1
|
Soleymani S, Janati-Fard F, Housaindokht MR. Designing a bioadjuvant candidate vaccine targeting infectious bursal disease virus (IBDV) using viral VP2 fusion and chicken IL-2 antigenic epitope: A bioinformatics approach. Comput Biol Med 2023; 163:107087. [PMID: 37321098 DOI: 10.1016/j.compbiomed.2023.107087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
Infectious Bursal Disease (IBD) is a common and contagious viral infection that significantly affects the poultry industry. This severely suppresses the immune system in chickens, thereby threating their health and well-being. Vaccination is the most effective strategy for preventing and controlling this infectious agent. The development of VP2-based DNA vaccines combined with biological adjuvants has recently received considerable attention due to their effectiveness in eliciting both humoral and cellular immune responses. In this study, we applied bioinformatics tools to design a fused bioadjuvant candidate vaccine from the full-length sequence of the VP2 protein of IBDV isolated in Iran using the antigenic epitope of chicken IL-2 (chiIL-2). Furthermore, to improve the antigenic epitope presentation and to maintain the three-dimensional structure of the chimeric gene construct, the P2A linker (L) was used to fuse the two fragments. Our in-silico analysis for the design of a candidate vaccine indicates that a continuous sequence of amino acid residues ranging from 105 to 129 in chiIL-2 is proposed as a B cell epitope by epitope prediction servers. The final 3D structure of the VP2-L-chiIL-2105-129 was subjected to physicochemical property determination, molecular dynamic simulation, and antigenic site determination. The results of these analyses led to the development of a stable candidate vaccine that is non-allergenic and has the potential for antigenic surface display potential and adjuvant activity. Finally, it is necessary to investigate the immune response induced by our proposed vaccine in avian hosts. Notably, increasing the immunogenicity of DNA vaccines can be achieved by combining antigenic proteins with molecular adjuvants using the principle of rational vaccine design.
Collapse
Affiliation(s)
- Safoura Soleymani
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Fatemeh Janati-Fard
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Reza Housaindokht
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
2
|
Zeng Y, Gong Z, Wu B, Guan W, Yu S, An Y, Lu R, Zhao J, Wu Y, Huang Y, Wu X. A novel Bursin-like peptide as a potential virus inhibitor and immunity regulator in SPF chickens infected with recombinant ALV. BMC Vet Res 2019; 15:447. [PMID: 31823780 PMCID: PMC6902579 DOI: 10.1186/s12917-019-2192-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Avian leukosis viruses (ALVs) are important contagious suppressive factors of chicken immunity and growth performance, resulted in enormous economic loss. Although virus eradication programs are applied in breeder flocks, ALVs are still widespread globally. Therefore, other valuable adjunct to reduce the negative effect of ALVs should be considered. Bursin-like peptide (BLP) showed remarkable immunomodulatory effects, whereas their influence on ALV-infected avian groups has not been reported. Here, a designed hybrid BLP was expressed in E. coli. The purified BLP was injected subcutaneously weekly in SPF chickens congenitally infected with a natural ALV strain. Then the influences of this BLP on the growth performance, immune response and virus titer of ALV-infected chickens were determined. RESULTS This BLP injection significantly improved the body weights of ALV-infected birds (P < 0.05). BLP injection significantly enhanced organ index in the BF in ALV-infected birds (P < 0.05). The weekly injection of BLP significantly lengthened the maintenance time of antibodies against Newcastle disease virus (NDV) attenuated vaccine of ALV-infected birds (P < 0.05) and boosted the antibody titer against avian influenza virus (AIV) H5 inactive vaccine of mock chicken (P < 0.05). BLP injection in mock chickens enhanced the levels of serum cytokines (IL-2, IL-4 and interferon-γ) (P < 0.05). Surprisingly, the novel BLP significantly inhibited expression of the ALV gp85 gene in the thymus (P < 0.05), kidney (P < 0.05) and bursa of Fabricius (BF) (P < 0.01) of ALV-infected chickens. Both viral RNA copy number and protein level decreased significantly with BLP (50 μg/mL) inoculation before ALV infection in DF1 cells (P < 0.05). CONCLUSIONS This is the first report investigating the influence of BLP on the growth and immunity performance of chickens infected by ALV. It also is the first report about the antiviral effect of BLP in vivo and in vitro. This BLP expressed in E. coli showed potential as a vaccine adjuvant, growth regulator and antiretroviral drug in chickens to decrease the negative effects of ALV infection.
Collapse
Affiliation(s)
- Yukun Zeng
- College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China.,School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| | - Zuxin Gong
- College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Binbin Wu
- College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Wenchao Guan
- College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Shenyi Yu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| | - Yajuan An
- College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Rongbin Lu
- College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Jinrong Zhao
- College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yijian Wu
- College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yifan Huang
- College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Xiaoping Wu
- College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China. .,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
4
|
Cui D, Zhang J, Zuo Y, Huo S, Zhang Y, Wang L, Li X, Zhong F. Recombinant chicken interleukin-7 as a potent adjuvant increases the immunogenicity and protection of inactivated infectious bursal disease vaccine. Vet Res 2018; 49:10. [PMID: 29391066 PMCID: PMC5796573 DOI: 10.1186/s13567-017-0497-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/12/2017] [Indexed: 01/11/2023] Open
Abstract
Our previous work showed that a plasmid-based chicken interleukin-7 (chIL-7) gene expression vector possessed potent adjuvant activity for a VP2 DNA vaccine against chicken infectious bursal disease virus (IBDV). Whether recombinant chIL-7 prepared in procaryotic expression system has the adjuvant activity for inactivated IBDV vaccine remains unknown. Here, we prepared recombinant chIL-7 using an E. coli expression system and analyzed its adjuvant activity for the inactivated IBDV vaccine. The results show that the recombinant chIL-7 was successfully prepared in E. coli using the pET20b vector, which possessed biological activity to stimulate mouse B lymphocyte proliferation. Co-administration of the chIL-7 with inactivated IBDV vaccine significantly increased specific serum antibody titers against IBDV, enhanced lymphocyte proliferation and IFN-γ and IL-4 productions, and increased protection against virulent IBDV infection.
Collapse
Affiliation(s)
- Dan Cui
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine/College of Animal Science and Technology, Agricultural University of Hebei, Baoding, 071000, Hebei, China.,Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, 071000, Hebei, China
| | - Jianlou Zhang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine/College of Animal Science and Technology, Agricultural University of Hebei, Baoding, 071000, Hebei, China.,Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, 071000, Hebei, China
| | - Yuzhu Zuo
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine/College of Animal Science and Technology, Agricultural University of Hebei, Baoding, 071000, Hebei, China.,Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, 071000, Hebei, China
| | - Shanshan Huo
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine/College of Animal Science and Technology, Agricultural University of Hebei, Baoding, 071000, Hebei, China.,Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, 071000, Hebei, China
| | - Yonghong Zhang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine/College of Animal Science and Technology, Agricultural University of Hebei, Baoding, 071000, Hebei, China.,Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, 071000, Hebei, China
| | - Liyue Wang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine/College of Animal Science and Technology, Agricultural University of Hebei, Baoding, 071000, Hebei, China.,Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, 071000, Hebei, China
| | - Xiujin Li
- Department of Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, China.
| | - Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine/College of Animal Science and Technology, Agricultural University of Hebei, Baoding, 071000, Hebei, China. .,Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, 071000, Hebei, China.
| |
Collapse
|