1
|
Gong Y, Wang H, Wang X, Kuang D, Yuan C, Ju J. LncRNA OIP5-AS1 mediated miR-28-5p provides promising support for the diagnosis and prognosis of cholangiocarcinoma. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2025. [PMID: 39784718 DOI: 10.17235/reed.2024.10632/2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are major research factors in a variety of diseases, and lncRNA OIP5-AS1 (OIP5-AS1) was shown to mediate the progression of various tumors. This paper discusses how OIP5-AS1 could potentially be used for diagnosing and prognosticating cholangiocarcinoma (CHOL). METHODS The ENROCI project evaluated the OIP5-AS1 expression in CHOL samples and confirmed it using RT-qPCR. A bioinformatics database predicted the target gene of OIP5-AS1 in CHOL, which was then confirmed by luciferase activity assays. The CCK-8 and Transwell methods were employed to detect the changes in CHOL cell growth and migration levels after OIP5-AS1 knockdown. ROC and Kaplan-Meier curves were plotted to examine the diagnostic and prognostic functions of OIP5-AS1. RESULTS In CHOL tissues and cells, OIP5-AS1 was enhanced compared to the controls. Reducing OIP5-AS1 hampered the regulatory capacity of CHOL cells, and miR-28-5p inhibitor repaired this inhibition. Notably, OIP5-AS1 was observed to sponge and downregulate miR-28-5p, exhibiting high sensitivity and specificity (84.4% and 81.3%) in CHOL. G3BP1 was a direct target of miR-28-5p. Decreased OIP5-AS1 level was beneficial for survival (HR = 2.391, P = 0.024). CONCLUSION OIP5-AS1 targets and negatively mediates miR-28-5p/G3BP1 axis to promote the activity of CHOL cells, which may be a potential marker for diagnosis and prognosis of CHOL patients.
Collapse
Affiliation(s)
- Yanqing Gong
- Oncology, Guangzhou University of Chinese Medicine Shenzhen Hospital
| | - Huimin Wang
- Gastroenterology, The First Clinical Medical College Lanzhou University
| | - Xiaoming Wang
- Health Management Center, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao
| | - Deli Kuang
- Neurosurgery, Peking University Third Hospital Qinhuangdao Hospital
| | - Chunmiao Yuan
- Health Management Center, Peking University Third Hospital Qinhuangdao Hospital
| | - Jianhua Ju
- Hepatobiliary Pancreatic Surgery, Jiaozhou Branch of Shanghai East Hospital
| |
Collapse
|
2
|
Ye H, Li MY, Shi RH. Advances in understanding of mechanism of long non-coding RNA SNHG16 in digestive system tumors. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:405-411. [DOI: 10.11569/wcjd.v32.i6.405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
|
3
|
Kookli K, Soleimani KT, Amr EF, Ehymayed HM, Zabibah RS, Daminova SB, Saadh MJ, Alsaikhan F, Adil M, Ali MS, Mohtashami S, Akhavan-Sigari R. Role of microRNA-146a in cancer development by regulating apoptosis. Pathol Res Pract 2024; 254:155050. [PMID: 38199132 DOI: 10.1016/j.prp.2023.155050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 01/12/2024]
Abstract
Despite great advances in diagnostic and treatment options for cancer, like chemotherapy surgery, and radiation therapy it continues to remain a major global health concern. Further research is necessary to find new biomarkers and possible treatment methods for cancer. MicroRNAs (miRNAs), tiny non-coding RNAs found naturally in the body, can influence the activity of several target genes. These genes are often disturbed in diseases like cancer, which perturbs functions like differentiation, cell division, cell cycle, apoptosis and proliferation. MiR-146a is a commonly and widely used miRNA that is often overexpressed in malignant tumors. The expression of miR-146a has been correlated with many pathological and physiological changes in cancer cells, such as the regulation of various cell death paths. It's been established that the control of cell death pathways has a huge influence on cancer progression. To improve our understanding of the interrelationship between miRNAs and cancer cell apoptosis, it's necessary to explore the impact of miRNAs through the alteration in their expression levels. Research has demonstrated that the appearance and spread of cancer can be mitigated by moderating the expression of certain miRNA - a commencement of treatment that presents a hopeful approach in managing cancer. Consequently, it is essential to explore the implications of miR-146a with respect to inducing different forms of tumor cell death, and evaluate its potential to serve as a target for improved chemotherapy outcomes. Through this review, we provide an outline of miR-146a's biogenesis and function, as well as its significant involvement in apoptosis. As well, we investigate the effects of exosomal miR-146a on the promotion of apoptosis in cancer cells and look into how it could possibly help combat chemotherapeutic resistance.
Collapse
Affiliation(s)
- Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | | | - Eman Fathy Amr
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shakhnoza B Daminova
- Department of Prevention of Dental Diseases, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific affairs, Tashkent Medical Pediatric Institute, Bogishamol Street 223, Tashkent, Uzbekistan
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | | | | | - Saghar Mohtashami
- University of California Los Angeles, School of Dentistry, Los Angeles, CA, USA.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
4
|
Autophagy as a self-digestion signal in human cancers: Regulation by microRNAs in affecting carcinogenesis and therapy response. Pharmacol Res 2023; 189:106695. [PMID: 36780958 DOI: 10.1016/j.phrs.2023.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Autophagy is defined as a "self-digestion" signal, and it is a cell death mechanism its primary function is degrading toxic agents and aged organelles to ensure homeostasis in cells. The basic leve ls of autophagy are found in cells, and when its levels exceed to standard threshold, cell death induction is observed. Autophagy dysregulation in cancer has been well-documented, and regulation of this pathway by epigenetic factors, especially microRNAs (miRNAs), is interesting and noteworthy. miRNAs are considered short endogenous RNAs that do not encode functional proteins, and they are essential regulators of cell death pathways such as apoptosis, necroptosis, and autophagy. Accumulating data has revealed miRNA dysregulation (upregulation or downregulation) during tumor progression, and their therapeutic manipulation provides new insight into cancer therapy. miRNA/autophagy axis in human cancers has been investigated an exciting point is the dual function of both autophagy and miRNAs as oncogenic and onco-suppressor factors. The stimulation of pro-survival autophagy by miRNAs can increase the survival rate of tumor cells and mediates cancer metastasis via EMT inductionFurthermore, pro-death autophagy induction by miRNAs has a negative impact on the viability of tumor cells and decreases their survival rate. The miRNA/autophagy axis functions beyond regulating the growth and invasion of tumor cells, and they can also affect drug resistance and radio-resistance. These subjects are covered in the current review regarding the new updates provided by recent experiments.
Collapse
|
5
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Samsami M. A review on the role of ncRNAs in the pathogenesis of cholangiocarcinoma. Int J Biol Macromol 2023; 225:809-821. [PMID: 36400211 DOI: 10.1016/j.ijbiomac.2022.11.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Cholangiocarcinoma is a rare tumor but a challenging cancer in terms of pathological changes, clinical manifestations and therapeutic options. Recent studies have provided evidence for participation of non-coding RNAs in the carcinogenic process of cholangiocarcinoma. We demonstrate the role of long non-coding RNAs, microRNAs and circular RNAs in the pathogenesis of cholangiocarcinoma and highlight their significant position as therapeutic targets and biomarkers for this type of cancer. We also list a number of molecular axes comprising these non-coding RNAs that represent potential targets for therapeutic options in cholangiocarcinoma, based on their significant roles in the regulation of cell proliferation, differentiation and apoptosis of these cells.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sun W, Zhang X, He X, Zhang J, Wang X, Lin W, Wang X, Wu X. Long non-coding RNA SNHG16 silencing inhibits proliferation and inflammation in Mycobacterium tuberculosis-infected macrophages by targeting miR-140-5p expression. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105325. [PMID: 35779785 DOI: 10.1016/j.meegid.2022.105325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The study investigated the clinical diagnostic value of long non-coding RNA (LncRNA) small nucleolar RNA host gene 16 (SNHG16) and explored its underlying molecular mechanism through Mycobacterium tuberculosis (M. tuberculosiinfection of macrophages. METHODS RT-qPCR analysis of the serum SNHG16 levels of the 66 healthy individuals, 67 latent TB (LTB) patients, and 67 active TB (ATB) patients. The receiver-operating characteristic (ROC) curve to detect the clinical diagnostic value of SNHG16 in TB patients. In vitro, M. tuberculosis-infected macrophages, CCK-8 and ELISA to detect cell proliferation and inflammatory factor levels. Luciferase reported assay was performed to analyze the targeting relationship between SNHG16 and miR-140-5p. RESULTS SNHG16 was significantly elevated in TB patients, and among them, ATB patients were higher than LTB patients. ROC confirmed that SNHG16 could distinguish LTB patients from healthy controls, and ATB patients from LTB patients, and can be used as a good diagnostic biomarker for TB. M. tuberculosis infection increased SNHG16 levels and promoted the proliferation and inflammation in macrophages. However, SNHG16 silencing significantly reversed the effect of infection. miR-140-5p, a direct target miRNA of SNHG16, was down-regulated in TB patients and was negatively correlated with SNHG16. When miR-140-5p was inhibited, the alleviating effect of SNHG16 silencing on M. tuberculosis infection proliferation and inflammation was significantly reversed. CONCLUSION The present results suggested that SNHG16 may be a new diagnostic biomarker for TB patients and SNHG16 silencing may alleviate TB by inhibiting the proliferation of macrophages in TB by regulation miR-140-5p.
Collapse
Affiliation(s)
- Wenna Sun
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Xiushuang Zhang
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Xiong He
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Junxian Zhang
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Xiaomeng Wang
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Wen Lin
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - XiaoFeng Wang
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Xueqiong Wu
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China.
| |
Collapse
|
7
|
Sato K, Baiocchi L, Kennedy L, Zhang W, Ekser B, Glaser S, Francis H, Alpini G. Current Advances in Basic and Translational Research of Cholangiocarcinoma. Cancers (Basel) 2021; 13:3307. [PMID: 34282753 PMCID: PMC8269372 DOI: 10.3390/cancers13133307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a type of biliary tract cancer emerging from the biliary tree. CCA is the second most common primary liver cancer after hepatocellular carcinoma and is highly aggressive resulting in poor prognosis and patient survival. Treatment options for CCA patients are limited since early diagnosis is challenging, and the efficacy of chemotherapy or radiotherapy is also limited because CCA is a heterogeneous malignancy. Basic research is important for CCA to establish novel diagnostic testing and more effective therapies. Previous studies have introduced new techniques and methodologies for animal models, in vitro models, and biomarkers. Recent experimental strategies include patient-derived xenograft, syngeneic mouse models, and CCA organoids to mimic heterogeneous CCA characteristics of each patient or three-dimensional cellular architecture in vitro. Recent studies have identified various novel CCA biomarkers, especially non-coding RNAs that were associated with poor prognosis or metastases in CCA patients. This review summarizes current advances and limitations in basic and translational studies of CCA.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
| | - Leonardo Baiocchi
- Hepatology Unit, Department of Medicine, University of Tor Vergata, 00133 Rome, Italy;
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (W.Z.); (B.E.)
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (W.Z.); (B.E.)
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA;
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.K.); (H.F.); (G.A.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|