1
|
Azelee NIW, Noor NM, Rasid ZIA, Suhaimi SH, Salamun N, Jasman SM, Manas NHA, Hasham@Hisam R. Marine waste for nutraceutical and cosmeceutical production. VALORIZATION OF WASTES FOR SUSTAINABLE DEVELOPMENT 2023:241-272. [DOI: 10.1016/b978-0-323-95417-4.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
2
|
Mukherjee S, Chouhan KBS, Chandrakar M, Gupta P, Lal K, Mandal V. A cross talk based critical analysis of solvent free microwave extraction to accentuate it as the new normal for extraction of essential oil: an attempt to overhaul the science of distillation through a comprehensive tutelage. Crit Rev Food Sci Nutr 2022; 63:6960-6982. [PMID: 35142568 DOI: 10.1080/10408398.2022.2036694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microwave-assisted extraction (MAE) is a sustainable non-contact heating source and has been extensively researched for extraction of plant bioactives. There are various derivatives or modules available for MAE and solvent free microwave extraction (SFME) is one of them where by operational aspects of MAE have been maneuvered to make it compatible for extraction of essential oil (EO). This article makes an attempt to overhaul the science of distillation by revisiting SFME and trying to learn through a comprehensive tutelage comprising of 20 years of published literature in Web of Science so that a shrewd decision can be obtained through a cross talk based critical analysis on the science SFME. A total of 312 articles within the time frame of 2001-2020 were extracted from WOS and critically analyzed. Considering the various uncertainties involved with SFME the articles establishes some global working standards and tries to explore the dynamic relationship between plant part/genus and microwave power, microwave power and time, microwave power and extracted volatile principles, prioritizes plant family selection and also presents a research blueprint of SFME. A techno-commercial feasibility study has been presented for smooth industrial transition of SFME. The tutelage presented decodes the publication trends and SFME blueprint.
Collapse
Affiliation(s)
- Souvik Mukherjee
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India
| | | | - Monika Chandrakar
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India
| | - Pragya Gupta
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India
| | - Kajal Lal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India
| | - Vivekananda Mandal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India
| |
Collapse
|
3
|
A Combination of Aqueous Extraction and Ultrafiltration for the Purification of Phycocyanin from Arthrospira maxima. Microorganisms 2022; 10:microorganisms10020308. [PMID: 35208763 PMCID: PMC8880360 DOI: 10.3390/microorganisms10020308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
The purification of phycocyanin (PC) from Spirulina generally involves a combination of different techniques. Here, we report the results on PC yields from a combined aqueous extraction-ultrafiltration (UF) process of a strain of Arthrospira maxima cultivated in a farm devoted to producing PC with food-grade purity. Samples optimized from different biomass/solvent ratios were purified by using a polyethersulphone (PES) membrane with a molecular weight cut-off (MWCO) of 20 kDa. The UF system was operated at 2.0 ± 0.1 bar and at 24 ± 2 °C up to a volume concentration factor (VCF) of 5. A diafiltration (DF) process was conducted after UF in order to increase the PC recovery in the retentate. Samples were collected during both UF and DF processes in order to evaluate membrane productivity and PC purity. The average permeate fluxes of about 14.4 L/m2h were measured in the selected operating conditions and more than 96% of PC was rejected by the UF membrane independently ofthe extraction yields and times. The concentration of PC in the final retentate was 1.17 mg/mL; this confirmed the observed rejection and the final VCF of the process (about 5-fold when compared to the concentration of PC in the crude extract). In addition, the combination of UF and diafiltration allowed the removal of about 91.7% of the DNA from the crude extract, thereby improving the purity of the phycocyanin in the retentate fraction.
Collapse
|
4
|
Lee JH, Yoo H, Ahn YJ, Kim HJ, Kwon SR. Evaluation of the Antimicrobial Effect of Graphene Oxide Fiber on Fish Bacteria for Application in Aquaculture Systems. MATERIALS (BASEL, SWITZERLAND) 2022; 15:966. [PMID: 35160912 PMCID: PMC8840572 DOI: 10.3390/ma15030966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
The growing importance of the domestic aquaculture industry has led not only to its continuous development and expansion but also to an increase in the production of wastewater containing pathogenic microorganisms and antibiotic-resistant bacteria. As the existing water purification facilities have a high initial cost of construction, operation, and maintenance, it is necessary to develop an economical solution. Graphene oxide (GO) is a carbon-based nanomaterial that is easy to manufacture, inexpensive and has excellent antimicrobial properties. In this study, the antimicrobial effect of GO polyester fibers on seven species of fish pathogenic bacteria was analyzed to evaluate their effectiveness in water treatment systems and related products. As a result of incubating GO polyester fibers with seven types of fish pathogenic bacteria for 1, 6, and 12 h, there was no antimicrobial effect in Vibrio harveyi, V. scopthalmi, and Edwardsiella tarda. In contrast, GO fibers showed antimicrobial effects of more than 99% against A. hydrophila, S. parauberis, S. iniae, and P. piscicola, suggesting the potential use of GO fibers in water treatment systems.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea;
| | | | - Yu Jin Ahn
- SamhwanTF, Nowon-gu, Seoul 10848, Korea;
| | - Hyoung Jun Kim
- OIE Reference Laboratory for VHS, National Institute of Fisheries Science, Busan 46083, Korea
| | - Se Ryun Kwon
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea;
- Genome-Based BioIT Convergence Institute, Asan 31460, Korea
| |
Collapse
|
5
|
Quitério E, Soares C, Ferraz R, Delerue-Matos C, Grosso C. Marine Health-Promoting Compounds: Recent Trends for Their Characterization and Human Applications. Foods 2021; 10:3100. [PMID: 34945651 PMCID: PMC8702156 DOI: 10.3390/foods10123100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/24/2022] Open
Abstract
Seaweeds represent a rich source of biologically active compounds with several applications, especially in the food, cosmetics, and medical fields. The beneficial effects of marine compounds on health have been increasingly explored, making them an excellent choice for the design of functional foods. When studying marine compounds, several aspects must be considered: extraction, identification and quantification methods, purification steps, and processes to increase their stability. Advanced green techniques have been used to extract these valuable compounds, and chromatographic methods have been developed to identify and quantify them. However, apart from the beneficial effects of seaweeds for human health, these natural sources of bioactive compounds can also accumulate undesirable toxic elements with potential health risks. Applying purification techniques of extracts from seaweeds may mitigate the amount of excessive toxic components, ensuring healthy and safer products for commercialization. Furthermore, limitations such as stability and bioavailability problems, chemical degradation reactions during storage, and sensitivity to oxidation and photo-oxidation, need to be overcome using, for example, nanoencapsulation techniques. Here we summarize recent advances in all steps of marine products identification and purification and highlight selected human applications, including food and feed applications, cosmetic, human health, and fertilizers, among others.
Collapse
Affiliation(s)
- Eva Quitério
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (E.Q.); (R.F.)
| | - Cristina Soares
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (E.Q.); (R.F.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica Faculdade de Ciências, Universidade do Porto, R. do Campo Alegre, 4169-007 Porto, Portugal
| | - Cristina Delerue-Matos
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| | - Clara Grosso
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| |
Collapse
|
6
|
Reig M, Vecino X, Cortina JL. Use of Membrane Technologies in Dairy Industry: An Overview. Foods 2021; 10:foods10112768. [PMID: 34829049 PMCID: PMC8620702 DOI: 10.3390/foods10112768] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
The use of treatments of segregated process streams as a water source, as well as technical fluid reuse as a source of value-added recovery products, is an emerging direction of resource recovery in several applications. Apart from the desired final product obtained in agro-food industries, one of the challenges is the recovery or separation of intermediate and/or secondary metabolites with high-added-value compounds (e.g., whey protein). In this way, processes based on membranes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), could be integrated to treat these agro-industrial streams, such as milk and cheese whey. Therefore, the industrial application of membrane technologies in some processing stages could be a solution, replacing traditional processes or adding them into existing treatments. Therefore, greater efficiency, yield enhancement, energy or capital expenditure reduction or even an increase in sustainability by producing less waste, as well as by-product recovery and valorization opportunities, could be possible, in line with industrial symbiosis and circular economy principles. The maturity of membrane technologies in the dairy industry was analyzed for the possible integration options of membrane processes in their filtration treatment. The reported studies and developments showed a wide window of possible applications for membrane technologies in dairy industry treatments. Therefore, the integration of membrane processes into traditional processing schemes is presented in this work. Overall, it could be highlighted that membrane providers and agro-industries will continue with a gradual implementation of membrane technology integration in the production processes, referring to the progress reported on both the scientific literature and industrial solutions commercialized.
Collapse
Affiliation(s)
- Mònica Reig
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; (X.V.); (J.L.C.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4016184
| | - Xanel Vecino
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; (X.V.); (J.L.C.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain
| | - José Luis Cortina
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; (X.V.); (J.L.C.)
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain
- CETaqua, Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| |
Collapse
|
7
|
An Integrated Approach Based on NMR and HPLC–UV-ESI–MS/MS to Characterize Apple Juices and Their Nanofiltration (NF) Bioactive Extracts. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Berlinck RGS, Crnkovic CM, Gubiani JR, Bernardi DI, Ióca LP, Quintana-Bulla JI. The isolation of water-soluble natural products - challenges, strategies and perspectives. Nat Prod Rep 2021; 39:596-669. [PMID: 34647117 DOI: 10.1039/d1np00037c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering period: up to 2019Water-soluble natural products constitute a relevant group of secondary metabolites notably known for presenting potent biological activities. Examples are aminoglycosides, β-lactam antibiotics, saponins of both terrestrial and marine origin, and marine toxins. Although extensively investigated in the past, particularly during the golden age of antibiotics, hydrophilic fractions have been less scrutinized during the last few decades. This review addresses the possible reasons on why water-soluble metabolites are now under investigated and describes approaches and strategies for the isolation of these natural compounds. It presents examples of several classes of hydrosoluble natural products and how they have been isolated. Novel stationary phases and chromatography techniques are also reviewed, providing a perspective towards a renaissance in the investigation of water-soluble natural products.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
9
|
Cai M, Zhong H, Chu H, Zhu H, Sun P, Liao X. Forward osmosis concentration of high viscous polysaccharides of
Dendrobium officinale
: Process optimisation and membrane fouling analysis. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ming Cai
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang 310014 China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology) China National Light Industry Hangzhou Zhejiang 310014 China
| | - Huazhao Zhong
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang 310014 China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology) China National Light Industry Hangzhou Zhejiang 310014 China
| | - Haoqi Chu
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang 310014 China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology) China National Light Industry Hangzhou Zhejiang 310014 China
| | - Hua Zhu
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang 310014 China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology) China National Light Industry Hangzhou Zhejiang 310014 China
| | - Peilong Sun
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang 310014 China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology) China National Light Industry Hangzhou Zhejiang 310014 China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
- Beijing Key Laboratory for Food Nonthermal Processing National Engineering Research Center for Fruit & Vegetable Processing Beijing 100083 China
| |
Collapse
|
10
|
Ahmad Khorairi ANS, Sofian-Seng NS, Othaman R, Abdul Rahman H, Mohd Razali NS, Lim SJ, Wan Mustapha WA. A Review on Agro-industrial Waste as Cellulose and Nanocellulose Source and Their Potentials in Food Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1926478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Noor-Soffalina Sofian-Seng
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Rizafizah Othaman
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Hafeedza Abdul Rahman
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Noorul Syuhada Mohd Razali
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| |
Collapse
|
11
|
Tan L, Gong L, Wang S, Zhu Y, Zhang F, Zhang Y, Jin J. Superhydrophilic Sub-1-nm Porous Membrane with Electroneutral Surface for Nonselective Transport of Small Organic Molecules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38778-38787. [PMID: 32846469 DOI: 10.1021/acsami.0c10272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study of traditional Chinese medicines (TCMs) is receiving increasing attention worldwide because of their contribution to human health. Developing an effective and sustainable method for screening TCMs is highly desired to accelerate the modernization of TCMs. In this work, we report a neutrally charged membrane made of a positively charged polyelectrolyte electrostatically assembled on a negatively charged superhydrophilic nanoporous membrane. The composite membrane possesses stable electroneutrality in a wide pH range and can precisely and nonselectively separate various charged molecules in TCMs with a transmittance higher than 90% for molecules with molecular weight (Mw) < 400 and a high rejection of 90% for molecules with Mw > 800. In addition, the membrane exhibits a superior antifouling performance, and the recovery ratio observed during a continuous cycling test of a simulated TCM solution was more than 93%. The combination of superhydrophilicity and electroneutrality in a nanoporous membrane provides a new route for designing nanofiltration membranes for highly efficient molecule separation and is promising for screening TCMs.
Collapse
Affiliation(s)
- Lu Tan
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Li Gong
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Siyan Wang
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yuzhang Zhu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Feng Zhang
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
12
|
Matharu RK, Tabish TA, Trakoolwilaiwan T, Mansfield J, Moger J, Wu T, Lourenço C, Chen B, Ciric L, Parkin IP, Edirisinghe M. Microstructure and antibacterial efficacy of graphene oxide nanocomposite fibres. J Colloid Interface Sci 2020; 571:239-252. [DOI: 10.1016/j.jcis.2020.03.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 01/10/2023]
|
13
|
Abstract
The fruit juice industry is one of the food sectors that has invested the most in the implementation of new technologies, such as non-thermal technologies. Among them, membrane processes are considered today well-established separation techniques to support the production and marketing of innovative fruit juices designed to exploit the sensory characteristics and nutritional peculiarities of fresh fruits. Pressure-driven membrane operations, membrane distillation, osmotic distillation and pervaporation have been widely investigated in the last few decades to replace conventional technologies used in fruit juice processing industry (i.e., clarification, stabilization, concentration and recovery of aroma compounds). This paper will review the significant progresses on the use of membrane-based operations in fruit juice processing industry in the light of the growing interest towards products with improved safety, quality and nutritional value and sustainable processes characterized by low energy consumption and low environmental impact.
Collapse
|
14
|
Adetunji CO, Oloke JK, Phazang P, Sarin NB. Influence of eco-friendly phytotoxic metabolites from Lasiodiplodia pseudotheobromae C1136 on physiological, biochemical, and ultrastructural changes on tested weeds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9919-9934. [PMID: 31927737 DOI: 10.1007/s11356-020-07677-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
In this study, the active metabolites from both the wild strain of Lasiodiplodia pseudotheobromae C1136 and three genetically enhanced strains of C1136 were obtained through random mutagenesis. The effect of the active metabolites from these strains was evaluated in relation to physiological, biochemical, and ultrastructural changes on the leaves of two weeds (Amaranthus hybridus and Echinochloa crus-galli). The phytotoxic metabolites secreted by the genetically enhanced strains showed a decrease in the pigments (chl a, chl b, and carotenoids), carbohydrate content, and the amino acid profile. On the other hand, an increase in total phenols of the tested leaves was observed when compared with the untreated leaves. The scanning electron microscopy showed the presence of damages, necrosis, degradation, and ultrastructural changes on the tested leaf tissues of the weeds. Also, increased lipid peroxidation and electrolyte leakage were also observed on the tested weeds treated with phytotoxic metabolites secreted by the genetically enhanced strains. We also showed that the phytotoxins from the strains of C1136 are biocompatible and that it improved soil CO2 evolution, organic carbon content, and enzymatic activity (acidic and alkaline phosphatase, dehydrogenases, cellulase, catalase). The study validates the severe pathological effects of phytotoxic metabolites from the strains of C1136 on the leaves of the weeds presented in this study. The mode of action of the phytotoxic metabolites produced from this bioherbicidal isolates will go a long way in preventing environmental hazards.
Collapse
Affiliation(s)
- Charles Oluwaseun Adetunji
- Microbiology, Biotechnology, and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, Iyamho, Edo State, Nigeria.
- Laboratory of Genetic Manipulation for Stress Alleviation and Value Addition in Plants, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Julius Kola Oloke
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso, Oyo State, Nigeria
| | - Paomipem Phazang
- Laboratory of Genetic Manipulation for Stress Alleviation and Value Addition in Plants, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neera Bhalla Sarin
- Laboratory of Genetic Manipulation for Stress Alleviation and Value Addition in Plants, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
15
|
Microfiltration-mediated extraction of dextran produced by Leuconostoc mesenteroides SF3. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2019.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Shewale SP, Jadhav SV, Rathod VK. Hydrodynamic optimisation to control membrane fouling in glycyrrhizic acid (GA) recovery from the licorice root extract. Chem Ind 2019. [DOI: 10.1080/00194506.2019.1689184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- S. P. Shewale
- Chemical Engineering Department, Institute of Chemical Technology, Mumbai, India
- School of Chemical Engineering, MIT Academy of Engineering, Pune, India
| | - S. V. Jadhav
- Chemical Engineering Department, Institute of Chemical Technology, Mumbai, India
| | - V. K. Rathod
- Chemical Engineering Department, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
17
|
Pereira SB, Sousa A, Santos M, Araújo M, Serôdio F, Granja P, Tamagnini P. Strategies to Obtain Designer Polymers Based on Cyanobacterial Extracellular Polymeric Substances (EPS). Int J Mol Sci 2019; 20:E5693. [PMID: 31739392 PMCID: PMC6888056 DOI: 10.3390/ijms20225693] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023] Open
Abstract
Biopolymers derived from polysaccharides are a sustainable and environmentally friendly alternative to the synthetic counterparts available in the market. Due to their distinctive properties, the cyanobacterial extracellular polymeric substances (EPS), mainly composed of heteropolysaccharides, emerge as a valid alternative to address several biotechnological and biomedical challenges. Nevertheless, biotechnological/biomedical applications based on cyanobacterial EPS have only recently started to emerge. For the successful exploitation of cyanobacterial EPS, it is important to strategically design the polymers, either by genetic engineering of the producing strains or by chemical modification of the polymers. This requires a better understanding of the EPS biosynthetic pathways and their relationship with central metabolism, as well as to exploit the available polymer functionalization chemistries. Considering all this, we provide an overview of the characteristics and biological activities of cyanobacterial EPS, discuss the challenges and opportunities to improve the amount and/or characteristics of the polymers, and report the most relevant advances on the use of cyanobacterial EPS as scaffolds, coatings, and vehicles for drug delivery.
Collapse
Affiliation(s)
- Sara B. Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Aureliana Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Marina Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Filipa Serôdio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| |
Collapse
|
18
|
Díaz‐Montes E, Castro‐Muñoz R. Metabolites recovery from fermentation broths via pressure‐driven membrane processes. ASIA-PAC J CHEM ENG 2019. [DOI: 10.1002/apj.2332] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Elsa Díaz‐Montes
- Laboratorio de Biotecnología AlimentariaUnidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional (UPIBI‐IPN) Av. Acueducto s/n Col. Barrio La Laguna, Ticomán CP 07340 México City México
| | - Roberto Castro‐Muñoz
- Department of Inorganic TechnologyUniversity of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
- Tecnológico de Monterrey, Campus Toluca Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista 50110 Toluca de Lerdo México
| |
Collapse
|
19
|
Nayak A, Bhushan B. An overview of the recent trends on the waste valorization techniques for food wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:352-370. [PMID: 30590265 DOI: 10.1016/j.jenvman.2018.12.041] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 05/05/2023]
Abstract
A critical and up-to-date review has been conducted on the latest individual valorization technologies aimed at the generation of value-added by-products from food wastes in the form of bio-fuels, bio-materials, value added components and bio-based adsorbents. The aim is to examine the associated advantages and drawbacks of each technique separately along with the assessment of process parameters affecting the efficiency of the generation of the bio-based products. Challenges faced during the processing of the wastes to each of the bio-products have been explained and future scopes stated. Among the many hurdles encountered in the successful and high yield generation of the bio-products is the complexity and variability in the composition of the food wastes along with the high inherent moisture content. Also, individual technologies have their own process configurations and operating parameters which may affect the yield and composition of the desired end product. All these require extensive study of the composition of the food wastes followed by their effective pre-treatments, judicial selection of the technological parameters and finally optimization of not only the process configurations but also in relation to the input food waste material. Attempt has also been made to address the hurdles faced during the implementation of such technologies on an industrial scale.
Collapse
Affiliation(s)
- A Nayak
- Innovació i Recerca Industrial I Sostenible, S.L., 08860, Spain; Graphic Era University, Dehradun, 248002, India.
| | - Brij Bhushan
- Graphic Era University, Dehradun, 248002, India; Chemical Engineering Department, Universitat Politechnica Catalunya, UPC-BarcelonaTECH, Barcelona, 08860, Spain
| |
Collapse
|
20
|
Kelly N, Kelly A, O'Mahony J. Strategies for enrichment and purification of polyphenols from fruit-based materials. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Tundis R, Loizzo MR, Bonesi M, Sicari V, Ursino C, Manfredi I, Conidi C, Figoli A, Cassano A. Concentration of Bioactive Compounds from Elderberry (Sambucus nigra L.) Juice by Nanofiltration Membranes. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2018; 73:336-343. [PMID: 30090973 DOI: 10.1007/s11130-018-0686-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
For the first time the chemical profile, physico-chemical parameters, inhibition of carbohydrate hydrolysing enzymes associated with type 2 diabetes, and radical scavenging properties of Sambucus nigra L. (elderberry) juice treated by nanofiltration (NF) were investigated. Three commercial NF membranes with different molecular weight cut-off (MWCO) (400 and 1000 Da) and polymeric material (composite fluoro-polymer and polyethersulphone) were tested. According to HPLC analyses, most part of bioactive compounds were retained by the NF membranes producing a retentate fraction of interest for the production of functional foods. The NP030 membrane, a polyethersulphone membrane with a MWCO of 400 Da, exhibited the highest rejection towards phenolic compounds when compared with the other selected membranes. Accordingly, the produced retentate fractions exhibited the highest radical scavenging activity.
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende (CS), Italy
| | - Monica R Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende (CS), Italy.
| | - Marco Bonesi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende (CS), Italy
| | - Vincenzo Sicari
- Department of Agricultural Science, Mediterranean University of Reggio Calabria, Via Graziella, Feo di Vito, 89123, Reggio Calabria, Italy
| | - Claudia Ursino
- Italian National Research Council (ITM-CNR), Institute on Membrane Technology, via Pietro Bucci, 17/C, 87036, Rende (CS), Italy
| | - Ilaria Manfredi
- Italian National Research Council (ITM-CNR), Institute on Membrane Technology, via Pietro Bucci, 17/C, 87036, Rende (CS), Italy
| | - Carmela Conidi
- Italian National Research Council (ITM-CNR), Institute on Membrane Technology, via Pietro Bucci, 17/C, 87036, Rende (CS), Italy
| | - Alberto Figoli
- Italian National Research Council (ITM-CNR), Institute on Membrane Technology, via Pietro Bucci, 17/C, 87036, Rende (CS), Italy.
| | - Alfredo Cassano
- Italian National Research Council (ITM-CNR), Institute on Membrane Technology, via Pietro Bucci, 17/C, 87036, Rende (CS), Italy
| |
Collapse
|
22
|
Ruby-Figueroa R, Conidi C, Di Donna L, Cassano A. Recovery of bruteridin and melitidin from clarified bergamot juice by membrane operations. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- René Ruby-Figueroa
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación; Universidad Tecnológica Metropolitana; Santiago Chile
| | - Carmela Conidi
- Institute on Membrane Technology; ITM-CNR, c/o University of Calabria via P. Bucci; Rende Italy
| | - Leonardo Di Donna
- Department of Chemistry and Chemical Technologies; University of Calabria; Rende Italy
| | - Alfredo Cassano
- Institute on Membrane Technology; ITM-CNR, c/o University of Calabria via P. Bucci; Rende Italy
| |
Collapse
|
23
|
Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products. Int J Mol Sci 2018; 19:ijms19020351. [PMID: 29364859 PMCID: PMC5855573 DOI: 10.3390/ijms19020351] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/12/2018] [Accepted: 01/22/2018] [Indexed: 11/16/2022] Open
Abstract
Pressure-driven membrane-based technologies represent a valid approach to reduce the environmental pollution of several agro-food by-products. Recently, in relation to the major interest for natural compounds with biological activities, their use has been also addressed to the recovery, separation and fractionation of phenolic compounds from such by-products. In particular, tight ultrafiltration (UF) and nanolfiltration (NF) membranes have been recognized for their capability to recover phenolic compounds from several types of agro-food by-products. The separation capability of these membranes, as well as their productivity, depends on multiple factors such as membrane material, molecular weight cut-off (MWCO) and operating conditions (e.g., pressure, temperature, feed flow rate, volume reduction factor, etc.). This paper aims at providing a critical overview of the influence of these parameters on the recovery of phenolic compounds from agro-food by-products by using tight UF and NF membranes. The literature data are analyzed and discussed in relation to separation processes, molecule properties, membrane characteristics and other phenomena occurring in the process. Current extraction methodologies of phenolic compounds from raw materials are also introduced in order to drive the implementation of integrated systems for the production of actractive phenolic formulations of potential interest as food antioxidants.
Collapse
|
24
|
Comparing Nutrient Removal from Membrane Filtered and Unfiltered Domestic Wastewater Using Chlorella vulgaris. BIOLOGY 2018; 7:biology7010012. [PMID: 29351200 PMCID: PMC5872038 DOI: 10.3390/biology7010012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 11/29/2022]
Abstract
The nutrient removal efficiency of Chlorella vulgaris cultivated in domestic wastewater was investigated, along with the potential to use membrane filtration as a pre-treatment tool during the wastewater treatment process. Chlorella vulgaris was batch cultivated for 12 days in a bubble column system with two different wastewater treatments. Maximum uptake of 94.18% ammonium (NH4-N) and 97.69% ortho-phosphate (PO4-P) occurred in 0.2 μm membrane filtered primary wastewater. Membrane filtration enhanced the nutrient uptake performance of C. vulgaris by removing bacteria, protozoa, colloidal particles and suspended solids, thereby improving light availability for photosynthesis. The results of this study suggest that growing C. vulgaris in nutrient rich membrane filtered wastewater provides an option for domestic wastewater treatment to improve the quality of the final effluent.
Collapse
|
25
|
Brito JCMD, Bastos EMAF, Heneine LGD, Figueiredo KCDS. Fractionation of Apis mellifera venom by means of ultrafiltration: removal of phospholipase A 2. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180351s20160171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Cassano A, De Luca G, Conidi C, Drioli E. Effect of polyphenols-membrane interactions on the performance of membrane-based processes. A review. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Silva W, Romero J, Morales E, Melo R, Mendoza L, Cotoras M. RED WINE EXTRACT OBTAINED BY MEMBRANE-BASED SUPERCRITICAL FLUID EXTRACTION: PRELIMINARY CHARACTERIZATION OF CHEMICAL PROPERTIES. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2017. [DOI: 10.1590/0104-6632.20170342s20150631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- W. Silva
- University of Santiago de Chile, Chile
| | - J. Romero
- University of Santiago de Chile, Chile
| | | | - R. Melo
- University of Santiago de Chile, Chile
| | | | | |
Collapse
|
28
|
Conidi C, Cassano A, Caiazzo F, Drioli E. Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2016.09.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Romani A, Scardigli A, Pinelli P. An environmentally friendly process for the production of extracts rich in phenolic antioxidants from Olea europaea L. and Cynara scolymus L. matrices. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2835-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
|
31
|
Muñiz‐Márquez DB, Contreras JC, Rodríguez R, Mussatto SI, Teixeira JA, Aguilar CN. Biotechnological Production of Oligosaccharides: Advances and Challenges. ADVANCES IN FOOD BIOTECHNOLOGY 2015:381-392. [DOI: 10.1002/9781118864463.ch23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Cassano A, Conidi C, Figueroa RR, Muñoz RC. A two-step nanofiltration process for the production of phenolic-rich fractions from artichoke aqueous extracts. Int J Mol Sci 2015; 16:8968-87. [PMID: 25913377 PMCID: PMC4425118 DOI: 10.3390/ijms16048968] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/11/2015] [Accepted: 04/16/2015] [Indexed: 12/02/2022] Open
Abstract
Commercial nanofiltration (NF) membranes in spiral-wound configuration (NP030 from Microdyn Nadir and Desal DK from GE Water & Process Technologies) were used in a sequential design in order to produce a separated fraction of phenolic and sugar compounds from an aqueous artichoke extract. For both membranes, the effect of transmembrane pressure (TMP) on the permeation flux was evaluated. In optimized conditions of TMP, the NP030 membrane exhibited high rejections of apigenin, cynarin and chlorogenic acid (higher than 85%); on the other hand, very low rejections of fructose, glucose and sucrose (lower than 4%) were measured. Starting from an extract with a total antioxidant activity (TAA) of 5.28 mM trolox a retentate fraction with a TAA of 47.75 mM trolox was obtained. The NF permeate from the NP030 membrane was processed with the Desal DK membrane in optimized conditions of TMP producing a permeate stream free of phenolic and sugar compounds. Accordingly, as most part of phenolic compounds was removed in the first NF step, the concentration of sugar compounds in the NF retentate had much higher results than that of phenolic compounds.
Collapse
Affiliation(s)
- Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, via Pietro Bucci, 17/C, 87036 Rende (CS), Italy.
| | - Carmela Conidi
- Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, via Pietro Bucci, 17/C, 87036 Rende (CS), Italy.
| | - René Ruby Figueroa
- Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, via Pietro Bucci, 17/C, 87036 Rende (CS), Italy.
| | - Roberto Castro Muñoz
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnologia, Av. Acueducto, 5/n, Col. Barrio La Laguna Ticomán, C.P. 07340, Mexico.
| |
Collapse
|
33
|
|
34
|
Cassano A, Conidi C, Ruby-Figueroa R. Recovery of flavonoids from orange press liquor by an integrated membrane process. MEMBRANES 2014; 4:509-24. [PMID: 25116725 PMCID: PMC4194047 DOI: 10.3390/membranes4030509] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/14/2014] [Accepted: 07/30/2014] [Indexed: 11/24/2022]
Abstract
Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF) in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS) content of 10 g·100 g−1 was pre-concentrated by nanofiltration (NF) up to 32 g TSS 100 g−1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g−1, was performed by using an osmotic distillation (OD) apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g−1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF). The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, via Pietro Bucci, 17/C, I-87036 Rende (CS), Italy.
| | - Carmela Conidi
- Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, via Pietro Bucci, 17/C, I-87036 Rende (CS), Italy.
| | - René Ruby-Figueroa
- Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, via Pietro Bucci, 17/C, I-87036 Rende (CS), Italy.
| |
Collapse
|
35
|
Membrane performance and application of ultrafiltration and nanofiltration to ethanol/water extract of Eucalyptus bark. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.04.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Tompkins BD, Dennison JM, Fisher ER. H2O plasma modification of track-etched polymer membranes for increased wettability and improved performance. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2012.10.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Cooper A, Oldinski R, Ma H, Bryers JD, Zhang M. Chitosan-based nanofibrous membranes for antibacterial filter applications. Carbohydr Polym 2013; 92:254-9. [PMID: 23218292 PMCID: PMC3579628 DOI: 10.1016/j.carbpol.2012.08.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 08/27/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
Abstract
Nanofibrous membranes have drawn considerable interest for filtration applications due to their ability to withstand high fluid flux while removing micro- and nano-sized particulates from solution. The desire to introduce an antibacterial function into water filter applications presents a challenge to widespread application of fibrous membranes because the addition of chemicals or biocides may produce harmful byproducts downstream. Here, we report the development of chitosan-polycaprolactone (PCL) nanofibrous membranes to utilize the natural antibacterial property of chitosan for antibacterial water filtration. Chitosan-PCL fibers with diameters of 200-400 nm and chitosan contents of 25, 50 and 75 wt% were prepared by electrospinning. In a series of bacterial challenge tests, chitosan-PCL fibrous membranes significantly reduced Staphylococcus aureus adhesion compared to PCL fibrous membranes. In water permeability and particulate size removal tests, fibrous membranes with 25% chitosan supported the greatest water flux (∼7000 L/h/m(2)) with 100% removal of 300-nm particulates, while maintaining the membrane integrity. This study demonstrates the potential of chitosan-PCL nanofibrous membranes as pre-filters for water filtration systems that demonstrate combinatorial filtration and intrinsic antibacterial advantages.
Collapse
Affiliation(s)
- Ashleigh Cooper
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Rachael Oldinski
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Hongyan Ma
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - James D. Bryers
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
38
|
Rao AB, Reddy GR, Ernala P, Sridhar S, Ravikumar YVL. An improvised process of isolation, purification of steviosides fromStevia rebaudianaBertoni leaves and its biological activity. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.03134.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adari B. Rao
- Organic Chemistry Division; Indian Institute of Chemical Technology; Hyderabad-7; India
| | - Goka R. Reddy
- Organic Chemistry Division; Indian Institute of Chemical Technology; Hyderabad-7; India
| | - Prasad Ernala
- Organic Chemistry Division; Indian Institute of Chemical Technology; Hyderabad-7; India
| | - Sundergopal Sridhar
- Chemical Engineering Division; Indian Institute of Chemical Technology; Hyderabad-7; India
| | | |
Collapse
|
39
|
Koncsag CI, Kirwan K. A membrane screening for the separation/concentration of dilignols and trilignols from solvent extracts. Sep Purif Technol 2012. [DOI: 10.1016/j.seppur.2012.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Rao AB, Prasad E, Sridhar GRS, Ravikumar YVL. Simple extraction and membrane purification process in isolation of steviosides with improved organoleptic activity. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abb.2012.34048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
|
42
|
Sato A, Wang R, Ma H, Hsiao BS, Chu B. Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability. JOURNAL OF ELECTRON MICROSCOPY 2011; 60:201-209. [PMID: 21562026 DOI: 10.1093/jmicro/dfr019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We demonstrate a new class of composite fibrous membranes, consisting of an ultra-fine cellulose nanofibrous network infused into an electrospun polyacrylonitrile (PAN) nanofibrous scaffold on a melt-blown polyethylene terephthalate (PET) non-woven substrate for water purification. Depending on the infusion process and the ultra-fine cellulose nanofibers (UFCNs) used [e.g. modified ultra-fine cellulose nanofibers (m-UFCNs) or microcrystalline cellulose nanofibers (MCCNs)], different nanostructured scaffolds were formed as seen by electron microscopy. Membranes with UFCNs consist of an interwoven two-dimensional ultra-fine nanofibrous network that is deeply entangled with the electrospun scaffold and organized in a quasi-three-dimensional fashion, while those with MCCNs tend to locally wrap around the electrospun scaffolding nanofibers without forming a major network. Filtration tests illustrated that both membranes, while maintaining high permeation flux, exhibited excellent retention capabilities for simultaneous sieving for bacteria and adsorption for viruses.
Collapse
Affiliation(s)
- Anna Sato
- Ward Melville High School, East Setauket, NY 11733, USA.
| | | | | | | | | |
Collapse
|
43
|
Highlighting reviews. Biotechnol Lett 2010. [DOI: 10.1007/s10529-010-0477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|