1
|
Horta F, Sakkas D, Ledger W, Goldys EM, Gilchrist RB. Could metabolic imaging and artificial intelligence provide a novel path to non-invasive aneuploidy assessments? A certain clinical need. Reprod Fertil Dev 2025; 37:RD24122. [PMID: 39874158 DOI: 10.1071/rd24122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Pre-implantation genetic testing for aneuploidy (PGT-A) via embryo biopsy helps in embryo selection by assessing embryo ploidy. However, clinical practice needs to consider the invasive nature of embryo biopsy, potential mosaicism, and inaccurate representation of the entire embryo. This creates a significant clinical need for improved diagnostic practices that do not harm embryos or raise treatment costs. Consequently, there has been an increasing focus on developing non-invasive technologies to enhance embryo selection. Such innovations include non-invasive PGT-A, artificial intelligence (AI) algorithms, and non-invasive metabolic imaging. The latter measures cellular metabolism through autofluorescence of metabolic cofactors. Notably, hyperspectral microscopy and fluorescence lifetime imaging microscopy (FLIM) have revealed unique metabolic activity signatures in aneuploid embryos and human fibroblasts. These methods have demonstrated high accuracy in distinguishing between euploid and aneuploid embryos. Thus, this review discusses the clinical challenges associated with PGT-A and emphasizes the need for novel solutions such as metabolic imaging. Additionally, it explores how aneuploidy affects cell behaviour and metabolism, offering an opinion perspective on future research directions in this field of research.
Collapse
Affiliation(s)
- Fabrizzio Horta
- Fertility & Research Centre, Discipline of Women health, School of Clinical Medicine and the Royal Hospital for Women, University of New South Wales, Sydney, NSW, Australia; and Dept O&G, Monash University, Melbourne, Vic, Australia; and Monash Data Future Institute, Monash University, Melbourne, Vic, Australia; and City Fertility, Sydney, NSW, Australia
| | - Denny Sakkas
- Boston IVF, IVIRMA, Global Research Alliance, Waltham, MA, USA
| | - William Ledger
- Fertility & Research Centre, Discipline of Women health, School of Clinical Medicine and the Royal Hospital for Women, University of New South Wales, Sydney, NSW, Australia; and City Fertility, Sydney, NSW, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, ARC Centre of Excellence for Nanoscale BioPhotonics, University of New South Wales, Sydney, NSW, Australia
| | - Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women health, School of Clinical Medicine and the Royal Hospital for Women, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
2
|
Vargas-Ordaz E, Newman H, Austin C, Catt S, Nosrati R, Cadarso VJ, Neild A, Horta F. Novel application of metabolic imaging of early embryos using a light-sheet on-a-chip device: a proof-of-concept study. Hum Reprod 2025; 40:41-55. [PMID: 39521726 PMCID: PMC11700888 DOI: 10.1093/humrep/deae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/23/2024] [Indexed: 11/16/2024] Open
Abstract
STUDY QUESTION Is it feasible to safely determine metabolic imaging signatures of nicotinamide adenine dinucleotide [NAD(P)H] associated auto-fluorescence in early embryos using a light-sheet on-a-chip approach? SUMMARY ANSWER We developed an optofluidic device capable of obtaining high-resolution 3D images of the NAD(P)H autofluorescence of live mouse embryos using a light-sheet on-a-chip device as a proof-of-concept. WHAT IS KNOWN ALREADY Selecting the most suitable embryos for implantation and subsequent healthy live birth is crucial to the success rate of assisted reproduction and offspring health. Besides morphological evaluation using optical microscopy, a promising alternative is the non-invasive imaging of live embryos to establish metabolic activity performance. Indeed, in recent years, metabolic imaging has been investigated using highly advanced microscopy technologies such as fluorescence-lifetime imaging and hyperspectral microscopy. STUDY DESIGN, SIZE, DURATION The potential safety of the system was investigated by assessing the development and viability of live embryos after embryo culture for 67 h post metabolic imaging at the two-cell embryo stage (n = 115), including a control for culture conditions and sham controls (system non-illuminated). Embryo quality of developed blastocysts was assessed by immunocytochemistry to quantify trophectoderm and inner mass cells (n = 75). Furthermore, inhibition of metabolic activity (FK866 inhibitor) during embryo culture was also assessed (n = 18). PARTICIPANTS/MATERIALS, SETTING, METHODS The microstructures were fabricated following a standard UV-photolithography process integrating light-sheet fluorescence microscopy into a microfluidic system, including on-chip micro-lenses to generate a light-sheet at the centre of a microchannel. Super-ovulated F1 (CBA/C57Bl6) mice were used to produce two-cell embryos and embryo culture experiments. Blastocyst formation rates and embryo quality (immunocytochemistry) were compared between the study groups. A convolutional neural network (ResNet 34) model using metabolic images was also trained. MAIN RESULTS AND THE ROLE OF CHANCE The optofluidic device was capable of obtaining high-resolution 3D images of live mouse embryos that can be linked to their metabolic activity. The system's design allowed continuous tracking of the embryo location, including high control displacement through the light-sheet and fast imaging of the embryos (<2 s), while keeping a low dose of light exposure (16 J · cm-2 and 8 J · cm-2). Optimum settings for keeping sample viability showed that a modest light dosage was capable of obtaining 30 times higher signal-noise-ratio images than images obtained with a confocal system (P < 0.00001; t-test). The results showed no significant differences between the control, illuminated and non-illuminated embryos (sham control) for embryo development as well as embryo quality at the blastocyst stage (P > 0.05; Yate's chi-squared test). Additionally, embryos with inhibited metabolic activity showed a decreased blastocyst formation rate of 22.2% compared to controls, as well as a 47% reduction in metabolic activity measured by metabolic imaging (P < 0.0001; t-test). This indicates that the optofluidic device was capable of producing metabolic images of live embryos by measuring NAD(P)H autofluorescence, allowing a novel and affordable approach. The obtained metabolic images of two-cell embryos predicted blastocyst formation with an AUC of 0.974. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The study was conducted using a mouse model focused on early embryo development assessing illumination at the two-cell stage. Further safety studies are required to assess the safety and use of 405 nm light at the blastocyst stage by investigating any potential negative impact on live birth rates, offspring health, aneuploidy rates, mutational load, changes in gene expression, and/or effects on epigenome stability in newborns. WIDER IMPLICATIONS OF THE FINDINGS This light-sheet on-a-chip approach is novel and after rigorous safety studies and a roadmap for technology development, potential future applications could be developed for ART. The overall cost-efficient fabrication of the device will facilitate scalability and integration into future devices if full-safety application is demonstrated. STUDY FUNDING/COMPETING INTEREST(S) This work was partially supported by an Ideas Grant (no 2004126) from the National Health and Medical Research Council (NHMRC), by the Education Program in Reproduction and Development (EPRD), Department Obstetrics and Gynaecology, Monash University, and by the Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Monash University. The authors E.V-O, R.N., V.J.C., A.N., and F.H. have applied for a patent on the topic of this technology (PCT/AU2023/051132). The remaining authors have nothing to disclose.
Collapse
Affiliation(s)
- E Vargas-Ordaz
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
- Centre to Impact Antimicrobial Resistance—Sustainable Solutions, Monash University, Clayton, VIC, Australia
| | - H Newman
- Education Program in Reproduction and Development, EPRD, Department of obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - C Austin
- Education Program in Reproduction and Development, EPRD, Department of obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, VIC, Australia
| | - S Catt
- Education Program in Reproduction and Development, EPRD, Department of obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - R Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - V J Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
- Centre to Impact Antimicrobial Resistance—Sustainable Solutions, Monash University, Clayton, VIC, Australia
| | - A Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - F Horta
- Education Program in Reproduction and Development, EPRD, Department of obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Monash Data Future Institute, Monash University, Clayton, VIC, Australia
- Fertility & Research Center, Discipline of Women’s Health, Royal Hospital for Women & School of Clinical Medicine, The University of New South Wales, UNSW, Randwick, NSW, Australia
| |
Collapse
|
3
|
Campbell JM, Mahbub SB, Anwer AG, Habibalahi A, Gronthos S, Paton S, Grey ST, Wu LE, Gilchrist RB, Goldys EM. Multispectral Imaging of Collagen, NAD(P)H and Flavin Autofluorescence in Mesenchymal Stem Cells Undergoing Trilineage Differentiation. Cells 2024; 13:1731. [PMID: 39451249 PMCID: PMC11505937 DOI: 10.3390/cells13201731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Understanding the molecular mechanisms of differentiation is important for regenerative medicine and developmental biology. This study aims to characterise the role of the glycolysis/oxidative phosphorylation balance as a driver of mesenchymal stem cell (MSC) differentiation. Cells were maintained in normal conditions or stimulated towards the MSC trilineage cell types over 21 days. Multispectral imaging of cell autofluorescence was applied as a non-invasive methodology to continuously image cultures in situ. Spectral signals for collagen, NAD(P)H, and flavins were unmixed. MSCs cultured under chondrogenic conditions exhibited increased collagen levels relative to controls. Following osteogenic induction, MSCs showed increased collagen levels relative to controls during the earlier stages of culture; however, control cells increased their collagen levels as they became confluent. MSCs cultured under adipogenic conditions exhibited lower levels of collagen than controls. The redox ratio (RR; NAD(P)H/flavins) immediately decreased during chondrogenesis, with this early effect persisting throughout the culture compared to control cells, which appeared to increase their RR, similar to osteogenesis. Adipogenesis resulted in a small increase in RR on day 2 relative to control cells, followed by a persistent decrease. Chondrogenic and adipogenic differentiation favoured oxidative phosphorylation, whereas osteogenesis and MSC overgrowth resulted in a glycolytic metabolism. Following consideration of these findings, as well as the diverse reports in the literature, it is concluded that neither enhanced oxidative phosphorylation nor glycolysis are fundamental to the canonical modes of differentiation, and researchers should avoid interpreting shifts as indicating differentiation.
Collapse
Affiliation(s)
- Jared M. Campbell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia (A.G.A.); (A.H.); (E.M.G.)
| | - Saabah B. Mahbub
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia (A.G.A.); (A.H.); (E.M.G.)
| | - Ayad G. Anwer
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia (A.G.A.); (A.H.); (E.M.G.)
| | - Abbas Habibalahi
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia (A.G.A.); (A.H.); (E.M.G.)
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia; (S.G.)
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia; (S.G.)
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Shane T. Grey
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lindsay E. Wu
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Robert B. Gilchrist
- School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Ewa M. Goldys
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia (A.G.A.); (A.H.); (E.M.G.)
| |
Collapse
|
4
|
Ho WHJ, Marinova MB, Listijono DR, Bertoldo MJ, Richani D, Kim LJ, Brown A, Riepsamen AH, Cabot S, Frost ER, Bustamante S, Zhong L, Selesniemi K, Wong D, Madawala R, Marchante M, Goss DM, Li C, Araki T, Livingston DJ, Turner N, Sinclair DA, Walters KA, Homer HA, Gilchrist RB, Wu LE. Fertility protection during chemotherapy treatment by boosting the NAD(P) + metabolome. EMBO Mol Med 2024; 16:2583-2618. [PMID: 39169162 PMCID: PMC11473878 DOI: 10.1038/s44321-024-00119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Chemotherapy induced ovarian failure and infertility is an important concern in female cancer patients of reproductive age or younger, and non-invasive, pharmacological approaches to maintain ovarian function are urgently needed. Given the role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) as an essential cofactor for drug detoxification, we sought to test whether boosting the NAD(P)+ metabolome could protect ovarian function. We show that pharmacological or transgenic strategies to replenish the NAD+ metabolome ameliorates chemotherapy induced female infertility in mice, as measured by oocyte yield, follicle health, and functional breeding trials. Importantly, treatment of a triple-negative breast cancer mouse model with the NAD+ precursor nicotinamide mononucleotide (NMN) reduced tumour growth and did not impair the efficacy of chemotherapy drugs in vivo or in diverse cancer cell lines. Overall, these findings raise the possibility that NAD+ precursors could be a non-invasive strategy for maintaining ovarian function in cancer patients, with potential benefits in cancer therapy.
Collapse
Affiliation(s)
- Wing-Hong Jonathan Ho
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
- The Kinghorn Cancer Centre, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Maria B Marinova
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Dave R Listijono
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Michael J Bertoldo
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Dulama Richani
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Lynn-Jee Kim
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Amelia Brown
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | | | - Safaa Cabot
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Emily R Frost
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Kaisa Selesniemi
- Paul F Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA, USA
| | - Derek Wong
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Romanthi Madawala
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Maria Marchante
- IVI Foundation, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynaecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Dale M Goss
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Catherine Li
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | | | - Nigel Turner
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - David A Sinclair
- Paul F Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA, USA
| | - Kirsty A Walters
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Hayden A Homer
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
- Christopher Chen Oocyte Biology Laboratory, University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital, Herston, QLD, 4029, Australia
| | - Robert B Gilchrist
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Lindsay E Wu
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia.
| |
Collapse
|
5
|
Campbell JM, Gosnell M, Agha A, Handley S, Knab A, Anwer AG, Bhargava A, Goldys EM. Label-Free Assessment of Key Biological Autofluorophores: Material Characteristics and Opportunities for Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403761. [PMID: 38775184 DOI: 10.1002/adma.202403761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/04/2024] [Indexed: 06/13/2024]
Abstract
Autofluorophores are endogenous fluorescent compounds that naturally occur in the intra and extracellular spaces of all tissues and organs. Most have vital biological functions - like the metabolic cofactors NAD(P)H and FAD+, as well as the structural protein collagen. Others are considered to be waste products - like lipofuscin and advanced glycation end products - which accumulate with age and are associated with cellular dysfunction. Due to their natural fluorescence, these materials have great utility for enabling non-invasive, label-free assays with direct ties to biological function. Numerous technologies, with different advantages and drawbacks, are applied to their assessment, including fluorescence lifetime imaging microscopy, hyperspectral microscopy, and flow cytometry. Here, the applications of label-free autofluorophore assessment are reviewed for clinical and health-research applications, with specific attention to biomaterials, disease detection, surgical guidance, treatment monitoring, and tissue assessment - fields that greatly benefit from non-invasive methodologies capable of continuous, in vivo characterization.
Collapse
Affiliation(s)
- Jared M Campbell
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | | | - Adnan Agha
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Shannon Handley
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Aline Knab
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ayad G Anwer
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Akanksha Bhargava
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ewa M Goldys
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| |
Collapse
|
6
|
Mihalas BP, Marston AL, Wu LE, Gilchrist RB. Reproductive Ageing: Metabolic contribution to age-related chromosome missegregation in mammalian oocytes. Reproduction 2024; 168:e230510. [PMID: 38718822 PMCID: PMC11301428 DOI: 10.1530/rep-23-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/07/2024] [Indexed: 06/29/2024]
Abstract
In brief Chromosome missegregation and declining energy metabolism are considered to be unrelated features of oocyte ageing that contribute to poor reproductive outcomes. Given the bioenergetic cost of chromosome segregation, we propose here that altered energy metabolism during ageing may be an underlying cause of age-related chromosome missegregation and aneuploidy. Abstract Advanced reproductive age in women is a major cause of infertility, miscarriage and congenital abnormalities. This is principally caused by a decrease in oocyte quality and developmental competence with age. Oocyte ageing is characterised by an increase in chromosome missegregation and aneuploidy. However, the underlying mechanisms of age-related aneuploidy have not been fully elucidated and are still under active investigation. In addition to chromosome missegregation, oocyte ageing is also accompanied by metabolic dysfunction. In this review, we integrate old and new perspectives on oocyte ageing, chromosome segregation and metabolism in mammalian oocytes and make direct links between these processes. We consider age-related alterations to chromosome segregation machinery, including the loss of cohesion, microtubule stability and the integrity of the spindle assembly checkpoint. We focus on how metabolic dysfunction in the ageing oocyte disrupts chromosome segregation machinery to contribute to and exacerbate age-related aneuploidy. More specifically, we discuss how mitochondrial function, ATP production and the generation of free radicals are altered during ageing. We also explore recent developments in oocyte metabolic ageing, including altered redox reactions (NAD+ metabolism) and the interactions between oocytes and their somatic nurse cells. Throughout the review, we integrate the mechanisms by which changes in oocyte metabolism influence age-related chromosome missegregation.
Collapse
Affiliation(s)
- Bettina P Mihalas
- Oocyte Biology Research Unit, Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Australia
| | - Adele L Marston
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lindsay E Wu
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Kensington, Australia
| | - Robert B Gilchrist
- Oocyte Biology Research Unit, Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Australia
| |
Collapse
|
7
|
Bao S, Yin T, Liu S. Ovarian aging: energy metabolism of oocytes. J Ovarian Res 2024; 17:118. [PMID: 38822408 PMCID: PMC11141068 DOI: 10.1186/s13048-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
In women who are getting older, the quantity and quality of their follicles or oocytes and decline. This is characterized by decreased ovarian reserve function (DOR), fewer remaining oocytes, and lower quality oocytes. As more women choose to delay childbirth, the decline in fertility associated with age has become a significant concern for modern women. The decline in oocyte quality is a key indicator of ovarian aging. Many studies suggest that age-related changes in oocyte energy metabolism may impact oocyte quality. Changes in oocyte energy metabolism affect adenosine 5'-triphosphate (ATP) production, but how related products and proteins influence oocyte quality remains largely unknown. This review focuses on oocyte metabolism in age-related ovarian aging and its potential impact on oocyte quality, as well as therapeutic strategies that may partially influence oocyte metabolism. This research aims to enhance our understanding of age-related changes in oocyte energy metabolism, and the identification of biomarkers and treatment methods.
Collapse
Affiliation(s)
- Shenglan Bao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, , Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.
| |
Collapse
|
8
|
Chandrasekara CMN, Gemikonakli G, Mach J, Sang R, Anwer AG, Agha A, Goldys EM, Hilmer SN, Campbell JM. Ageing and Polypharmacy in Mesenchymal Stromal Cells: Metabolic Impact Assessed by Hyperspectral Imaging of Autofluorescence. Int J Mol Sci 2024; 25:5830. [PMID: 38892017 PMCID: PMC11171960 DOI: 10.3390/ijms25115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The impact of age on mesenchymal stromal cell (MSC) characteristics has been well researched. However, increased age is concomitant with increased prevalence of polypharmacy. This adjustable factor may have further implications for the functionality of MSCs and the effectiveness of autologous MSC procedures. We applied hyperspectral microscopy of cell autofluorescence-a non-invasive imaging technique used to characterise cytometabolic heterogeneity-to identify changes in the autofluorescence signals of MSCs from (1) young mice, (2) old mice, (3) young mice randomised to receive polypharmacy (9-10 weeks of oral therapeutic doses of simvastatin, metoprolol, oxycodone, oxybutynin and citalopram), and (4) old mice randomised to receive polypharmacy. Principal Component Analysis and Logistic Regression Analysis were used to assess alterations in spectral and associated metabolic characteristics. Modelling demonstrated that cells from young mice receiving polypharmacy had less NAD(P)H and increased porphyrin relative to cells from old control mice, allowing for effective separation of the two groups (AUC of ROC curve > 0.94). Similarly, cells from old polypharmacy mice were accurately separated from those from young controls due to lower levels of NAD(P)H (p < 0.001) and higher porphyrin (p < 0.001), allowing for an extremely accurate logistic regression (AUC of ROC curve = 0.99). This polypharmacy regimen may have a more profound impact on MSCs than ageing, and can simultaneously reduce optical redox ratio (ORR) and increase porphyrin levels. This has implications for the use of autologous MSCs for older patients with chronic disease.
Collapse
Affiliation(s)
- Chandrasekara M. N. Chandrasekara
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| | - Gizem Gemikonakli
- Laboratory of Ageing and Pharmacology, Kolling Institute, Northern Sydney Local Health District and Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (G.G.); (J.M.); (S.N.H.)
| | - John Mach
- Laboratory of Ageing and Pharmacology, Kolling Institute, Northern Sydney Local Health District and Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (G.G.); (J.M.); (S.N.H.)
| | - Rui Sang
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| | - Ayad G. Anwer
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| | - Adnan Agha
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| | - Ewa M. Goldys
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| | - Sarah N. Hilmer
- Laboratory of Ageing and Pharmacology, Kolling Institute, Northern Sydney Local Health District and Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (G.G.); (J.M.); (S.N.H.)
| | - Jared M. Campbell
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| |
Collapse
|
9
|
Bentahar S, Gómez-Gaviro MV, Desco M, Ripoll J, Fernández R. Multispectral imaging for characterizing autofluorescent tissues. Sci Rep 2024; 14:12084. [PMID: 38802477 PMCID: PMC11130125 DOI: 10.1038/s41598-024-61020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Selective Plane Illumination Microscopy (SPIM) has become an emerging technology since its first application for 3D in-vivo imaging of the development of a living organism. An extensive number of works have been published, improving both the speed of acquisition and the resolution of the systems. Furthermore, multispectral imaging allows the effective separation of overlapping signals associated with different fluorophores from the spectrum over the whole field-of-view of the analyzed sample. To eliminate the need of using fluorescent dyes, this technique can also be applied to autofluorescence imaging. However, the effective separation of the overlapped spectra in autofluorescence imaging necessitates the use of mathematical tools. In this work, we explore the application of a method based on Principal Component Analysis (PCA) that enables tissue characterization upon spectral autofluorescence data without the use of fluorophores. Thus, enabling the separation of different tissue types in fixed and living samples with no need of staining techniques. Two procedures are described for acquiring spectral data, including a single excitation based method and a multi-excitation scanning approach. In both cases, we demonstrate the effective separation of various tissue types based on their unique autofluorescence spectra.
Collapse
Affiliation(s)
- Sara Bentahar
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
| | | | - Manuel Desco
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jorge Ripoll
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| | - Roberto Fernández
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain.
- Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
10
|
Richani D, Poljak A, Wang B, Mahbub SB, Biazik J, Campbell JM, Habibalahi A, Stocker WA, Marinova MB, Nixon B, Bustamante S, Skerrett-Byrne D, Harrison CA, Goldys E, Gilchrist RB. Oocyte and cumulus cell cooperativity and metabolic plasticity under the direction of oocyte paracrine factors. Am J Physiol Endocrinol Metab 2024; 326:E366-E381. [PMID: 38197792 DOI: 10.1152/ajpendo.00148.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Mammalian oocytes develop and mature in a mutually dependent relationship with surrounding cumulus cells. The oocyte actively regulates cumulus cell differentiation and function by secreting soluble paracrine oocyte-secreted factors (OSFs). We characterized the molecular mechanisms by which two model OSFs, cumulin and BMP15, regulate oocyte maturation and cumulus-oocyte cooperativity. Exposure to these OSFs during mouse oocyte maturation in vitro altered the proteomic and multispectral autofluorescence profiles of both the oocyte and cumulus cells. In oocytes, cumulin significantly upregulated proteins involved in nuclear function. In cumulus cells, both OSFs elicited marked upregulation of a variety of metabolic processes (mostly anabolic), including lipid, nucleotide, and carbohydrate metabolism, whereas mitochondrial metabolic processes were downregulated. The mitochondrial changes were validated by functional assays confirming altered mitochondrial morphology, respiration, and content while maintaining ATP homeostasis. Collectively, these data demonstrate that cumulin and BMP15 remodel cumulus cell metabolism, instructing them to upregulate their anabolic metabolic processes, while routine cellular functions are minimized in the oocyte during maturation, in preparation for ensuing embryonic development.NEW & NOTEWORTHY Oocyte-secreted factors (OSFs) promote oocyte and cumulus cell cooperativity by altering the molecular composition of both cell types. OSFs downregulate protein catabolic processes and upregulate processes associated with DNA binding, translation, and ribosome assembly in oocytes. In cumulus cells, OSFs alter mitochondrial number, morphology, and function, and enhance metabolic plasticity by upregulating anabolic pathways. Hence, the oocyte via OSFs, instructs cumulus cells to increase metabolic processes on its behalf, thereby subduing oocyte metabolism.
Collapse
Affiliation(s)
- Dulama Richani
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Baily Wang
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Saabah B Mahbub
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Joanna Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Jared M Campbell
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Abbas Habibalahi
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - William A Stocker
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Maria B Marinova
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - David Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Craig A Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ewa Goldys
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Abstract
Over the last half century, the autofluorescence of the metabolic cofactors NADH (reduced nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide) has been quantified in a variety of cell types and disease states. With the spread of nonlinear optical microscopy techniques in biomedical research, NADH and FAD imaging has offered an attractive solution to noninvasively monitor cell and tissue status and elucidate dynamic changes in cell or tissue metabolism. Various tools and methods to measure the temporal, spectral, and spatial properties of NADH and FAD autofluorescence have been developed. Specifically, an optical redox ratio of cofactor fluorescence intensities and NADH fluorescence lifetime parameters have been used in numerous applications, but significant work remains to mature this technology for understanding dynamic changes in metabolism. This article describes the current understanding of our optical sensitivity to different metabolic pathways and highlights current challenges in the field. Recent progress in addressing these challenges and acquiring more quantitative information in faster and more metabolically relevant formats is also discussed.
Collapse
Affiliation(s)
- Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA;
- Genetics, Molecular and Cellular Biology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Kyle P Quinn
- Department of Biomedical Engineering and the Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
12
|
Campbell JM, Mahbub SB, Habibalahi A, Agha A, Handley S, Anwer AG, Goldys EM. Clinical applications of non-invasive multi and hyperspectral imaging of cell and tissue autofluorescence beyond oncology. JOURNAL OF BIOPHOTONICS 2023; 16:e202200264. [PMID: 36602432 DOI: 10.1002/jbio.202200264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Hyperspectral and multispectral imaging of cell and tissue autofluorescence employs fluorescence imaging, without exogenous fluorophores, across multiple excitation/emission combinations (spectral channels). This produces an image stack where each pixel (matched by location) contains unique information about the sample's spectral properties. Analysis of this data enables access to a rich, molecularly specific data set from a broad range of cell-native fluorophores (autofluorophores) directly reflective of biochemical status, without use of fixation or stains. This non-invasive, non-destructive technology has great potential to spare the collection of biopsies from sensitive regions. As both staining and biopsy may be impossible, or undesirable, depending on the context, this technology great diagnostic potential for clinical decision making. The main research focus has been on the identification of neoplastic tissues. However, advances have been made in diverse applications-including ophthalmology, cardiovascular health, neurology, infection, assisted reproduction technology and organ transplantation.
Collapse
Affiliation(s)
- Jared M Campbell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Saabah B Mahbub
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Abbas Habibalahi
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Adnan Agha
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Shannon Handley
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Ayad G Anwer
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| |
Collapse
|
13
|
Zhang L, Wu LM, Xu WH, Tian YQ, Liu XL, Xia CY, Zhang L, Li SS, Jin Z, Wu XL, Shu J. Status of maternal serum B vitamins and pregnancy outcomes: New insights from in vitro fertilization and embryo transfer (IVF-ET) treatment. Front Nutr 2022; 9:962212. [PMID: 36438768 PMCID: PMC9691978 DOI: 10.3389/fnut.2022.962212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
The influence of B vitamins on human fertility and infertility treatments remains elusive. Therefore, this study investigated the association of most B vitamins with IVF-ET outcomes. A total of 216 subjects aged <35 year in their first oocyte retrieval cycle were recruited. Blood samples from the participants were collected before the oocyte pick-up procedure, and serum levels of riboflavin, niacin, pantothenic acid, vitamin B6 (including PA and PLP), folate, and methylmalonic acid (MMA) were detected using high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS). Endpoints were classified into three groups according to tertiles (lower, middle, and upper) of each vitamin index, and the association of the serum vitamin status with intermediate and clinical outcomes was analyzed using a generalized estimating equation model. Higher riboflavin levels were associated with elevated probabilities of high-quality embryos, as well as clinical pregnancy after embryo transfer. A greater likelihood of transferable embryos was found in the middle tertile of serum folate. Similarly, a negative correlation of serum MMA, a marker of vitamin B12 deficiency, with high-quality embryos was identified. No significance was observed for other vitamins in terms of all endpoints. Therefore, sufficient levels of pre-conception riboflavin, folate, and vitamin B12 are recommended for successful infertility treatment and pregnancy planning; further evidence is needed to confirm our conclusion.
Collapse
Affiliation(s)
- Ling Zhang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Li-mei Wu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wei-hai Xu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu-qing Tian
- Department of Postgraduate Education, Jinzhou Medical University, Jinzhou, China
| | - Xu-ling Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provice, Hangzhou, China
- Calibra Lab, DIAN Diagnostics, Hangzhou, China
| | - Chen-yun Xia
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Provice, Hangzhou, China
- Calibra Lab, DIAN Diagnostics, Hangzhou, China
| | - Lin Zhang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shi-shi Li
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zhen Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiang-li Wu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Xiang-li Wu
| | - Jing Shu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- Jing Shu
| |
Collapse
|
14
|
Yagoub SH, Lim M, Tan TCY, Chow DJX, Dholakia K, Gibson BC, Thompson JG, Dunning KR. Vitrification within a nanoliter volume: oocyte and embryo cryopreservation within a 3D photopolymerized device. J Assist Reprod Genet 2022; 39:1997-2014. [PMID: 35951146 PMCID: PMC9474789 DOI: 10.1007/s10815-022-02589-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Vitrification permits long-term banking of oocytes and embryos. It is a technically challenging procedure requiring direct handling and movement of cells between potentially cytotoxic cryoprotectant solutions. Variation in adherence to timing, and ability to trace cells during the procedure, affects survival post-warming. We hypothesized that minimizing direct handling will simplify the procedure and improve traceability. To address this, we present a novel photopolymerized device that houses the sample during vitrification. Methods The fabricated device consisted of two components: the Pod and Garage. Single mouse oocytes or embryos were housed in a Pod, with multiple Pods docked into a Garage. The suitability of the device for cryogenic application was assessed by repeated vitrification and warming cycles. Oocytes or early blastocyst-stage embryos were vitrified either using standard practice or within Pods and a Garage and compared to non-vitrified control groups. Post-warming, we assessed survival rate, oocyte developmental potential (fertilization and subsequent development) and metabolism (autofluorescence). Results Vitrification within the device occurred within ~ 3 nL of cryoprotectant: this volume being ~ 1000-fold lower than standard vitrification. Compared to standard practice, vitrification and warming within our device showed no differences in viability, developmental competency, or metabolism for oocytes and embryos. The device housed the sample during processing, which improved traceability and minimized handling. Interestingly, vitrification-warming itself, altered oocyte and embryo metabolism. Conclusion The Pod and Garage system minimized the volume of cryoprotectant at vitrification—by ~ 1000-fold—improved traceability and reduced direct handling of the sample. This is a major step in simplifying the procedure.
Supplementary information The online version contains supplementary material available at 10.1007/s10815-022-02589-8.
Collapse
Affiliation(s)
- Suliman H Yagoub
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Megan Lim
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Tiffany C Y Tan
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Darren J X Chow
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Kishan Dholakia
- School of Physics and Astronomy, University of St Andrews, North Haugh, Scotland, KY16 9SS.,School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.,Department of Physics, College of Science, Yonsei University, Seoul, 03722, South Korea
| | - Brant C Gibson
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Science, RMIT, Melbourne, VIC, 3001, Australia
| | - Jeremy G Thompson
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia.,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia.,Fertilis Pty Ltd, Adelaide, South Australia, 5005, Australia
| | - Kylie R Dunning
- Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, 5000, Australia. .,School of Biomedicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia. .,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
15
|
Unique Deep Radiomic Signature Shows NMN Treatment Reverses Morphology of Oocytes from Aged Mice. Biomedicines 2022; 10:biomedicines10071544. [PMID: 35884850 PMCID: PMC9313081 DOI: 10.3390/biomedicines10071544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study is to develop a deep radiomic signature based on an artificial intelligence (AI) model. This radiomic signature identifies oocyte morphological changes corresponding to reproductive aging in bright field images captured by optical light microscopy. Oocytes were collected from three mice groups: young (4- to 5-week-old) C57BL/6J female mice, aged (12-month-old) mice, and aged mice treated with the NAD+ precursor nicotinamide mononucleotide (NMN), a treatment recently shown to rejuvenate aspects of fertility in aged mice. We applied deep learning, swarm intelligence, and discriminative analysis to images of mouse oocytes taken by bright field microscopy to identify a highly informative deep radiomic signature (DRS) of oocyte morphology. Predictive DRS accuracy was determined by evaluating sensitivity, specificity, and cross-validation, and was visualized using scatter plots of the data associated with three groups: Young, old and Old + NMN. DRS could successfully distinguish morphological changes in oocytes associated with maternal age with 92% accuracy (AUC~1), reflecting this decline in oocyte quality. We then employed the DRS to evaluate the impact of the treatment of reproductively aged mice with NMN. The DRS signature classified 60% of oocytes from NMN-treated aged mice as having a ‘young’ morphology. In conclusion, the DRS signature developed in this study was successfully able to detect aging-related oocyte morphological changes. The significance of our approach is that DRS applied to bright field oocyte images will allow us to distinguish and select oocytes originally affected by reproductive aging and whose quality has been successfully restored by the NMN therapy.
Collapse
|
16
|
Habibalahi A, Allende A, Michael J, Anwer AG, Campbell J, Mahbub SB, Bala C, Coroneo MT, Goldys EM. Pterygium and Ocular Surface Squamous Neoplasia: Optical Biopsy Using a Novel Autofluorescence Multispectral Imaging Technique. Cancers (Basel) 2022; 14:1591. [PMID: 35326744 PMCID: PMC8946656 DOI: 10.3390/cancers14061591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, differentiation of pterygium vs. ocular surface squamous neoplasia based on multispectral autofluorescence imaging technique was investigated. Fifty (N = 50) patients with histopathological diagnosis of pterygium (PTG) and/or ocular surface squamous neoplasia (OSSN) were recruited. Fixed unstained biopsy specimens were imaged by multispectral microscopy. Tissue autofluorescence images were obtained with a custom-built fluorescent microscope with 59 spectral channels, each with specific excitation and emission wavelength ranges, suitable for the most abundant tissue fluorophores such as elastin, flavins, porphyrin, and lipofuscin. Images were analyzed using a new classification framework called fused-classification, designed to minimize interpatient variability, as an established support vector machine learning method. Normal, PTG, and OSSN regions were automatically detected and delineated, with accuracy evaluated against expert assessment by a specialist in OSSN pathology. Signals from spectral channels yielding signals from elastin, flavins, porphyrin, and lipofuscin were significantly different between regions classified as normal, PTG, and OSSN (p < 0.01). Differential diagnosis of PTG/OSSN and normal tissue had accuracy, sensitivity, and specificity of 88 ± 6%, 84 ± 10% and 91 ± 6%, respectively. Our automated diagnostic method generated maps of the reasonably well circumscribed normal/PTG and OSSN interface. PTG and OSSN margins identified by our automated analysis were in close agreement with the margins found in the H&E sections. Such a map can be rapidly generated on a real time basis and potentially used for intraoperative assessment.
Collapse
Affiliation(s)
- Abbas Habibalahi
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| | - Alexandra Allende
- Douglass Hanly Moir Pathology, Macquarie Park, NSW 2113, Australia;
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jesse Michael
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| | - Ayad G. Anwer
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| | - Jared Campbell
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| | - Saabah B. Mahbub
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| | - Chandra Bala
- Department of Ophthalmology, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Minas T. Coroneo
- Department of Ophthalmology, University of New South Wales at Prince of Wales Hospital, High Street, Randwick, NSW 2031, Australia;
| | - Ewa M. Goldys
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| |
Collapse
|