1
|
Ma S, Ni J, Ye D, Kuang Y, Wang Z, Yang L. Human umbilical cord mesenchymal stem cells improve the survial of flaps by promoting angiogenesis in mice. Eur J Med Res 2025; 30:356. [PMID: 40312717 PMCID: PMC12046903 DOI: 10.1186/s40001-025-02602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/15/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Flap necrosis post-operation disturbs surgeons during plastic and reconstructive surgery. This is caused by hypoperfusion and subsequent ischemia-reperfusion injury, where restricted blood flow followed by restored circulation paradoxically exacerbates tissue damage. Mesenchymal stem cells, which show multidirectional differentiation, provide hematopoietic support and are involved in immune regulation and anti-fibrosis, have inspired research on improving the blood supply of flaps. METHODS Primary human umbilical cord mesenchymal stem cells (HuMSCs), were obtained and subcultured for expansion. The cells of the third generation were incubated in a gelatin sponge. Thirty Kunming mice were randomly divided into three groups, and saline, HuMSCs, and HuMSCs-CM were injected preoperatively into the skin of the back. The vessel density was assessed on the tenth day. Forty-eight Kunming mice were divided into two groups. Group A was subdivided into the saline group, HuMSCs, and HuMSCs-CM groups and pretreated as described above. In Group B, the intervention was changed from injection to subcutaneous embedding. Random flaps were made on the back in both groups on the tenth day after pretreatment. The survival rate of the flap was calculated on the seventh day. RESULTS HuMSCs-CM significantly increased the microvessel density on the tenth day after pretreatment. The flap survival rate was higher in the cell and CM groups, rising from approximately 13% to 60% in Group A, and to about 75% in Group B. Moreover, subcutaneous embedding of cell-carrying gelatin sponges improved flap survival compared to other interventions. CONCLUSION Improved cell incubation conditions can enhance its utility. The application of HuMSCs and their conditioned medium promoted the survival of the flap by inducing neovasculogenesis.
Collapse
Affiliation(s)
- Siyi Ma
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jintao Ni
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Danyan Ye
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuping Kuang
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhixia Wang
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lujun Yang
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
2
|
Cao YY, Ning J, Zhang RZ, Ge K, Huang TT. Characterization of CM-Dil-labeled Muse cells in culture and in skin wounds in rats. Cell Tissue Bank 2024; 25:285-294. [PMID: 36617377 DOI: 10.1007/s10561-022-10067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023]
Abstract
To investigate the characteristics of multilineage-differentiating stress-enduring (Muse) cells labeled with chloromethyl dialkylcarbocyanine (CM-Dil) in culture and in skin wounds of rats. Normal human dermal fibroblasts (NHDFs) were obtained from foreskins and were confirmed by immunocytochemistry with vimentin. Muse cells were derived from NHDFs using long-term trypsinization (LTT), were confirmed using immunocytochemistry with antibodies against stage specific embryonic antigen-3 (SSEA-3) and CD105 and were expanded in suspension cultures. The Muse cells were labeled with CM-Dil and were further evaluated with respect to their biological properties using CCK-8 assays and scratch tests. One hundred µl CM-Dil-labeled Muse cells at a concentration of 5 × 103/µl were injected subcutaneously at the edges of skin wounds in adult male SD rats. At weeks 1, 3 and 5 after the injection, the distribution of CM-Dil-labeled Muse cells in skin tissues was observed using immunofluorescence microscopy. Muse cells were double-positive for CD105 and SSEA-3. ALP staining of the M-clusters were positive and they displayed orange-red fluorescence after labelling with CM-Dil, which had no adverse effects on their viability, migration or differentiation capacity. One week after the subcutaneous injection of CM-Dil-labeled Muse cells, many cells with orange-red fluorescence were observed at the edges of the skin injuries; those fluorescent spots gradually decreased over time, and only a few Muse cells with fluorescence could be detected by week 5. CM-Dil can be used to label Muse cells without affecting their proliferation, migration or differentiation, and can be used for short-term tracking of Muse cells for the treatment of skin wounds in a rat model.
Collapse
Affiliation(s)
- Yan-Yun Cao
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jing Ning
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ru-Zhi Zhang
- The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Kang Ge
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ting-Ting Huang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
3
|
Yun WS, Cho H, Jeon SI, Lim DK, Kim K. Fluorescence-Based Mono- and Multimodal Imaging for In Vivo Tracking of Mesenchymal Stem Cells. Biomolecules 2023; 13:1787. [PMID: 38136656 PMCID: PMC10742164 DOI: 10.3390/biom13121787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The advancement of stem cell therapy has offered transformative therapeutic outcomes for a wide array of diseases over the past decades. Consequently, stem cell tracking has become significant in revealing the mechanisms of action and ensuring safe and effective treatments. Fluorescence stands out as a promising choice for stem cell tracking due to its myriad advantages, including high resolution, real-time monitoring, and multi-fluorescence detection. Furthermore, combining fluorescence with other tracking modalities-such as bioluminescence imaging (BLI), positron emission tomography (PET), photoacoustic (PA), computed tomography (CT), and magnetic resonance (MR)-can address the limitations of single fluorescence detection. This review initially introduces stem cell tracking using fluorescence imaging, detailing various labeling strategies such as green fluorescence protein (GFP) tagging, fluorescence dye labeling, and nanoparticle uptake. Subsequently, we present several combinations of strategies for efficient and precise detection.
Collapse
Affiliation(s)
- Wan Su Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; (W.S.Y.); (D.-K.L.)
| | - Hanhee Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| | - Seong Ik Jeon
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; (W.S.Y.); (D.-K.L.)
| | - Kwangmeyung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| |
Collapse
|
4
|
Ning J, Cao YY, Zhang RZ, Li Y. Characteristics of multilineage-differentiating stress-enduring cell clusters in different culture conditions. Skin Res Technol 2023; 29:e13528. [PMID: 38009041 PMCID: PMC10651948 DOI: 10.1111/srt.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
OBJECTIVE To observe the morphological characteristics of clusters of Muse cells from normal human dermal fibroblasts (NHDFs) under different culture conditions. METHODS Muse cells were sorted by magnetic activated cell sorting (MACS) from NHDFs, and were evaluated by flow cytometry. Muse cells were cultured in suspension and in adherent conditions to obtain Muse cell clusters (M-clusters), which were further characterized by alkaline phosphatase (AP) staining, immunofluorescence (IF) staining and transmission electron microscopy (TEM). The M-clusters were further cultured on Lando artificial dermal regeneration matrix (LADRM) for analysis by scanning electron microscopy (SEM) and IF staining of frozen sections. RESULTS The proportion of SSEA3 and CD105 double-positive cells obtained by MACS was 87.4%. The sorted cells rapidly formed M-clusters after suspension culture, and showed internal characteristics of stem cells under TEM. After adherent culture, M-clusters stained positively for AP, SSEA-3 and OCT-4. Each M-cluster on the surface of the LADRM displayed an outer membrane of amorphous materials under SEM. Frozen sections and fluorescence staining of LADRM loaded with M-clusters showed an uneven fluorescence intensity of SSEA-3 within the clusters. CONCLUSIONS Muse cells sorted by MACS from NHDFs could generate M-clusters, which included cells of different stemness and are wrapped in membrane-like structures.
Collapse
Affiliation(s)
- Jing Ning
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan-Yun Cao
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ru-Zhi Zhang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yue Li
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
5
|
Zheng JH, Zhang JK, Kong DS, Song YB, Zhao SD, Qi WB, Li YN, Zhang ML, Huang XH. Quantification of the CM-Dil-labeled human umbilical cord mesenchymal stem cells migrated to the dual injured uterus in SD rat. Stem Cell Res Ther 2020; 11:280. [PMID: 32660551 PMCID: PMC7359016 DOI: 10.1186/s13287-020-01806-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 05/29/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background Human umbilical cord mesenchymal stem cell (hUC-MSC) therapy is considered as a promising approach in the treatment of intrauterine adhesions (IUAs). Considerable researches have already detected hUC-MSCs by diverse methods. This paper aims at exploring the quantitative distribution of CM-Dil-labeled hUC-MSCs in different regions of the uterus tissue of the dual injury-induced IUAs in rats and the underlying mechanism of restoration of fertility after implantation of hUC-MSCs in the IUA model. Methods In this study, we investigated the quantification of the CM-Dil-labeled hUC-MSCs migrated to the dual injured uterus in Sprague Dawley rats. Additionally, we investigated the differentiation of CM-Dil-labeled hUC-MSCs. The differentiation potential of epithelial cells, vascular endothelial cells, and estrogen receptor (ER) cells were assessed by an immunofluorescence method using CK7, CD31, and ERα. The therapeutic impact of hUC-MSCs in the IUA model was assessed by hematoxylin and eosin, Masson, immunohistochemistry staining, and reproductive function test. Finally, the expression of TGF-β1/Smad3 pathway in uterine tissues was determined by qRT-PCR and Western blotting. Results The CM-Dil-labeled cells in the stroma region were significantly higher than those in the superficial myometrium (SM) (71.67 ± 7.98 vs. 60.92 ± 3.96, p = 0.005), in the seroma (71.67 ± 7.98 vs. 23.67 ± 8.08, p = 0.000) and in the epithelium (71.67 ± 7.98 vs. 4.17 ± 1.19, p = 0.000). From the 2nd week of treatment, hUC-MSCs began to differentiate into epithelial cells, vascular endothelial cells, and ER cells. The therapeutic group treated with hUC-MSCs exhibited a significant decrease in fibrosis (TGF-β1/Smad3) as well as a significant increase in vascularization (CD31) compared with the untreated rats. Conclusion Our findings suggested that the distribution of the migrated hUC-MSCs in different regions of the uterine tissue was unequal. Most cells were in the stroma and less were in the epithelium of endometrium and gland. Injected hUC-MSCs had a capacity to differentiate into epithelial cells, vascular endothelial cells, and ER cells; increase blood supply; inhibit fibration; and then restore the fertility of the IUA model.
Collapse
Affiliation(s)
- Jia-Hua Zheng
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing-Kun Zhang
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - De-Sheng Kong
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan-Biao Song
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shuang-Dan Zhao
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wen-Bo Qi
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ya-Nan Li
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ming-le Zhang
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiang-Hua Huang
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
6
|
Andrzejewska A, Jablonska A, Seta M, Dabrowska S, Walczak P, Janowski M, Lukomska B. Labeling of human mesenchymal stem cells with different classes of vital stains: robustness and toxicity. Stem Cell Res Ther 2019; 10:187. [PMID: 31238982 PMCID: PMC6593614 DOI: 10.1186/s13287-019-1296-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stem cell (MSC) transplantation has been explored as a new clinical approach to repair injured tissues. However, in order to evaluate the therapeutic activity of MSC, cell tracking techniques are required to determine the fate of transplanted cells in both preclinical and clinical studies. In these aspects, different vital stains offer the potential for labeling and monitoring of grafted cells in vivo. It is desirable to have tracking agents which have long-term stability, are not toxic to the cells, and do not affect cell function. Methods Here, we selected three different labels: CellTracker™ Green CMFDA, eGFP-mRNA (genetic pre-tag), and Molday ION Rhodamine B™ (nanoparticle-based fluorescent and magnetic label) and performed extensive analysis of their influence on in vitro expansion of human bone marrow-derived mesenchymal stem cells (hBM-MSCs), as well as potential of affecting therapeutic activity and the impact on the durability of staining. Results Our study showed that basic hBM-MSC characteristics and functions might be affected by labeling. We observed strong alterations of metabolic activity and morphology after eGFP and CellTracker™ Green CMFDA hBM-MSC staining. Molday ION Rhodamine B™ labeling revealed superior properties relatively to other vital stains. The relative expression level of most of the investigated growth factors remained stable after cell labeling, but we have observed some changes in the case of EGF, GDNF, HGF, and IGF gene expression. Conclusions Taken together, we suggest performing similar to ours extensive analysis prior to using any cell label to tag MSC in experiments, as it can thoroughly bias results. Electronic supplementary material The online version of this article (10.1186/s13287-019-1296-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Jablonska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Martyna Seta
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Sylwia Dabrowska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Walczak
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Miroslaw Janowski
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
7
|
Experimental Strategies of Mesenchymal Stem Cell Propagation: Adverse Events and Potential Risk of Functional Changes. Stem Cells Int 2019; 2019:7012692. [PMID: 30956673 PMCID: PMC6431404 DOI: 10.1155/2019/7012692] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/28/2018] [Accepted: 01/13/2019] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are attractive candidates for cell-based tissue repair approaches. Hundreds of clinical trials using MSCs have been completed and many others are still being investigated. For most therapeutic applications, MSC propagation in vitro is often required. However, ex vivo culture condition is not fully physiological and may affect biological properties of MSCs including their regenerative potential. Moreover, both cell cryopreservation and labelling procedure prior to infusion may have the negative impact on their expected effect in vivo. The incidence of MSC transformation during in vitro culture should be also taken into consideration before using cells in stem cell therapy. In our review, we focused on different aspects of MSC propagation that might influence their regenerative properties of MSC. We also discussed the influence of different factors that might abolish MSC proliferation and differentiation as well as potential impact of stem cell senescence and aging. Despite of many positive therapeutic effects of MSC therapy, one has to be conscious about potential cell changes that could appear during manufacturing of MSCs.
Collapse
|
8
|
Duan HG, Ji F, Zheng CQ, Li J, Wang J. Conditioned medium from umbilical cord mesenchymal stem cells improves nasal mucosa damage by radiation. Biotechnol Lett 2018; 40:999-1007. [PMID: 29666957 DOI: 10.1007/s10529-018-2553-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To explore therapeutic effects of conditioned medium from human umbilical cord mesenchymal stem cells (hUC-MSCs) on nasal mucosa radiation damage both in vivo and in vitro. RESULTS The mucus cilia clearance time (7 and 30 days), degree of mucosal edema (7, 30, 90 and 180 days), cilia coverage (180 days) of concentrated conditioned medium group improved compared with radiotherapy control group. The proliferation and migration abilities of irradiated and non-irradiated nasal epithelial cells significantly increased after culture in bronchial epithelial cell growth medium (BEGM) containing 10% conditioned medium of hUC-MSCs compared to cells cultured in BEGM alone. CONCLUSIONS Soluble factors secreted by hUC-MSCs may promote nasal epithelial cell proliferation and migration. Intranasal administration of hUC-MSC conditioned medium effectively repairs nasal mucosa radiation damage.
Collapse
Affiliation(s)
- Hong-Gang Duan
- Department of Otolaryngology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Ji
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Qin-chun Road 79, Hangzhou, 310003, China.
| | - Chun-Quan Zheng
- Department of Otolaryngology, Affiliated Eye and Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Li
- Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, China
| | - Jing Wang
- Department of Otolaryngology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Bigini P, Zanier ER, Saragozza S, Maciotta S, Romele P, Bonassi Signoroni P, Silini A, Pischiutta F, Sammali E, Balducci C, Violatto MB, Talamini L, Garry D, Moscatelli D, Ferrari R, Salmona M, De Simoni MG, Maggi F, Simoni G, Grati FR, Parolini O. Internalization of nanopolymeric tracers does not alter characteristics of placental cells. J Cell Mol Med 2016; 20:1036-48. [PMID: 26987908 PMCID: PMC4882978 DOI: 10.1111/jcmm.12820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/29/2016] [Indexed: 12/15/2022] Open
Abstract
In the cell therapy scenario, efficient tracing of transplanted cells is essential for investigating cell migration and interactions with host tissues. This is fundamental to provide mechanistic insights which altogether allow for the understanding of the translational potential of placental cell therapy in the clinical setting. Mesenchymal stem/stromal cells (MSC) from human placenta are increasingly being investigated for their potential in treating patients with a variety of diseases. In this study, we investigated the feasibility of using poly (methyl methacrylate) nanoparticles (PMMA‐NPs) to trace placental MSC, namely those from the amniotic membrane (hAMSC) and early chorionic villi (hCV‐MSC). We report that PMMP‐NPs are efficiently internalized and retained in both populations, and do not alter cell morphofunctional parameters. We observed that PMMP‐NP incorporation does not alter in vitro immune modulatory capability of placental MSC, a characteristic central to their reparative/therapeutic effects in vitro. We also show that in vitro, PMMP‐NP uptake is not affected by hypoxia. Interestingly, after in vivo brain ischaemia and reperfusion injury achieved by transient middle cerebral artery occlusion (tMCAo) in mice, iv hAMSC treatment resulted in significant improvement in cognitive function compared to PBS‐treated tMCAo mice. Our study provides evidence that tracing placental MSC with PMMP‐NPs does not alter their in vitro and in vivo functions. These observations are grounds for the use of PMMP‐NPs as tools to investigate the therapeutic mechanisms of hAMSC and hCV‐MSC in preclinical models of inflammatory‐driven diseases.
Collapse
Affiliation(s)
- Paolo Bigini
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Elisa R Zanier
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Silvia Saragozza
- R&D Unit, TOMA Advanced Biomedical Assays S.p.A., Busto Arsizio, Varese, Italy
| | - Simona Maciotta
- R&D Unit, TOMA Advanced Biomedical Assays S.p.A., Busto Arsizio, Varese, Italy
| | - Pietro Romele
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Antonietta Silini
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Eliana Sammali
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy.,Fondazione IRCCS-Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Balducci
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | | | - Laura Talamini
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - David Garry
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Davide Moscatelli
- Department of Chemistry, Material and Chemical Engineering, "Giulio Natta" Politecnico di Milano, Milan, Italy
| | - Raffaele Ferrari
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Mario Salmona
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | | | - Federico Maggi
- R&D Unit, TOMA Advanced Biomedical Assays S.p.A., Busto Arsizio, Varese, Italy
| | - Giuseppe Simoni
- R&D Unit, TOMA Advanced Biomedical Assays S.p.A., Busto Arsizio, Varese, Italy
| | | | - Ornella Parolini
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| |
Collapse
|
10
|
Guo M, Wei H, Hu J, Sun S, Long J, Wang X. U0126 inhibits pancreatic cancer progression via the KRAS signaling pathway in a zebrafish xenotransplantation model. Oncol Rep 2015; 34:699-706. [PMID: 26035715 DOI: 10.3892/or.2015.4019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/24/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive human cancers, and the pharmaceutical outcomes for its treatment remain disappointing. Proper animal models will provide an efficient platform for investigating novel drugs, and the zebrafish has become one of the most promising and comprehensive model animal in cancer research. In the present study, we used a novel xenograft model in zebrafish by transplanting human pancreatic cancer cells to study the progression and metastasis of pancreatic cancer cells and to assay the pharmacological effects of new drug U0126 in vivo. We first established a primary xenograft model of pancreatic cancer by injecting human pancreatic cancer cells into both live larval and adult zebrafish, and then investigated the behaviors of CM-DiI‑labeled human pancreatic cancer cells. Subsequently, we tested the potential of this model for drug screening by evaluating a known small-molecule inhibitor, U0126, which targets the KRAS signaling pathway. Cells with KRAS mutations exhibited significant proliferative and migratory behaviors and invaded the zebrafish vasculature system. In contrast, the proliferation and migration of Mia PaCa-2 cells in zebrafish larvae were substantially repressed following U0126 treatment. These results suggest that zebrafish xenotransplantation can be used as a simple and efficient tool to screen and identify new anti-pancreatic cancer compounds.
Collapse
Affiliation(s)
- Meng Guo
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Huanhuan Wei
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Jingying Hu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Jiang Long
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
11
|
Caires HR, Gomez-Lazaro M, Oliveira CM, Gomes D, Mateus DD, Oliveira C, Barrias CC, Barbosa MA, Almeida CR. Finding and tracing human MSC in 3D microenvironments with the photoconvertible protein Dendra2. Sci Rep 2015; 5:10079. [PMID: 25974085 PMCID: PMC4431349 DOI: 10.1038/srep10079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
Mesenchymal Stem/Stromal Cells (MSC) are a promising cell type for cell-based therapies - from tissue regeneration to treatment of autoimmune diseases - due to their capacity to migrate to damaged tissues, to differentiate in different lineages and to their immunomodulatory and paracrine properties. Here, a simple and reliable imaging technique was developed to study MSC dynamical behavior in natural and bioengineered 3D matrices. Human MSC were transfected to express a fluorescent photoswitchable protein, Dendra2, which was used to highlight and follow the same group of cells for more than seven days, even if removed from the microscope to the incubator. This strategy provided reliable tracking in 3D microenvironments with different properties, including the hydrogels Matrigel and alginate as well as chitosan porous scaffolds. Comparison of cells mobility within matrices with tuned physicochemical properties revealed that MSC embedded in Matrigel migrated 64% more with 5.2 mg protein/mL than with 9.6 mg/mL and that MSC embedded in RGD-alginate migrated 51% faster with 1% polymer concentration than in 2% RGD-alginate. This platform thus provides a straightforward approach to characterize MSC dynamics in 3D and has applications in the field of stem cell biology and for the development of biomaterials for tissue regeneration.
Collapse
Affiliation(s)
- Hugo R Caires
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal [2] INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal [3] ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Maria Gomez-Lazaro
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal [2] INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal [3] b.IMAGE - Bioimaging Center for Biomaterials and Regenerative Therapies, INEB, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Carla M Oliveira
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal [2] INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal [3] ISPUP - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - David Gomes
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal [2] INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Denisa D Mateus
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal [2] IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Carla Oliveira
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal [2] IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal [3] Medical Faculty of the University of Porto, Alameda Hernani Monteiro, 4200-319 Porto, Portugal
| | - Cristina C Barrias
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal [2] INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Mário A Barbosa
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal [2] INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal [3] ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Catarina R Almeida
- 1] Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal [2] INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| |
Collapse
|