1
|
Zhang F, Hou X. The role of Forkhead box O in diabetes mellitus. Minerva Endocrinol (Torino) 2025; 50:105-112. [PMID: 35708174 DOI: 10.23736/s2724-6507.22.03750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Forkhead box O (FOXO) proteins are transcription factors that are involved in many physiological processes, including diabetes mellitus, which is a complex, multifactorial metabolic disorder. FOXO proteins are emerging as pivotal regulators in the progression of diabetes mellitus, mainly by inhibiting insulin or insulin-like growth factor, but little is known about their roles in diabetes mellitus. Although no targeted therapy exists to slow the development of diabetes and diabetes-related complications, several recent advances have clarified the molecular mechanisms underlying the disease. This review summarizes findings about FOXO proteins and diabetes mellitus, and sheds new light on the roles of FOXO proteins in diabetes mellitus.
Collapse
Affiliation(s)
- Fudan Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xu Hou
- Department of Endocrinology and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China -
| |
Collapse
|
2
|
Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int 2024; 180:105859. [PMID: 39265701 DOI: 10.1016/j.neuint.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.
Collapse
Affiliation(s)
- Roumi Naskar
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Anirrban Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Raja Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
3
|
Youn I, Han AR, Piao D, Lee H, Kwak H, Lee Y, Nam JW, Seo EK. Phytochemical and pharmacological properties of the genus Alpinia from 2016 to 2023. Nat Prod Rep 2024; 41:1346-1367. [PMID: 38717742 DOI: 10.1039/d4np00004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Covering 2016 up to the end of 2023Alpinia is the largest genus of flowering plants in the ginger family, Zingiberaceae, and comprises about 500 species. Many Alpinia are commonly cultivated ornamental plants, and some are used as spices or traditional medicine to treat inflammation, hyperlipidemia, and cancers. However, only a few comprehensive reviews have been published on the phytochemistry and pharmacology of this genus, and the latest review was published in 2017. In this review, we provide an extensive coverage of the studies on Alpinia species reported from 2016 through 2023, including newly isolated compounds and potential biological effects. The present review article shows that Alpinia species have a wide spectrum of pharmacological activities, most due to the activities of diarylheptanoids, terpenoids, flavonoids, and phenolics.
Collapse
Affiliation(s)
- Isoo Youn
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Donglan Piao
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hwaryeong Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyunkyung Kwak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Yeju Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
4
|
Park SH. Role of Phytochemicals in Treatment of Aging and Cancer: Focus on Mechanism of FOXO3 Activation. Antioxidants (Basel) 2024; 13:1099. [PMID: 39334758 PMCID: PMC11428386 DOI: 10.3390/antiox13091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
There have been many studies reporting that the regular consumption of fruits and vegetables is associated with reduced risks of cancer and age-related chronic diseases. Recent studies have demonstrated that reducing reactive oxygen species and inflammation by phytochemicals derived from natural sources can extend lifespans in a range of model organisms. Phytochemicals derived from fruits and vegetables have been known to display both preventative and suppressive activities against various types of cancer via in vitro and in vivo research by interfering with cellular processes critical for tumor development. The current challenge lies in creating tailored supplements containing specific phytochemicals for individual needs. Achieving this goal requires a deeper understanding of the molecular mechanisms through which phytochemicals affect human health. In this review, we examine recently (from 2010 to 2024) reported plant extracts and phytochemicals with established anti-aging and anti-cancer effects via the activation of FOXO3 transcriptional factor. Additionally, we provide an overview of the cellular and molecular mechanisms by which these molecules exert their anti-aging and anti-cancer effects in specific model systems. Lastly, we discuss the limitations of the current research approach and outline for potential future directions in this field.
Collapse
Affiliation(s)
- See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
5
|
Liao J, Zhao X. Recent Research Progress on the Chemical Constituents, Pharmacology, and Pharmacokinetics of Alpinae oxyphyllae Fructus. Molecules 2024; 29:3905. [PMID: 39202984 PMCID: PMC11357166 DOI: 10.3390/molecules29163905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alpinae oxyphyllae fructus (AOF), the dried mature fruit of Alpinia oxyphylla Miquel of the Zingiberaceae family, shows many special pharmacological effects. In recent years, there has been an abundance of research results on AOF. In this paper, the new compounds isolated from AOF since 2018 are reviewed, including terpenes, flavonoids, diarylheptanoids, phenolic acid, sterols, alkanes, fats, etc. The isolation methods that were applied include the microwave-assisted method, response surface method, chiral high-performance liquid chromatography-multiple reaction monitoring-mass spectrometry (HPLC-MRM-MS) analytical method, ultra-high-performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry (UPLC-Orbitrap-HRMS) method, ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method, hot water leaching method, ethanol leaching method, and so on. Additionally, the pharmacological effects of AOF found from 2018 to 2024 are also summarized, including neuroprotection, regulation of metabolic disorders, antioxidant activity, antiapoptosis, antiinflammatory activity, antidiabetic activity, antihyperuricemia, antiaging, antidiuresis, immune regulation, anti-tumor activity, renal protection, hepatoprotection, and anti-asthma. This paper provides a reference for further research on AOF.
Collapse
Affiliation(s)
| | - Xueying Zhao
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China;
| |
Collapse
|
6
|
Flis Ł, Malewski T, Dobosz R. Temperature Effects on Expression Levels of hsp Genes in Eggs and Second-Stage Juveniles of Meloidogyne hapla Chitwood, 1949. Int J Mol Sci 2024; 25:4867. [PMID: 38732085 PMCID: PMC11084963 DOI: 10.3390/ijms25094867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Meloidogyne hapla is one of the most important nematode pathogens. It is a sedentary, biotrophic parasite of plants that overwinters in the soil or in diseased roots. The development of M. hapla is temperature dependent. Numerous studies have been performed on the effect of temperature on the development of M. hapla, but only a few of them analyzed the heat shock protein (hsp) genes. The aim of the study was to perform expression profiling of eight hsp genes (Mh-hsp90, Mh-hsp1, Mh-hsp4, Mh-hsp6, Mh-hsp60, Mh-dnj19, Mh-hsp43, and Mh-hsp12.2) at two development stages of M. hapla, i.e., in eggs and second-stage juveniles (J2). The eggs and J2 were incubated under cold stress (5 °C), heat stress (35 °C, 40 °C), and non-stress (10 °C, 20 °C, and 30 °C) conditions. Expression profiling was performed by qPCR. It was demonstrated that only two genes, Mh-hsp60 and Mh-dnj19, have been upregulated by heat and cold stress at both development stages. Heat stress upregulated the expression of more hsp genes than cold stress did. The level of upregulation of most hsp genes was more marked in J2 than in eggs. The obtained results suggest that the Mh-hsp90 and Mh-hsp1 genes can be used as bioindicators of environmental impacts on nematodes of the Meloidogyne genus.
Collapse
Affiliation(s)
- Łukasz Flis
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland;
| | - Tadeusz Malewski
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland;
| | - Renata Dobosz
- Department of Entomology and Animal Pests, Institute of Plant Protection-National Research Institute, Węgorka 20, 60-318 Poznan, Poland;
| |
Collapse
|
7
|
Wang Y, Shi J, Liu K, Wang Y, Xu Y, Liu Y. Metabolomics and gene expression levels reveal the positive effects of teaseed oil on lifespan and aging process in Caenorhabditis elegans. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Madhubala D, Patra A, Islam T, Saikia K, Khan MR, Ahmed SA, Borah JC, Mukherjee AK. Snake venom nerve growth factor-inspired designing of novel peptide therapeutics for the prevention of paraquat-induced apoptosis, neurodegeneration, and alteration of metabolic pathway genes in the rat pheochromocytoma PC-12 cell. Free Radic Biol Med 2023; 197:23-45. [PMID: 36669545 DOI: 10.1016/j.freeradbiomed.2023.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Neurodegenerative disorders (ND), associated with the progressive loss of neurons, oxidative stress-mediated production of reactive oxygen species (ROS), and mitochondrial dysfunction, can be treated with synthetic peptides possessing innate neurotrophic effects and neuroprotective activity. Computational analysis of two small synthetic peptides (trideca-neuropeptide, TNP; heptadeca-neuropeptide, HNP) developed from the nerve growth factors from snake venoms predicted their significant interaction with the human TrkA receptor (TrkA). In silico results were validated by an in vitro binding study of the FITC-conjugated custom peptides to rat pheochromocytoma PC-12 cell TrkA receptors. Pre-treatment of PC-12 cells with TNP and HNP induced neuritogenesis and significantly reduced the paraquat (PT)-induced cellular toxicity, the release of lactate dehydrogenase from the cell cytoplasm, production of intracellular ROS, restored the level of antioxidants, prevented alteration of mitochondrial transmembrane potential (ΔΨm) and adenosine triphosphate (ATP) production, and inhibited cellular apoptosis. These peptides lack in vitro cytotoxicity, haemolytic activity, and platelet-modulating properties and do not interfere with the blood coagulation system. Functional proteomic analyses demonstrated the reversal of PT-induced upregulated and downregulated metabolic pathway genes in PC-12 cells that were pre-treated with HNP and revealed the metabolic pathways regulated by HNP to induce neuritogenesis and confer protection against PT-induced neuronal damage in PC-12. The quantitative RT-PCR analysis confirmed that the PT-induced increased and decreased expression of critical pro-apoptotic and anti-apoptotic genes had been restored in the PC-12 cells pre-treated with the custom peptides. A network gene expression profile was proposed to elucidate the molecular interactions among the regulatory proteins for HNP to salvage the PT-induced damage. Taken together, our results show how the peptides can rescue PT-induced oxidative stress, mitochondrial dysfunction, and cellular death and suggest new opportunities for developing neuroprotective drugs.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India; Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Taufikul Islam
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Kangkon Saikia
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Mojibur R Khan
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Semim Akhtar Ahmed
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Jagat C Borah
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India; Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India.
| |
Collapse
|
9
|
Kumar S, Praneet NS, Suchiang K. Lactobacillus brevis MTCC 1750 enhances oxidative stress resistance and lifespan extension with improved physiological and functional capacity in Caenorhabditis elegans via the DAF-16 pathway. Free Radic Res 2022; 56:555-571. [PMID: 36480684 DOI: 10.1080/10715762.2022.2155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Redox imbalance plays a crucial role in the development of age-related diseases, and resistance to oxidative stress is crucial for optimum longevity and healthy aging. Using the wild-type, mutant and transgenic strains, this study explored the antioxidative potential and lifespan extension benefits of different Lactobacillus strains in Caenorhabditis elegans (C. elegans). We observed that Lactobacillus brevis MTCC 1750 could enhance the resistance of C. elegans against juglone induced oxidative stress by reducing its intracellular reactive oxygen species (ROS) accumulation. Also, live L. brevis MTCC 1750 could prolong the worm's lifespan. These effects are dependent on transcription factor DAF-16 evident with significant upregulation of its target gene sod-3. This also explained the significant improvements in different age-associated changes in physiological and mechanical parameters of the worm by L. brevis MTCC 1750. Further investigations revealed that DAF-16 activation and, its enhanced translocation in the nucleus is independent of DAF-2 or JNK pathway. These findings highlighted L. brevis MTCC 1750 as a potent anti-oxidant source for complementing current antioxidant therapeutic strategies. Nonetheless, the findings showed how different signaling events are regulated based on an organism's diet component, and their consequences on the aging process in multiple species.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Nalla Sai Praneet
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| |
Collapse
|
10
|
Wang Y, Shi J, Jiang F, Xu YJ, Liu Y. Metabolomics reveals the impact of saturation of dietary lipids on aging and longevity of C. elegans. Mol Omics 2022; 18:430-438. [DOI: 10.1039/d2mo00041e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Saturation differences in dietary lipids modify their digestive and absorption profiles, endpoints that may influence the nutrition and health. This study tests the hypothesis that dietary with elevated unsaturated fats...
Collapse
|
11
|
Zhou L, Liu J, Bu LL, Liao DF, Cheng SW, Zheng XL. Curcumin Acetylsalicylate Extends the Lifespan of Caenorhabditis elegans. Molecules 2021; 26:molecules26216609. [PMID: 34771018 PMCID: PMC8586958 DOI: 10.3390/molecules26216609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Aspirin and curcumin have been reported to be beneficial to anti-aging in a variety of biological models. Here, we synthesized a novel compound, curcumin acetylsalicylate (CA), by combining aspirin and curcumin. We characterized how CA affects the lifespan of Caenorhabditis elegans (C. elegans) worms. Our results demonstrated that CA extended the lifespan of worms in a dose-dependent manner and reached its highest anti-aging effect at the concentration of 20 μM. In addition, CA reduced the deposition of lipofuscin or "age pigment" without affecting the reproductivity of worms. CA also caused a rightward shift of C. elegans lifespan curves in the presence of paraquat-induced (5 mM) oxidative stress or 37 °C acute heat shock. Additionally, CA treatment decreased the reactive oxygen species (ROS) level in C. elegans and increased the expression of downstream genes superoxide dismutase (sod)-3, glutathione S-transferase (gst)-4, heat shock protein (hsp)-16.2, and catalase-1 (ctl-1). Notably, CA treatment resulted in nuclear translocation of the DAF-16 transcription factor, which is known to stimulate the expression of SOD-3, GST-4, HSP-16, and CTL-1. CA did not produce a longevity effect in daf-16 mutants. In sum, our data indicate that CA delayed the aging of C. elegans without affecting reproductivity, and this effect may be mediated by its activation of DAF-16 and subsequent expression of antioxidative genes, such as sod-3 and gst-4. Our study suggests that novel anti-aging drugs may be developed by combining two individual drugs.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (J.L.)
| | - Jin Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (J.L.)
| | - Lan-Lan Bu
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Shao-Wu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (J.L.)
- Correspondence: (S.-W.C.); (X.-L.Z.); Tel.: +1 (403)-220-8715 (X.-L.Z.); Fax: +1 (403)-210-9180 (X.-L.Z.)
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Correspondence: (S.-W.C.); (X.-L.Z.); Tel.: +1 (403)-220-8715 (X.-L.Z.); Fax: +1 (403)-210-9180 (X.-L.Z.)
| |
Collapse
|