMCID: PMC10085617 DOI: 10.18632/aging.204618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Dry mouth is frequently observed in the elderly, and enhanced lipid accumulation plays a critical role in cellular senescence in the salivary gland (SG). We investigated the mechanisms that mediate lipogenesis-associated SG senescence. Adult (28.6 ± 6.6 y.o. and 43.3 ± 1.5 y.o.) and aged (82.0 ± 4.3 y.o. and 88.0 ± 4.3 y.o.) human parotid and submandibular glands were compared with respect to histologic findings, 8-OHdG (8-hydroxy 2 deoxyguanosine) expression patterns, TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) and SA-β-gal (senescence-associated β-galactosidase) assay results. Also, microarray analysis was performed on RNA extracted from adult and aged SG to identify DEGs (differentially expressed genes). The effects of silencing ADIPOQ (Adiponectin) were evaluated by quantifying cell proliferation, immunohistochemical staining for cellular senescence and inflammation-associated proteins, SA-β-gal assays, RT-PCR, and western blot. Histological findings demonstrated the presence of more lipocytes, chronic inflammation, fibrosis, and lymphocytic infiltration in old SG. In addition, old tissues demonstrated higher expressions of SA-β-gal, more apoptotic cells in TUNEL assays, and higher oxidative stress by 8-OHdG immunostaining. Microarray analysis showed lipogenesis was significantly upregulated in old tissues. Silencing of ADIPOQ (a lipogenesis-related gene) reduced inflammation and SA-β-gal levels and increased cell proliferation and the expressions of amylase and aquaporin 5 in human SG epithelial cells. The study shows ADIPOQ is a potential target molecule for the modulation of lipogenesis associated with SG senescence.
Collapse
|
8
|
Calamita G, Delporte C. Aquaporins in Glandular Secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:225-249. [PMID: 36717498 DOI: 10.1007/978-981-19-7415-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner's glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
9
|
Shi XJ, Liu HM, Li L, Zhang Y, Cong X, Liu LM, Wu LL, Xiang RL. Profiling the lncRNA-miRNA-mRNA interaction network in the submandibular gland of diabetic mice. BMC Endocr Disord 2022; 22:109. [PMID: 35449001 PMCID: PMC9028094 DOI: 10.1186/s12902-022-01019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hyposalivation is one of the common symptoms of diabetes. Although long non-coding RNAs (lncRNAs) have recently been reported to play important roles in the pathogenesis of diabetes, the role of lncRNAs in diabetes-induced hyposalivation remains unknown. METHODS The present study aimed to explore the function of lncRNA-microRNA-mRNA regulatory network in the submandibular gland (SMGs) under the context of diabetes. LncRNA expression profile of the SMGs was analyzed using microarray technology. Differentially expressed lncRNAs were confirmed using real-time quantitative PCR. Bioinformatics analyses were performed, and Coding-non-coding gene co-expression (CNC) and competing endogenous RNA (ceRNA) networks were constructed to explore the potential mechanisms of diabetes-induced hyposalivation. RESULTS A total of 1273 differentially expressed lncRNAs (536 up-regulated and 737 downregulated) were identified in the SMGs tissues of db/db mice. CNC and ceRNA network analyses were performed based on five differentially expressed lncRNAs validated by real-time quantitative PCR. Gene Ontology analysis of target genes of CNC network revealed that "calcium ion binding" was a highly enriched molecular function. Kyoto Encyclopedia of Genes and Genomes pathway analysis of target genes of ceRNA network revealed that the "mammalian target of rapamycin signaling pathway" was significantly enriched. CONCLUSIONS On the whole, the findings of the present study may provide insight into the possible mechanism of diabetes-induced hyposalivation.
Collapse
Affiliation(s)
- Xi-Jin Shi
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Hui-Min Liu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Li Li
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Li-Mei Liu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
10
|
Yamada M, Masaki C, Mukaibo T, Munemasa T, Nodai T, Kondo Y, Hosokawa R. Altered Rheological Properties of Saliva with Aging in Mouse Sublingual Gland. J Dent Res 2022; 101:942-950. [PMID: 35238237 DOI: 10.1177/00220345221076071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mucin in saliva plays a critical role in the hydration and lubrication of the oral mucosa by retaining water molecules, and its impaired function may be associated with hyposalivation-independent xerostomia. Age-dependent effects on salivary gland function and rheological properties of secreted saliva are not fully understood as aging is a complex and multifactorial process. We aimed to evaluate age-related changes in the rheological properties of saliva and elucidate the underlying mechanism. We performed ex vivo submandibular gland (SMG) and sublingual gland (SLG) perfusion experiments to collect saliva from isolated glands of young (12 wk old) and aged (27 mo old) female C57BL/6J mice and investigate the rheological properties by determining the spinnbarkeit (viscoelasticity). While fluid secretion was comparable in SMG and SLG of both mice, spinnbarkeit showed a significant decrease in SLG saliva of aged mice than that of young mice. There were no significant differences in GalNAc concentration between young and aged SLG saliva. Liquid chromatography/tandem mass spectrometry analysis of SLG saliva revealed that (Hex)1 (HexNAc)1 (NeuAc)1 at m/z 793.31 was the most abundant O-glycan structure in SLG saliva commonly detected in both mice. Lectin staining of salivary gland tissue showed that SLG stained strongly with Maackia amurensis lectin II (MAL II) while Sambucus nigra agglutinin (SNA) stained little, if any, SLG. The messenger RNA expression of St3gal1 that encodes an α-2,3 sialic acid sialyltransferase SIAT4-A showed a decrease in SLG of aged mice, confirmed by a Western blot analysis. Lectin blot analysis in SLG saliva revealed that the relative signal intensity detected by MAL II was significantly lower in aged SLG. Our results suggest that spinnbarkeit decreases in SLG of aging mice due to downregulation of sialic acid linked to α-2,3 sialic acid sialyltransferase expression.
Collapse
Affiliation(s)
- M Yamada
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - C Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - T Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - T Munemasa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - T Nodai
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Y Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - R Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
11
|
Proctor GB, Shaalan AM. Disease-Induced Changes in Salivary Gland Function and the Composition of Saliva. J Dent Res 2021; 100:1201-1209. [PMID: 33870742 PMCID: PMC8461045 DOI: 10.1177/00220345211004842] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although the physiological control of salivary secretion has been well studied, the impact of disease on salivary gland function and how this changes the composition and function of saliva is less well understood and is considered in this review. Secretion of saliva is dependent upon nerve-mediated stimuli, which activate glandular fluid and protein secretory mechanisms. The volume of saliva secreted by salivary glands depends upon the frequency and intensity of nerve-mediated stimuli, which increase dramatically with food intake and are subject to facilitatory or inhibitory influences within the central nervous system. Longer-term changes in saliva secretion have been found to occur in response to dietary change and aging, and these physiological influences can alter the composition and function of saliva in the mouth. Salivary gland dysfunction is associated with different diseases, including Sjögren syndrome, sialadenitis, and iatrogenic disease, due to radiotherapy and medications and is usually reported as a loss of secretory volume, which can range in severity. Defining salivary gland dysfunction by measuring salivary flow rates can be difficult since these vary widely in the healthy population. However, saliva can be sampled noninvasively and repeatedly, which facilitates longitudinal studies of subjects, providing a clearer picture of altered function. The application of omics technologies has revealed changes in saliva composition in many systemic diseases, offering disease biomarkers, but these compositional changes may not be related to salivary gland dysfunction. In Sjögren syndrome, there appears to be a change in the rheology of saliva due to altered mucin glycosylation. Analysis of glandular saliva in diseases or therapeutic interventions causing salivary gland inflammation frequently shows increased electrolyte concentrations and increased presence of innate immune proteins, most notably lactoferrin. Altering nerve-mediated signaling of salivary gland secretion contributes to medication-induced dysfunction and may also contribute to altered saliva composition in neurodegenerative disease.
Collapse
Affiliation(s)
- G B Proctor
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - A M Shaalan
- Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
12
|
Kurosawa M, Shikama Y, Furukawa M, Arakaki R, Ishimaru N, Matsushita K. Chemokines Up-Regulated in Epithelial Cells Control Senescence-Associated T Cell Accumulation in Salivary Glands of Aged and Sjögren's Syndrome Model Mice. Int J Mol Sci 2021; 22:ijms22052302. [PMID: 33669065 PMCID: PMC7956724 DOI: 10.3390/ijms22052302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Immunosenescence is characterized by age-associated changes in immunological functions. Although age- and autoimmune-related sialadenitis cause dry mouth (xerostomia), the roles of immunosenescence and cellular senescence in the pathogenesis of sialadenitis remain unknown. We demonstrated that acquired immune cells rather than innate immune cells infiltrated the salivary glands (SG) of aged mice. An analysis of isolated epithelial cells from SG revealed that the expression levels of the chemokine CXCL13 were elevated in aged mice. Senescence-associated T cells (SA-Ts), which secrete large amounts of atypical pro-inflammatory cytokines, are involved in the pathogenesis of metabolic disorders and autoimmune diseases. The present results showed that SA-Ts and B cells, which express the CXCL13 receptor CXCR5, accumulated in the SG of aged mice, particularly females. CD4+ T cells derived from aged mice exhibited stronger in vitro migratory activity toward CXCL13 than those from young mice. In a mouse model of Sjögren’s syndrome (SS), SA-Ts also accumulated in SG, presumably via CXCL12-CXCR4 signaling. Collectively, the present results indicate that SA-Ts accumulate in SG, contribute to the pathogenesis of age- and SS-related sialadenitis by up-regulating chemokines in epithelial cells, and have potential as therapeutic targets for the treatment of xerostomia caused by these types of sialadenitis.
Collapse
Affiliation(s)
- Mie Kurosawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan; (M.K.); (M.F.); (K.M.)
| | - Yosuke Shikama
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan; (M.K.); (M.F.); (K.M.)
- Correspondence: ; Tel.: +81-562-46-2311
| | - Masae Furukawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan; (M.K.); (M.F.); (K.M.)
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; (R.A.); (N.I.)
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan; (R.A.); (N.I.)
| | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan; (M.K.); (M.F.); (K.M.)
| |
Collapse
|
13
|
Pitchumoni CS. Gastrointestinal Physiology and Aging. GERIATRIC GASTROENTEROLOGY 2021:155-200. [DOI: 10.1007/978-3-030-30192-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
14
|
Shen ZJ, Han YC, Nie MW, Xiang RL, Xie HZ. Analyses of circRNA and mRNA profiles in the submandibular gland in hypertension. Genomics 2020; 113:57-65. [PMID: 33227410 DOI: 10.1016/j.ygeno.2020.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/06/2020] [Accepted: 11/18/2020] [Indexed: 10/23/2022]
Abstract
The aim of this study was to elucidate the roles played by circular RNAs (circRNAs) in the mechanism underlying submandibular gland (SMG) dysfunction in hypertension. We employed RNA-seq to analyze the circRNA and mRNA expression profiles of SMGs. Seventy-five differentially expressed (DE) circRNAs and 691 DE mRNAs were determined to be significantly altered in spontaneously hypertensive rats. Altered mRNAs were primarily related to the immune system and immune response. Eight circRNAs were selected for further analysis. Cell adhesion molecules were determined to be the most strongly enriched pathway through analysis of DE mRNAs, the coding noncoding gene co-expression (CNC) network and the competitive endogenous RNA (ceRNA) network. The salivary secretion pathway was observed to be notably enriched through analysis of the ceRNA network. These results suggest that the crosstalk among circRNAs may play a crucial role in the development of SMG dysfunction in hypertension.
Collapse
Affiliation(s)
- Zhu-Jun Shen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000730, China
| | - Ye-Chen Han
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000730, China
| | - Mu-Wen Nie
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000730, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, 100191, China
| | - Hong-Zhi Xie
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000730, China.
| |
Collapse
|
15
|
D’Agostino C, Elkashty OA, Chivasso C, Perret J, Tran SD, Delporte C. Insight into Salivary Gland Aquaporins. Cells 2020; 9:cells9061547. [PMID: 32630469 PMCID: PMC7349754 DOI: 10.3390/cells9061547] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
The main role of salivary glands (SG) is the production and secretion of saliva, in which aquaporins (AQPs) play a key role by ensuring water flow. The AQPs are transmembrane channel proteins permeable to water to allow water transport across cell membranes according to osmotic gradient. This review gives an insight into SG AQPs. Indeed, it gives a summary of the expression and localization of AQPs in adult human, rat and mouse SG, as well as of their physiological role in SG function. Furthermore, the review provides a comprehensive view of the involvement of AQPs in pathological conditions affecting SG, including Sjögren's syndrome, diabetes, agedness, head and neck cancer radiotherapy and SG cancer. These conditions are characterized by salivary hypofunction resulting in xerostomia. A specific focus is given on current and future therapeutic strategies aiming at AQPs to treat xerostomia. A deeper understanding of the AQPs involvement in molecular mechanisms of saliva secretion and diseases offered new avenues for therapeutic approaches, including drugs, gene therapy and tissue engineering. As such, AQP5 represents a potential therapeutic target in different strategies for the treatment of xerostomia.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Osama A. Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, 35516 Mansoura, Egypt
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
- Correspondence: ; Tel.: +32-2-5556210
| |
Collapse
|
16
|
Rocchi C, Emmerson E. Mouth-Watering Results: Clinical Need, Current Approaches, and Future Directions for Salivary Gland Regeneration. Trends Mol Med 2020; 26:649-669. [PMID: 32371171 DOI: 10.1016/j.molmed.2020.03.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
Permanent damage to the salivary glands and resulting hyposalivation and xerostomia have a substantial impact on patient health, quality of life, and healthcare costs. Currently, patients rely on lifelong treatments that alleviate the symptoms, but no long-term restorative solutions exist. Recent advances in adult stem cell enrichment and transplantation, bioengineering, and gene transfer have proved successful in rescuing salivary gland function in a number of animal models that reflect human diseases and that result in hyposalivation and xerostomia. By overcoming the limitations of stem cell transplants and better understanding the mechanisms of cellular plasticity in the adult salivary gland, such studies provide encouraging evidence that a regenerative strategy for patients will be available in the near future.
Collapse
Affiliation(s)
- Cecilia Rocchi
- The MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Elaine Emmerson
- The MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|