1
|
Ramakrishnan M, Papolu PK, Mullasseri S, Zhou M, Sharma A, Ahmad Z, Satheesh V, Kalendar R, Wei Q. The role of LTR retrotransposons in plant genetic engineering: how to control their transposition in the genome. PLANT CELL REPORTS 2023; 42:3-15. [PMID: 36401648 DOI: 10.1007/s00299-022-02945-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
We briefly discuss that the similarity of LTR retrotransposons to retroviruses is a great opportunity for the development of a genetic engineering tool that exploits intragenic elements in the plant genome for plant genetic improvement. Long terminal repeat (LTR) retrotransposons are very similar to retroviruses but do not have the property of being infectious. While spreading between its host cells, a retrovirus inserts a DNA copy of its genome into the cells. The ability of retroviruses to cause infection with genome integration allows genes to be delivered to cells and tissues. Retrovirus vectors are, however, only specific to animals and insects, and, thus, are not relevant to plant genetic engineering. However, the similarity of LTR retrotransposons to retroviruses is an opportunity to explore the former as a tool for genetic engineering. Although recent long-read sequencing technologies have advanced the knowledge about transposable elements (TEs), the integration of TEs is still unable either to control them or to direct them to specific genomic locations. The use of existing intragenic elements to achieve the desired genome composition is better than using artificial constructs like vectors, but it is not yet clear how to control the process. Moreover, most LTR retrotransposons are inactive and unable to produce complete proteins. They are also highly mutable. In addition, it is impossible to find a full active copy of a LTR retrotransposon out of thousands of its own copies. Theoretically, if these elements were directly controlled and turned on or off using certain epigenetic mechanisms (inducing by stress or infection), LTR retrotransposons could be a great opportunity to develop a genetic engineering tool using intragenic elements in the plant genome. In this review, the recent developments in uncovering the nature of LTR retrotransposons and the possibility of using these intragenic elements as a tool for plant genetic engineering are briefly discussed.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Institute of Bamboo Research, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert's College (Autonomous), Kochi, 682018, Kerala, India
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Institute of Bamboo Research, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Institute of Bamboo Research, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, University of Helsinki, Biocenter 3, Viikinkaari 1, F1-00014, Helsinki, Finland.
- Institute of Plant Biology and Biotechnology (IPBB), Timiryazev Street 45, 050040, Almaty, Kazakhstan.
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
2
|
Orłowska R, Pachota KA, Dynkowska WM, Niedziela A, Bednarek PT. Androgenic-Induced Transposable Elements Dependent Sequence Variation in Barley. Int J Mol Sci 2021; 22:ijms22136783. [PMID: 34202586 PMCID: PMC8268840 DOI: 10.3390/ijms22136783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/10/2023] Open
Abstract
A plant genome usually encompasses different families of transposable elements (TEs) that may constitute up to 85% of nuclear DNA. Under stressful conditions, some of them may activate, leading to sequence variation. In vitro plant regeneration may induce either phenotypic or genetic and epigenetic changes. While DNA methylation alternations might be related, i.e., to the Yang cycle problems, DNA pattern changes, especially DNA demethylation, may activate TEs that could result in point mutations in DNA sequence changes. Thus, TEs have the highest input into sequence variation (SV). A set of barley regenerants were derived via in vitro anther culture. High Performance Liquid Chromatography (RP-HPLC), used to study the global DNA methylation of donor plants and their regenerants, showed that the level of DNA methylation increased in regenerants by 1.45% compared to the donors. The Methyl-Sensitive Transposon Display (MSTD) based on methylation-sensitive Amplified Fragment Length Polymorphism (metAFLP) approach demonstrated that, depending on the selected elements belonging to the TEs family analyzed, varying levels of sequence variation were evaluated. DNA sequence contexts may have a different impact on SV generated by distinct mobile elements belonged to various TE families. Based on the presented study, some of the selected mobile elements contribute differently to TE-related SV. The surrounding context of the TEs DNA sequence is possibly important here, and the study explained some part of SV related to those contexts.
Collapse
|
3
|
Orłowska R, Zimny J, Bednarek PT. Copper Ions Induce DNA Sequence Variation in Zygotic Embryo Culture-Derived Barley Regenerants. FRONTIERS IN PLANT SCIENCE 2021; 11:614837. [PMID: 33613587 PMCID: PMC7889974 DOI: 10.3389/fpls.2020.614837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 05/18/2023]
Abstract
In vitro tissue culture could be exploited to study cellular mechanisms that induce sequence variation. Altering the metal ion composition of tissue culture medium affects biochemical pathways involved in tissue culture-induced variation. Copper ions are involved in the mitochondrial respiratory chain and Yang cycle. Copper ions may participate in oxidative mutations, which may contribute to DNA sequence variation. Silver ions compete with copper ions to bind to the complex IV subunit of the respiratory chain, thus affecting the Yang cycle and DNA methylation. The mechanisms underlying somaclonal variation are unknown. In this study, we evaluated embryo-derived barley regenerants obtained from a single double-haploid plant via embryo culture under varying copper and silver ion concentrations and different durations of in vitro culture. Morphological variation among regenerants and the donor plant was not evaluated. Methylation-sensitive Amplified Fragment Length Polymorphism analysis of DNA samples showed DNA methylation pattern variation in CG and CHG (H = A, C, or T) sequence contexts. Furthermore, modification of in vitro culture conditions explained DNA sequence variation, demethylation, and de novo methylation in the CHG context, as indicated by analysis of variance. Linear regression indicated that DNA sequence variation was related to de novo DNA methylation in the CHG context. Mediation analysis showed the role of copper ions as a mediator of sequence variation in the CHG context. No other contexts showed a significant sequence variation in mediation analysis. Silver ions did not act as a mediator between any methylation contexts and sequence variation. Thus, incorporating copper ions in the induction medium should be treated with caution.
Collapse
Affiliation(s)
- Renata Orłowska
- Plant Breeding and Acclimatization Institute–National Research Institute, Błonie, Poland
| | | | | |
Collapse
|
4
|
Masuta Y, Kawabe A, Nozawa K, Naito K, Kato A, Ito H. Characterization of a heat-activated retrotransposon in Vigna angularis. BREEDING SCIENCE 2018; 68:168-176. [PMID: 29875600 PMCID: PMC5982181 DOI: 10.1270/jsbbs.17085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/19/2017] [Indexed: 05/14/2023]
Abstract
In plants, several transposable elements are conserved across species. We found a homolog of ONSEN, which is a heat-activated retrotransposon originally isolated from Arabidopsis thaliana, in Vigna. The ONSEN-like elements (VaONS) were detected in all the analyzed Japanese accessions of Vigna angularis (adzuki bean) by Southern blot analysis. However, VaONS sequences were observed to be polymorphic in the different accessions. Interestingly, extrachromosomal DNA (ecDNA) was detected in some accessions of adzuki bean, indicating the conserved heat-activation of VaONS. Furthermore, we successfully induced retrotransposition of VaONS in adzuki plant regenerated through callus. Findings of our study should provide a new tool for molecular breeding of adzuki bean.
Collapse
Affiliation(s)
- Yukari Masuta
- Faculty of Science, Hokkaido University,
Kita10 Nishi8, Kita-ku, Sapporo, Hokkaido 060-0810,
Japan
| | - Akira Kawabe
- Faculty of Life Sciences, Kyoto Sangyo University,
Kamigamo Motoyama, Kita-ku, Kyoto 603-8555,
Japan
| | - Kosuke Nozawa
- Graduate School of Life Science, Hokkaido University,
Kita10 Nishi8, Kita-ku, Sapporo, Hokkaido 060-0810,
Japan
| | - Ken Naito
- Genetic Resource Center, National Agriculture and Food Research Organization,
2-1-2, Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Atsushi Kato
- Faculty of Science, Hokkaido University,
Kita10 Nishi8, Kita-ku, Sapporo, Hokkaido 060-0810,
Japan
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University,
Kita10 Nishi8, Kita-ku, Sapporo, Hokkaido 060-0810,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
5
|
Masuta Y, Nozawa K, Takagi H, Yaegashi H, Tanaka K, Ito T, Saito H, Kobayashi H, Matsunaga W, Masuda S, Kato A, Ito H. Inducible Transposition of a Heat-Activated Retrotransposon in Tissue Culture. PLANT & CELL PHYSIOLOGY 2017; 58:375-384. [PMID: 28013279 DOI: 10.1093/pcp/pcw202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
A transposition of a heat-activated retrotransposon named ONSEN required compromise of a small RNA-mediated epigenetic regulation that includes RNA-directed DNA methylation (RdDM) machinery after heat treatment. In the current study, we analyzed the transcriptional and transpositional activation of ONSEN to better understand the underlying molecular mechanism involved in the maintenance and/or induction of transposon activation in plant tissue culture. We found the transposition of heat-primed ONSEN during tissue culture independently of RdDM mutation. The heat activation of ONSEN transcripts was not significantly up-regulated in tissue culture compared with that in heat-stressed seedlings, indicating that the transposition of ONSEN was regulated independently of the transcript level. RdDM-related genes were up-regulated by heat stress in both tissue culture and seedlings. The level of DNA methylation of ONSEN did not show any change in tissue culture, and the amount of ONSEN-derived small RNAs was not affected by heat stress. The results indicated that the transposition of ONSEN was regulated by an alternative mechanism in addition to the RdDM-mediated epigenetic regulation in tissue culture. We applied the tissue culture-induced transposition of ONSEN to Japanese radish, an important breeding species of the family Brassicaceae. Several new insertions were detected in a regenerated plant derived from heat-stressed tissues and its self-fertilized progeny, revealing the possibility of molecular breeding without genetic modification.
Collapse
Affiliation(s)
- Yukari Masuta
- Faculty of Science, Hokkaido University, Sappor, Japan
| | - Kosuke Nozawa
- Faculty of Science, Hokkaido University, Sappor, Japan
| | | | | | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Tasuku Ito
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Hideyuki Saito
- Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Seiji Masuda
- Faculty of Science, Hokkaido University, Sappor, Japan
| | - Atsushi Kato
- Faculty of Science, Hokkaido University, Sappor, Japan
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University, Sappor, Japan
| |
Collapse
|