1
|
Pérez E, Acosta J, Pisabarro V, Cordani M, dos Santos JCS, Sanz-Landaluze J, Gallo J, Bañobre-López M, Fernández-Lucas J. Novel Directed Enzyme Prodrug Therapy for Cancer Treatment Based on 2'-Deoxyribosyltransferase-Conjugated Magnetic Nanoparticles. Biomolecules 2024; 14:894. [PMID: 39199282 PMCID: PMC11352528 DOI: 10.3390/biom14080894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Directed enzyme prodrug therapy (DEPT) strategies show promise in mitigating chemotherapy side effects during cancer treatment. Among these, the use of immobilized enzymes on solid matrices as prodrug activating agents (IDEPT) presents a compelling delivery strategy, offering enhanced tumor targeting and reduced toxicity. Herein, we report a novel IDEPT strategy by employing a His-tagged Leishmania mexicana type I 2'-deoxyribosyltransferase (His-LmPDT) covalently attached to glutaraldehyde-activated magnetic iron oxide nanoparticles (MIONPs). Among the resulting derivatives, PDT-MIONP3 displayed the most favorable catalyst load/retained activity ratio, prompting its selection for further investigation. Substrate specificity studies demonstrated that PDT-MIONP3 effectively hydrolyzed a diverse array of 6-oxo and/or 6-amino purine 2'-deoxynucleosides, including 2-fluoro-2'-deoxyadenosine (dFAdo) and 6-methylpurine-2'-deoxyribose (d6MetPRib), both well-known prodrugs commonly used in DEPT. The biophysical characterization of both MIONPs and PDT-MIONPs was conducted by TEM, DLS, and single particle ICPMS techniques, showing an ideal nanosized range and a zeta potential value of -47.9 mV and -78.2 mV for MIONPs and PDT-MIONPs, respectively. The intracellular uptake of MIONPs and PDT-MIONPs was also determined by TEM and single particle ICPMS on HeLa cancer cell lines and NIH3T3 normal cell lines, showing a higher intracellular uptake in tumor cells. Finally, the selectivity of the PDT-MIONP/dFAdo IDEPT system was tested on HeLa cells (24 h, 10 µM dFAdo), resulting in a significant reduction in tumoral cell survival (11% of viability). Based on the experimental results, PDT-MIONP/dFAdo presents a novel and alternative IDEPT strategy, providing a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Elena Pérez
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
| | - Victor Pisabarro
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
| | - Marco Cordani
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain;
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790970, CE, Brazil;
| | - Jon Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemical Science, Universidad Complutense de Madrid, Avenida Complutense S/N, 28040 Madrid, Spain;
| | - Juan Gallo
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (J.G.); (M.B.-L.)
| | - Manuel Bañobre-López
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (J.G.); (M.B.-L.)
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain;
- Grupo de Investigación en Ciencias Naturales y Exactas—GICNEX, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Colombia
| |
Collapse
|
2
|
Jangra N, Kawatra A, Datten B, Gupta S, Gulati P. Recent trends in targeted delivery of smart nanocarrier-based microbial enzymes for therapeutic applications. Drug Discov Today 2024; 29:103915. [PMID: 38340953 DOI: 10.1016/j.drudis.2024.103915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Smart carrier-based immobilization has widened the use of enzymes for the treatment of several disorders. Large surface areas, tunable morphology, and surface modification ability aid the targeted and controlled release of therapeutic enzymes from such formulations. Smart nanocarriers, such as polymeric carriers, liposomes, and silica have also increased the stability, half-life, and permeability of these enzymes. In this review, summarize recent advances in the smart immobilization of microbial enzymes and their development as precision nanomedicine for the treatment of cancer, thrombosis, phenylketonuria (PKU), and wound healing. We also discuss the challenges and measures to be adopted for the successful clinical translation of these formulations.
Collapse
Affiliation(s)
- Nikita Jangra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anubhuti Kawatra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Bharti Datten
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Shefali Gupta
- Department of Industrial Microbiology, Sam Higginbottom University of Agriculture Technology and Sciences (SHUATS), Allahabad, Uttar Pradesh
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
3
|
Akerele G, Ramadan N, Renu S, Renukaradhya GJ, Shanmugasundaram R, Selvaraj RK. In vitro characterization and immunogenicity of chitosan nanoparticles loaded with native and inactivated extracellular proteins from a field strain of Clostridium perfringens associated with necrotic enteritis. Vet Immunol Immunopathol 2020; 224:110059. [PMID: 32408182 DOI: 10.1016/j.vetimm.2020.110059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
There are currently no licensed vaccines against Clostridium perfringens which causes necrotic enteritis in poultry. Chitosan nanoparticles were formulated with native (CN) or toxoids (CT) of extracellular proteins (ECP) of C. perfringens, both surface-tagged with Salmonella flagellar proteins. In a pH stability assay, CN and CT nanoparticles released 6% and 0% of their protein at 8.0 pH. In a protein release assay, CN and CT nanoparticles released 16% and 10% of their protein respectively at 7.4 pH after 24 h. CN and CT nanoparticles incubated at 100 μg/mL PBS with Chicken RBCs released 1% and 0% hemoglobin respectively. Ninety broilers were randomly assigned to treatments; sham-vaccinated (Control), CN-vaccinated (CN), and CT-vaccinated (CT). Each bird was orally gavaged with 50 μg vaccine in 0.5 mL PBS or 0.5 mL PBS only on d 0, 3, 7 and 14 of age. At 21 d of age, the CN group had higher anti-ECP IgA than control (P < 0.05). At 21 d of age, the CN and CT group had higher anti-ECP IgA than control (P < 0.05). At 17 d of age, the CN group had higher anti-flagellar IgG than control (P < 0.05). At 10 d of age, the CN group had higher anti-flagellar IgA than control (P < 0.05). Splenic T cells from chickens in the CN and CT group ex-vivo stimulated with 0.05 mg/mL ECP, had higher proliferation control (P < 0.05, P < 0.01 respectively). Splenic T cells from chickens in the CN and CT groups ex-vivo stimulated with 0.1 mg/mL ECP had proliferation than control (P < 0.05). Pooled serum from 17 d of age CN and CT-vaccinated birds partially neutralized toxins in 50 μg of ECP (P < 0.05). Pooled serum from 28 d of age CN-vaccinated birds also partially neutralized toxins in 50 μg of ECP. The result from this study indicates the potential for chitosan loaded with Clostridium perfringens extracellular proteins to be applied to necrotic enteritis challenge studies.
Collapse
Affiliation(s)
- Gabriel Akerele
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, United States
| | - Nour Ramadan
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, United States
| | - Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, 44691, OH, United States
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, 44691, OH, United States
| | | | - Ramesh K Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
4
|
Ahmad M, Manzoor K, Singh S, Ikram S. Chitosan centered bionanocomposites for medical specialty and curative applications: A review. Int J Pharm 2017; 529:200-217. [DOI: 10.1016/j.ijpharm.2017.06.079] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/22/2017] [Accepted: 06/24/2017] [Indexed: 01/01/2023]
|
5
|
Xu G, Shi T, Li M, Yu F, Chen Y. Difference between the effects of modification graphene oxide with two biomass molecules: Chitosan and cardanol. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-014-1906-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Yata VK, Gopinath P, Ghosh SS. Emerging implications of nonmammalian cytosine deaminases on cancer therapeutics. Appl Biochem Biotechnol 2012; 167:2103-16. [PMID: 22673971 DOI: 10.1007/s12010-012-9746-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
Abstract
Nonmammalian cytosine deaminases (CDs) have been investigated for last 30 years in the context of cancer therapy. The therapeutic effect of CD is based on its ability to catalyze the conversion of nontoxic prodrug 5-fluorocytosine (5FC) into the anticancer drug 5-fluorouracil (5FU) by deamination of the number 4 carbon of 5FC. This deamination property of CD has been explored to develop innovative therapeutic approach for treatment of cancer. A general overview is needed for the identification of efficient cytosine deaminases for potential use in cancer therapy. In this review, we have discussed about nonmammalian CDs for a variety of prodrug gene/enzyme therapy applications with several recent examples. Finally, we have provided a prospective on the future aspects of CDs and their applications in cancer therapy.
Collapse
Affiliation(s)
- Vinod Kumar Yata
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India
| | | | | |
Collapse
|