1
|
Udroiu I, Sgura A. Coevolution of non-homologous end joining efficiency and encephalization. J Evol Biol 2024; 37:818-828. [PMID: 38738785 DOI: 10.1093/jeb/voae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Double-strand breaks (DSB), the most difficult to repair DNA damage, are mainly repaired by non-homologous end-joining (NHEJ) or homologous recombination (HR). Previous studies seem to indicate that primates, and particularly humans, have a better NHEJ system. A distinctive feature of the primate lineage (beside longevity) is encephalization, i.e., the expansion of the brain relative to body mass (BM). Using existing transcriptome data from 34 mammalian species, we investigated the possible correlations between the expression of genes involved in NHEJ and encephalization, BM, and longevity. The same was done also for genes involved in the HR pathway. We found that, while HR gene expression is better correlated with longevity, NHEJ gene expression is strongly (and better) correlated with encephalization. Since the brain is composed of postmitotic cells, DSB repair should be mainly performed by NHEJ in this organ. Therefore, we interpret the correlation we found as an indication that NHEJ efficiency coevolved with encephalization.
Collapse
Affiliation(s)
- Ion Udroiu
- Department of Sciences, Università Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Antonella Sgura
- Department of Sciences, Università Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| |
Collapse
|
2
|
Pearson AB, Hückstädt LA, Kinsey ST, Schmitt TL, Robeck TR, St Leger J, Ponganis PJ, Tift MS. Relationship between red blood cell lifespan and endogenous carbon monoxide in the common bottlenose dolphin and beluga. Am J Physiol Regul Integr Comp Physiol 2024; 326:R134-R146. [PMID: 37982188 DOI: 10.1152/ajpregu.00172.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Certain deep-diving marine mammals [i.e., northern elephant seal (Mirounga angustirostris), Weddell seal (Leptonychotes weddellii)] have blood carbon monoxide (CO) levels that are comparable with those of chronic cigarette smokers. Most CO produced in humans is a byproduct of heme degradation, which is released when red blood cells (RBCs) are destroyed. Elevated CO can occur in humans when RBC lifespan decreases. The contribution of RBC turnover to CO concentrations in marine mammals is unknown. Here, we report the first RBC lifespans in two healthy marine mammal species with different diving capacities and heme stores, the shallow-diving bottlenose dolphin (Tursiops truncatus) and deep-diving beluga whale (Delphinapterus leucas), and we relate the lifespans to the levels of CO in blood and breath. The belugas, with high blood heme stores, had the longest mean RBC lifespan compared with humans and bottlenose dolphins. Both cetacean species were found to have three times higher blood CO content compared with humans. The estimated CO production rate from heme degradation indicates some marine mammals may have additional mechanisms for CO production, or delay CO removal from the body, potentially from long-duration breath-holds.NEW & NOTEWORTHY This is the first study to determine the red blood cell lifespan in a marine mammal species. High concentrations of carbon monoxide (CO) were found in the blood of bottlenose dolphins and in the blood and breath of belugas compared with healthy humans. Red blood cell turnover accounted for these high levels in bottlenose dolphins, but there may be alternative mechanisms of endogenous CO production that are contributing to the CO concentrations observed in belugas.
Collapse
Affiliation(s)
- Anna B Pearson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, United States
| | - Luis A Hückstädt
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, United States
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Stephen T Kinsey
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, United States
| | - Todd L Schmitt
- SeaWorld Parks and Entertainment, San Diego, California, United States
| | - Todd R Robeck
- SeaWorld Parks and Entertainment, San Diego, California, United States
| | - Judy St Leger
- Cornell University College of Veterinary Medicine, Cornell University, Ithaca, New York, United States
| | - Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States
| | - Michael S Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, United States
| |
Collapse
|
3
|
Udroiu I. A Simplified Method for Calculating Surface Area of Mammalian Erythrocytes. Methods Protoc 2024; 7:11. [PMID: 38392685 PMCID: PMC10891711 DOI: 10.3390/mps7010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Knowledge of the geometric quantities of the erythrocyte is useful in several physiological studies, both for zoologists and veterinarians. While the diameter and volume (MCV) are easily obtained from observations of blood smears and complete blood count, respectively, the thickness and surface area are instead much more difficult to measure. The precise description of the erythrocyte geometry is given by the equation of the oval of Cassini, but the formulas deriving from it are very complex, comprising elliptic integrals. In this article, three solids are proposed as models approximating the erythrocyte: sphere, cylinder and a spheroid with concave caps. The volumes and surface areas obtained with these models are compared to those effectively measured. The spheroid with concave caps gives the best approximation and can be used as a simple model to determine the erythrocyte surface area. With this model, a simple method that allows one to estimate the surface area by knowing only the diameter and MCV is proposed.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università degli Studi "Roma Tre", 00146 Rome, Italy
| |
Collapse
|
4
|
Udroiu I, Sgura A. Growing and aging of hematopoietic stem cells. World J Stem Cells 2021; 13:594-604. [PMID: 34249229 PMCID: PMC8246248 DOI: 10.4252/wjsc.v13.i6.594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/22/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
In the hematopoietic system, a small number of stem cells produce a progeny of several distinct lineages. During ontogeny, they arise in the aorta-gonad-mesonephros region of the embryo and the placenta, afterwards colonise the liver and finally the bone marrow. After this fetal phase of rapid expansion, the number of hematopoietic stem cells continues to grow, in order to sustain the increasing blood volume of the developing newborn, and eventually reaches a steady-state. The kinetics of this growth are mirrored by the rates of telomere shortening in leukocytes. During adulthood, hematopoietic stem cells undergo a very small number of cell divisions. Nonetheless, they are subjected to aging, eventually reducing their potential to produce differentiated progeny. The causal relationships between telomere shortening, DNA damage, epigenetic changes, and aging have still to be elucidated.
Collapse
Affiliation(s)
- Ion Udroiu
- Department of Science, Roma Tre University, Rome 00146, Italy
| | - Antonella Sgura
- Department of Science, Roma Tre University, Rome 00146, Italy
| |
Collapse
|
5
|
Harper JM, Holmes DJ. New Perspectives on Avian Models for Studies of Basic Aging Processes. Biomedicines 2021; 9:biomedicines9060649. [PMID: 34200297 PMCID: PMC8230007 DOI: 10.3390/biomedicines9060649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022] Open
Abstract
Avian models have the potential to elucidate basic cellular and molecular mechanisms underlying the slow aging rates and exceptional longevity typical of this group of vertebrates. To date, most studies of avian aging have focused on relatively few of the phenomena now thought to be intrinsic to the aging process, but primarily on responses to oxidative stress and telomere dynamics. But a variety of whole-animal and cell-based approaches to avian aging and stress resistance have been developed-especially the use of primary cell lines and isolated erythrocytes-which permit other processes to be investigated. In this review, we highlight newer studies using these approaches. We also discuss recent research on age-related changes in neural function in birds in the context of sensory changes relevant to homing and navigation, as well as the maintenance of song. More recently, with the advent of "-omic" methodologies, including whole-genome studies, new approaches have gained momentum for investigating the mechanistic basis of aging in birds. Overall, current research suggests that birds exhibit an enhanced resistance to the detrimental effects of oxidative damage and maintain higher than expected levels of cellular function as they age. There is also evidence that genetic signatures associated with cellular defenses, as well as metabolic and immune function, are enhanced in birds but data are still lacking relative to that available from more conventional model organisms. We are optimistic that continued development of avian models in geroscience, especially under controlled laboratory conditions, will provide novel insights into the exceptional longevity of this animal taxon.
Collapse
Affiliation(s)
- James M. Harper
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
- Correspondence: ; Tel.: +1-936-294-1543
| | - Donna J. Holmes
- Department of Biological Sciences and WWAMI Medical Education Program, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
6
|
Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol 2020; 13:157. [PMID: 33228751 PMCID: PMC7686726 DOI: 10.1186/s13045-020-00994-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Aging drives the genetic and epigenetic changes that result in a decline in hematopoietic stem cell (HSC) functioning. Such changes lead to aging-related hematopoietic/immune impairments and hematopoietic disorders. Understanding how such changes are initiated and how they progress will help in the development of medications that could improve the quality life for the elderly and to treat and possibly prevent aging-related hematopoietic diseases. Here, we review the most recent advances in research into HSC aging and discuss the role of HSC-intrinsic events, as well as those that relate to the aging bone marrow niche microenvironment in the overall processes of HSC aging. In addition, we discuss the potential mechanisms by which HSC aging is regulated.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Department of Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Department of Pathology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
7
|
Udroiu I. Is the number of DNA repair genes associated with evolution rate and size of genomes? Hum Genomics 2020; 14:12. [PMID: 32178725 PMCID: PMC7077024 DOI: 10.1186/s40246-020-00259-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/28/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università degli Studi Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy.
| |
Collapse
|
8
|
On the correlation between telomere shortening rate and life span. Proc Natl Acad Sci U S A 2020; 117:2248-2249. [PMID: 31980517 DOI: 10.1073/pnas.1920300117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
9
|
Udroiu I, Sgura A. Alternative Lengthening of Telomeres and Chromatin Status. Genes (Basel) 2019; 11:genes11010045. [PMID: 31905921 PMCID: PMC7016797 DOI: 10.3390/genes11010045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
Telomere length is maintained by either telomerase, a reverse transcriptase, or alternative lengthening of telomeres (ALT), a mechanism that utilizes homologous recombination (HR) proteins. Since access to DNA for HR enzymes is regulated by the chromatin status, it is expected that telomere elongation is linked to epigenetic modifications. The aim of this review is to elucidate the epigenetic features of ALT-positive cells. In order to do this, it is first necessary to understand the telomeric chromatin peculiarities. So far, the epigenetic nature of telomeres is still controversial: some authors describe them as heterochromatic, while for others, they are euchromatic. Similarly, ALT activity should be characterized by the loss (according to most researchers) or formation (as claimed by a minority) of heterochromatin in telomeres. Besides reviewing the main works in this field and the most recent findings, some hypotheses involving the role of telomere non-canonical sequences and the possible spatial heterogeneity of telomeres are given.
Collapse
|