1
|
Wang Y, Wan F, Xue H, Hang Y, Pei C, Lu Y. Molecular mechanism of selenite reduction by Bacillus amyloliquefaciens BB61 based on transcriptome analysis. Biochimie 2025; 233:36-46. [PMID: 39988052 DOI: 10.1016/j.biochi.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/15/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
The microbial conversion of selenite represents an effective detoxification and assimilation process, although the underlying mechanisms remain incompletely understood. In this study, strain BB61 was a probiotic isolated from piglet feces and identified as Bacillus amyloliquefaciens, which could almost completely reduce 0.1 g/L Na2SeO3 to SeNPs within 48h. We investigated the potential mechanisms of selenite reduction in this strain through transcriptome sequencing and qPCR. The transcriptome analysis revealed the up-regulation of 829 genes and the down-regulation of 892 genes in response to 1 g/L Se treatment (padj <0.05) in Bacillus amyloliquefaciens BB61. GO (Gene Ontology) enrichment analysis indicated that DEGs (Differentially expressed genes) were predominantly associated with transmembrane transporters, ion transmembrane transport, cytoplasmic and cell membrane composition, cell movement and localization, and carbon metabolism. Additionally, the KEGG (Encyclopedia of Genes and Genomes) pathway annotation analysis revealed that the DEGs were primarily involved in the pentose phosphate pathway, pyruvate metabolism, pyrimidine metabolism, cofactor biosynthesis, and other pathways (P < 0.05). Among the highly expressed reductases, thioredoxin reductase (TrxA/B), nitrite reductase (NfsA), and selenite reductase (NamA) were all found to be up-regulated. Consequently, this study established a reduction pathway model for Se (IV), offering new insights into the molecular mechanisms underlying the bioreduction of selenite to form SeNPs.
Collapse
Affiliation(s)
- Yujie Wang
- College of Animal Science, Shanxi Agricultural University, Shanxi, 030801, China; Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai, 201106, China
| | - Fan Wan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai, 201106, China
| | - Huiqin Xue
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai, 201106, China
| | - Yiqiong Hang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai, 201106, China
| | - Caixia Pei
- College of Animal Science, Shanxi Agricultural University, Shanxi, 030801, China.
| | - Yang Lu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China; Shanghai Engineering Research Center of Breeding Pig, Shanghai, 201106, China.
| |
Collapse
|
2
|
Soós Á, Kovács B, Takács T, Rékási M, Dobosy P, Szőke C, Dernovics M, Ragályi P. Assignment of low-molecular-weight selenometabolites in the root section of white cabbage. PLANTA 2025; 261:71. [PMID: 40025298 PMCID: PMC11872985 DOI: 10.1007/s00425-025-04651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
MAIN CONCLUSION Quantitative and qualitative selenium speciation analyses of the root of white cabbage reveal the presence of elemental Se, selenate, selenomethionine and deaminated derivatives of selenohomolanthionine. White cabbage (Brassica oleracea convar. capitata var. alba) is one of the most consumed vegetable brassicas of the Brassica oleracea species whose production is compatible with the recent strip-till and no-till type farming policies. White cabbage has been in the focus of selenium research for decades as a possible source of food-derived selenium supplementation; however, the root section of the plant has hardly been targeted, being a by-product that is left in or plowed into the soil to serve as an organic fertilizer. The root of selenium-enriched white cabbage, planted on three different soil types (sand, silty sand, and silt), was analyzed for selenium speciation with the complementary use of liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS) and electrospray ionization high-resolution mass spectrometry (LC-ESI-HR-MS) methods after orthogonal (anion/cation exchange) chromatographic purification. Elemental selenium (Se0) was the major selenospecies in all cases, accounting for 28-43% of total selenium content. Water and proteolytic extractions could recover a median of 28% of total selenium through the quantification of selenate and selenomethionine, leaving a series of selenocompounds unassigned. Among these latter species, accounting for up to an additional 6% of total selenium, eight low-molecular-weight selenocompounds were detected; five out of the eight compounds could be tentatively identified as deaminated derivatives of selenohomolanthionine.
Collapse
Affiliation(s)
- Áron Soós
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, Debrecen, 4032, Hungary
| | - Béla Kovács
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, Debrecen, 4032, Hungary
| | - Tünde Takács
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Fehérvári út 132-144, Budapest, 1116, Hungary
| | - Márk Rékási
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Fehérvári út 132-144, Budapest, 1116, Hungary
| | - Péter Dobosy
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary
| | - Csaba Szőke
- Department of Maize Breeding, Agricultural Institute, HUN-REN Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Mihály Dernovics
- Department of Plant Physiology and Metabolomics, Agricultural Institute, HUN-REN Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary.
| | - Péter Ragályi
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Fehérvári út 132-144, Budapest, 1116, Hungary
| |
Collapse
|
3
|
Lashani E, Moghimi H, J Turner R, Amoozegar MA. Selenite bioreduction by a consortium of halophilic/halotolerant bacteria and/or yeasts in saline media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121948. [PMID: 37270053 DOI: 10.1016/j.envpol.2023.121948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Selenium oxyanions are released into environments by natural and anthropogenic activities and are present in agricultural and glass manufacturing wastewater in several locations worldwide. Excessive amounts of this metalloid have adverse effects on the health of living organisms. Halophilic and halotolerant microorganisms were selected for selenium oxyanions remediation due to presence of significant amount of salt in selenium-containing wastewater. Effects of aeration, carbon sources, competitive electron acceptors, and reductase inhibitors were investigated on SeO32- bio-removal. Additionally, NO3--containing wastewater were exploited to investigate SeO32- remediation in synthetic agricultural effluents. The results showed that the SeO32- removal extent is maximum in aerobic conditions with succinate as a carbon source. SO42- and PO43- do not significantly interfere with SeO32- reduction, while WO42- and TeO32- decrease the SeO32- removal percentage (up to 35 and 37%, respectively). Furthermore, NO3- had an adverse effect on SeO32- biotransformation by our consortia. All consortia reduced SeO32- in synthetic agricultural wastewaters with a 45-53% removal within 120 h. This study suggests that consortia of halophilic/halotolerant bacteria and yeasts could be applied to treat SeO32--contaminated drainage water. In addition, sulphates, and phosphates do not interfere with selenite bioreduction by these consortia, which makes them suitable candidates for the bioremediation of selenium-containing wastewater.
Collapse
Affiliation(s)
- Elham Lashani
- Extremophiles Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Raymond J Turner
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Cruz DM, Mostafavi E, Vernet-Crua A, O’Connell CP, Barabadi H, Mobini S, Cholula-Díaz JL, Guisbiers G, García-Martín JM, Webster TJ. Green nanotechnology and nanoselenium for biomedical applications. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
5
|
Mostafavi E, Medina-Cruz D, Truong LB, Kaushik A, Iravani S. Selenium-based nanomaterials for biosensing applications. MATERIALS ADVANCES 2022; 3:7742-7756. [PMID: 36353516 PMCID: PMC9619417 DOI: 10.1039/d2ma00756h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/11/2022] [Indexed: 05/03/2023]
Abstract
The unique chemical and physical features of nanomaterials make them ideal for developing new and better sensing devices, particularly biosensors. Various types of nanoparticles, including metal, oxide, and semiconductor nanostructures, have been utilized to manufacture biosensors, and each kind of nanoparticle plays a unique role in the sensing system. Nanoparticles provide critical roles such as immobilizing biomolecules, catalyzing electrochemical processes, enhancing electron transport between electrode surfaces and proteins, identifying biomolecules, and even functioning as the reactant for the catalytic reaction. Among all the potential nanosystems to be used in biosensors, selenium nanoparticle (SeNP) features have sparked a growing interest in their use in bridging biological recognition events and signal transduction, as well as in developing biosensing devices with novel applications for identification, quantification, and study of different analytes of biological relevance. The optical, physical, and chemical characteristics of differently shaped SeNPs opened up a world of possibilities for developing biosensors of biomedical interest. The outstanding biocompatibility, conductivity, catalytic characteristics, high surface-to-volume ratio, and high density of SeNPs have enabled their widespread use in developing electrochemical biosensors with superior analytical performance compared to other designs of biosensors. This review summarizes recent and ongoing advances, current challenges, and future research perspectives on real-world applications of Se-based nanobiosensors to detect biologically relevant analytes such as hydrogen peroxide, heavy metals, or glucose. Due to the superior properties and multifunctionality of Se-NPs biosensors, these structures can open up considerable new horizons in the future of healthcare and medicine.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine Stanford CA 94305 USA
- Department of Medicine, Stanford University School of Medicine Stanford CA 94305 USA
| | - David Medina-Cruz
- Chemical Engineering Department, Northeastern University Boston MA 02115 USA
| | - Linh B Truong
- Chemical Engineering Department, Northeastern University Boston MA 02115 USA
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University Lakeland FL-33805 USA
- School of Engineering, University of Petroleum and Energy Studies (UPES) Dehradun Uttarakhand India
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
6
|
Wang Z, Wang Y, Gomes RL, Gomes HI. Selenium (Se) recovery for technological applications from environmental matrices based on biotic and abiotic mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128122. [PMID: 34979385 DOI: 10.1016/j.jhazmat.2021.128122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Selenium (Se) is an essential element with application in manufacturing from food to medical industries. Water contamination by Se is of concern due to anthropogenic activities. Recently, Se remediation has received increasing attention. Hence, different types of remediation techniques are listed in this work, and their potential for Se recovery is evaluated. Sorption, co-precipitation, coagulation and precipitation are effective for low-cost Se removal. In photocatalytic, zero-valent iron and electrochemical systems, the above mechanisms occur with reduction as an immobilization and detoxification process. In combination with magnetic separation, the above techniques are promising for Se recovery. Biological Se oxyanions reduction has been widely recognized as a cost-effective method for Se remediation, simultaneously generating biosynthetic Se nanoparticles (BioSeNPs). Increasing the extracellular production of BioSeNPs and controlling their morphology will benefit its recovery. However, the mechanism of the microbial production of BioSeNPs is not well understood. Se containing products from both microbial reduction and abiotic methods need to be refined to obtain pure Se. Eco-friendly and cost-effective Se refinery methods need to be developed. Overall, this review offers insight into the necessity of shifting attention from Se remediation to Se recovery.
Collapse
Affiliation(s)
- Zhongli Wang
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Yanming Wang
- Sustainable Process Technologies Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Helena I Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
7
|
Sabuda MC, Rosenfeld CE, DeJournett TD, Schroeder K, Wuolo-Journey K, Santelli CM. Fungal Bioremediation of Selenium-Contaminated Industrial and Municipal Wastewaters. Front Microbiol 2020; 11:2105. [PMID: 33013769 PMCID: PMC7507899 DOI: 10.3389/fmicb.2020.02105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Selenium (Se) is an essential element for most organisms yet can cause severe negative biological consequences at elevated levels. The oxidized forms of Se, selenate [Se(VI)] and selenite [Se(IV)], are more mobile, toxic, and bioavailable than the reduced forms of Se such as volatile or solid phases. Thus, selenate and selenite pose a greater threat to ecosystems and human health. As current Se remediation technologies have varying efficiencies and costs, novel strategies to remove elevated Se levels from environments impacted by anthropogenic activities are desirable. Some common soil fungi quickly remove Se (IV and VI) from solution by aerobic reduction to solid or volatile forms. Here, we perform bench-scale culture experiments of two Se-reducing Ascomycota to determine their Se removal capacity in growth media conditions containing either Se(IV) or Se(VI) as well as in Se-containing municipal (∼25 μg/L Se) and industrial (∼2000 μg/L Se) wastewaters. Dissolved Se was measured throughout the experiments to assess Se concentration and removal rates. Additionally, solid-associated Se was quantified at the end of each experiment to determine the amount of Se removed to solid phases (e.g., Se(0) nanoparticles, biomass-adsorbed Se, or internal organic selenoproteins). Results show that under optimal conditions, fungi more efficiently remove Se(IV) from solution compared to Se(VI). Additionally, both fungi remove a higher percentage of Se from the filtered municipal wastewater compared to the industrial wastewater, though cultures in industrial wastewater retained a greater amount of solid-associated Se. Additional wastewater experiments were conducted with supplemental carbohydrate- or glycerin-based carbon products and additional nitrogen- and phosphorous-containing nutrients in some cases to enhance fungal growth. Relative to unamended wastewater experiments, supplemental carbohydrates promote Se removal from municipal wastewater but minimally impact industrial wastewater removal. This demonstrates that carbon availability and source impacts fungal Se reduction and removal from solution. Calculations to assess the leaching potential of solid-associated Se from fungal biomass show that wastewater Se release will not exceed regulatory limits. This study highlights the considerable potential for the mycoremediation of Se-contaminated wastewaters.
Collapse
Affiliation(s)
- Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, United States.,BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Carla E Rosenfeld
- Section of Minerals and Earth Sciences, Carnegie Museum of Natural History, Pittsburgh, PA, United States
| | | | - Katie Schroeder
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, United States.,Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, United States
| | | | - Cara M Santelli
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, United States.,BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
8
|
Afzal B, Yasin D, Husain S, Zaki A, Srivastava P, Kumar R, Fatma T. Screening of cyanobacterial strains for the selenium nanoparticles synthesis and their anti-oxidant activity. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Selenium reduction by a defined co-culture of Shigella fergusonii strain TB42616 and Pantoea vagans strain EWB32213-2. Bioprocess Biosyst Eng 2019; 42:1343-1351. [DOI: 10.1007/s00449-019-02134-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/21/2019] [Indexed: 10/26/2022]
|
10
|
Diffusion of Re(VII) and Se (IV) in compacted GMZ bentonite in the presence of Bacillus spp. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06455-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Wadgaonkar SL, Nancharaiah YV, Esposito G, Lens PNL. Environmental impact and bioremediation of seleniferous soils and sediments. Crit Rev Biotechnol 2018; 38:941-956. [DOI: 10.1080/07388551.2017.1420623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Yarlagadda V. Nancharaiah
- Biofouling and Biofilm Processes Section of Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, Tamil Nadu, India
- Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai, Maharashtra, India
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - Piet N. L. Lens
- UNESCO IHE Institute for Water Education, Delft, The Netherlands
| |
Collapse
|
12
|
Characterization, antioxidant property and cytoprotection of exopolysaccharide-capped elemental selenium particles synthesized by Bacillus paralicheniformis SR14. Carbohydr Polym 2017; 178:18-26. [DOI: 10.1016/j.carbpol.2017.08.124] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/23/2022]
|
13
|
Tugarova AV, Kamnev AA. Proteins in microbial synthesis of selenium nanoparticles. Talanta 2017; 174:539-547. [PMID: 28738620 DOI: 10.1016/j.talanta.2017.06.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/28/2017] [Accepted: 06/02/2017] [Indexed: 01/08/2023]
Abstract
Biogenic formation of nano-sized particles composed of various materials (in particular, selenium) by live microorganisms is widespread in nature. This phenomenon has been increasingly attracting the attention of researchers over the last decade not only owing to a range of diverse applications of such nanoparticles (NPs) in nanobiotechnology, but also because of the specificity of methodologies and mechanisms of NPs formation related to "green synthesis". In this mini-review, recent data are discussed on the multifaceted role of proteins in the processes of microbial reduction of selenium oxyanions and the formation of Se NPs. Besides the involvement of proteins in reducing selenites and selenates, their participation in the microbially driven growth and stabilisation of Se NPs is analysed, which results in the formation of unique nanostructured materials differing from those obtained chemically. This mini-review is thus focussed on proteins involved in microbial synthesis of Se NPs and on instrumental analysis of these processes and their products (biogenic nanostructured selenium particles functionalised by a surface-capping layer of various biomacromolecules).
Collapse
Affiliation(s)
- Anna V Tugarova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia.
| | - Alexander A Kamnev
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia.
| |
Collapse
|
14
|
Estevam EC, Griffin S, Nasim MJ, Denezhkin P, Schneider R, Lilischkis R, Dominguez-Alvarez E, Witek K, Latacz G, Keck C, Schäfer KH, Kieć-Kononowicz K, Handzlik J, Jacob C. Natural selenium particles from Staphylococcus carnosus: Hazards or particles with particular promise? JOURNAL OF HAZARDOUS MATERIALS 2017; 324:22-30. [PMID: 26897703 DOI: 10.1016/j.jhazmat.2016.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
Various bacteria, including diverse Staphylococci, reduce selenite to yield red selenium particles with diameters in the high nanometer to low micrometer range. Formation and accumulation of such particles in bacteria often results in cell death, triggered by a loss of thiols and formation of disruptive deposits inside the cell. Hence certain pathogenic bacteria are rather sensitive to the presence of selenite, whilst other organisms, such as small nematodes, do not employ this kind of nanotechnology, yet become affected by micromolar concentrations of such naturally generated materials. Selenium particles extracted from cultures of Staphylococcus carnosus and apparently stabilized by their natural protein coating, for instance, show considerable activity against the nematode Steinernema feltiae, Escherichia coli and Saccaromyces cerevisiae. Such natural nano- and micro-particles are also more active than mechanically generated selenium particles and may be applied as antimicrobial materials in Medicine and Agriculture.
Collapse
Affiliation(s)
| | - Sharoon Griffin
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbuecken, Germany; Applied Pharmacy Division, University of Applied Sciences, Kaiserslautern, 66953 Pirmasens, Germany; Department of Biotechnology, University of Applied Sciences, Kaiserslautern, 66482 Zweibruecken, Germany
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbuecken, Germany
| | - Polina Denezhkin
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbuecken, Germany
| | - Ramona Schneider
- Applied Pharmacy Division, University of Applied Sciences, Kaiserslautern, 66953 Pirmasens, Germany
| | - Rainer Lilischkis
- Department of Information Technology and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibruecken, Germany
| | - Enrique Dominguez-Alvarez
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Cracow, Poland
| | - Karolina Witek
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Cracow, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Cracow, Poland
| | - Cornelia Keck
- Applied Pharmacy Division, University of Applied Sciences, Kaiserslautern, 66953 Pirmasens, Germany
| | - Karl-Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences, Kaiserslautern, 66482 Zweibruecken, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Cracow, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Cracow, Poland
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbuecken, Germany.
| |
Collapse
|
15
|
Yang SI, George GN, Lawrence JR, Kaminskyj SGW, Dynes JJ, Lai B, Pickering IJ. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10343-10350. [PMID: 26824614 DOI: 10.1021/acs.est.5b04529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50-700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.
Collapse
Affiliation(s)
| | | | - John R Lawrence
- National Hydrology Research Centre, Environment Canada , Saskatoon, Saskatchewan S7N 3H5, Canada
| | | | - James J Dynes
- Canadian Light Source , Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Barry Lai
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | | |
Collapse
|
16
|
Yan ZY, Ai XX, Su YL, Liu XY, Shan XH, Wu SM. Intracellular Biosynthesis of Fluorescent CdSe Quantum Dots in Bacillus subtilis: A Strategy to Construct Signaling Bacterial Probes for Visually Detecting Interaction Between Bacillus subtilis and Staphylococcus aureus. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:13-21. [PMID: 26687198 DOI: 10.1017/s1431927615015548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, fluorescent Bacillus subtilis (B. subtilis) cells were developed as probes for imaging applications and to explore behaviorial interaction between B. subtilis and Staphylococcus aureus (S. aureus). A novel biological strategy of coupling intracellular biochemical reactions for controllable biosynthesis of CdSe quantum dots by living B. subtilis cells was demonstrated, through which highly luminant and photostable fluorescent B. subtilis cells were achieved with good uniformity. With the help of the obtained fluorescent B. subtilis cells probes, S. aureus cells responded to co-cultured B. subtilis and to aggregate. The degree of aggregation was calculated and nonlinearly fitted to a polynomial model. Systematic investigations of their interactions implied that B. subtilis cells inhibit the growth of neighboring S. aureus cells, and this inhibition was affected by both the growth stage and the amount of surrounding B. subtilis cells. Compared to traditional methods of studying bacterial interaction between two species, such as solid culture medium colony observation and imaging mass spectrometry detection, the procedures were more simple, vivid, and photostable due to the efficient fluorescence intralabeling with less influence on the cells' surface, which might provide a new paradigm for future visualization of microbial behavior.
Collapse
Affiliation(s)
- Zheng-Yu Yan
- 1Department of Analytical Chemistry,China Pharmaceutical University,24 Tongjia Lane,Gulou District,Nanjing 210009,China
| | - Xiao-Xia Ai
- 1Department of Analytical Chemistry,China Pharmaceutical University,24 Tongjia Lane,Gulou District,Nanjing 210009,China
| | - Yi-Long Su
- 1Department of Analytical Chemistry,China Pharmaceutical University,24 Tongjia Lane,Gulou District,Nanjing 210009,China
| | - Xin-Ying Liu
- 1Department of Analytical Chemistry,China Pharmaceutical University,24 Tongjia Lane,Gulou District,Nanjing 210009,China
| | - Xiao-Hui Shan
- 3Laizhou Entry-Exit Inspection and Quarantine Bureau,Laizhou 261400,China
| | - Sheng-Mei Wu
- 1Department of Analytical Chemistry,China Pharmaceutical University,24 Tongjia Lane,Gulou District,Nanjing 210009,China
| |
Collapse
|
17
|
Tugarova AV, Vetchinkina EP, Loshchinina EA, Burov AM, Nikitina VE, Kamnev AA. Reduction of selenite by Azospirillum brasilense with the formation of selenium nanoparticles. MICROBIAL ECOLOGY 2014; 68:495-503. [PMID: 24863127 DOI: 10.1007/s00248-014-0429-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
The ability to reduce selenite (SeO(3)(2-)) ions with the formation of selenium nanoparticles was demonstrated in Azospirillum brasilense for the first time. The influence of selenite ions on the growth of A. brasilense Sp7 and Sp245, two widely studied wild-type strains, was investigated. Growth of cultures on both liquid and solid (2 % agar) media in the presence of SeO(3)(2-) was found to be accompanied by the appearance of the typical red colouration. By means of transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and X-ray fluorescence analysis (XFA), intracellular accumulation of elementary selenium in the form of nanoparticles (50 to 400 nm in diameter) was demonstrated for both strains. The proposed mechanism of selenite-to-selenium (0) reduction could involve SeO(3)(2-) in the denitrification process, which has been well studied in azospirilla, rather than a selenite detoxification strategy. The results obtained point to the possibility of using Azospirillum strains as endophytic or rhizospheric bacteria to assist phytoremediation of, and cereal cultivation on, selenium-contaminated soils. The ability of A. brasilense to synthesise selenium nanoparticles may be of interest to nanobiotechnology for "green synthesis" of bioavailable amorphous red selenium nanostructures.
Collapse
Affiliation(s)
- Anna V Tugarova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049, Saratov, Russia,
| | | | | | | | | | | |
Collapse
|
18
|
Bao P, Huang H, Hu ZY, Häggblom M, Zhu YG. Impact of temperature, CO2
fixation and nitrate reduction on selenium reduction, by a paddy soil Clostridium
strain. J Appl Microbiol 2013. [DOI: 10.1111/jam.12084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- P. Bao
- State Key Lab of Urban and Regional Ecology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
| | - H. Huang
- State Key Lab of Urban and Regional Ecology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
| | - Z.-Y. Hu
- College of Resources and Environment; Graduate University of Chinese Academy of Sciences; Beijing China
| | - M.M. Häggblom
- Rutgers University; Department of Biochemistry and Microbiology; School of Environmental and Biological Sciences; New Brunswick NJ USA
| | - Y.-G. Zhu
- State Key Lab of Urban and Regional Ecology; Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
- Key Lab of Urban Environment and Health; Institute of Urban Environment, Chinese Academy of Sciences; Xiamen China
| |
Collapse
|
19
|
Bolan NS, Choppala G, Kunhikrishnan A, Park J, Naidu R. Microbial transformation of trace elements in soils in relation to bioavailability and remediation. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 225:1-56. [PMID: 23494555 DOI: 10.1007/978-1-4614-6470-9_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Nanthi S Bolan
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA, Australia,
| | | | | | | | | |
Collapse
|
20
|
Wang X, Liu G, Zhou J, Wang J, Jin R, Lv H. Quinone-mediated reduction of selenite and tellurite by Escherichia coli. BIORESOURCE TECHNOLOGY 2011; 102:3268-3271. [PMID: 21145234 DOI: 10.1016/j.biortech.2010.11.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 05/30/2023]
Abstract
The reduction of selenite (Se(IV)) and tellurite (Te(IV)) by Escherichia coli was significantly enhanced by various quinone redox mediators (lawsone, menadione, anthraquinone-2-sulfonate, and anthraquinone-2,6-disulfonate). In the presence of 0.2mM lawsone, over 99.1% Se(IV) and around 96.4% Te(IV) were reduced in 8 h, at average reduction rates of 9.1 and 7.6 mM g cell(-1) h(-1), respectively. Better mediated reduction of Se(IV) and Te(IV) were observed when lawsone concentration increased from 0.1 to 0.4 mM and cell concentration increased from 0.1 to 0.6 g l(-1), respectively. Transmission electron microscopy analysis revealed the formation of both intracellular and extracellular Se(0) nanospheres or Te(0) nanorods, and the presence of lawsone increased the formation and accumulation of extracellular precipitates. The efficient mediated microbial reduction of Se(IV)/Te(IV) may be exploited for pollution removal and biological nanomaterials production.
Collapse
Affiliation(s)
- Xiujuan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Dalian, China
| | | | | | | | | | | |
Collapse
|