1
|
Yu N, Yang Y, Li Y, Kang W, Zhang J, Chen Y. Screening of specific binding peptide for β-lactoglobulin using phage display technology. Food Chem 2024; 452:139522. [PMID: 38723568 DOI: 10.1016/j.foodchem.2024.139522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024]
Abstract
β-lactoglobulin (β-Lg) is a major food allergen, there is an urgent need to develop a rapid method for detecting β-Lg in order to avoid contact or ingestion by allergic patients. Peptide aptamers have high affinity, specificity, and stability, and have broad prospects in the field of rapid detection. Using β-Lg as the target, this study screened 11 peptides (P1-11) from a phage display library. Using molecular docking technology to predict binding energy and binding mode of proteins and peptides. Select the peptides with the best binding ability to β-Lg (P5, P7, P8) through ELISA. Combining them with whey protein, casein, and bovine serum protein, it was found that P7 has the best specificity for β-Lg, with an inhibition rate of 87.99%. Verified by molecular dynamics that P7 binds well with β-Lg. Therefore, this peptide can be used for the recognition of β-Lg, becoming a new recognition element for detecting β-Lg.
Collapse
Affiliation(s)
- Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Yan Yang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; College of Biological Science and Technology, Beijing Forestry University, Bejing 100083, People's Republic of China
| | - Yang Li
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Wenhan Kang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China.
| |
Collapse
|
2
|
Yuhan J, Zhu L, Zhu L, Huang K, He X, Xu W. Cell-specific aptamers as potential drugs in therapeutic applications: A review of current progress. J Control Release 2022; 346:405-420. [PMID: 35489545 DOI: 10.1016/j.jconrel.2022.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/23/2022]
Abstract
Cell-specific aptamers are a promising emerging player in the field of disease therapy. This paper reviews the multidimensional research progress made in terms of their classification, modification, and application. Based on the target location of cell-specific aptamers, it is defined and classified cell-specific aptamers into three groups including aptamers for cell surface markers, aptamers for intracellular components, and aptamers for extracellular components. Moreover, the modification methods of aptamers to achieve improved stability and affinity are concluded. In addition, recent advances in the application of cell-specific aptamers are discussed, mainly focusing on the increasing research attraction of cell state improving helpers and cell recruitment mediators in the improvement of cellular microenvironments to achieve successful disease therapy. This review also highlights 11 types of clinical aptamer drugs. Finally, the challenges and future directions of potential clinical applications are presented. In summary, we believe that cell-specific aptamers are promising drugs in disease therapy.
Collapse
Affiliation(s)
- Jieyu Yuhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Iskandar SE, Haberman VA, Bowers AA. Expanding the Chemical Diversity of Genetically Encoded Libraries. ACS COMBINATORIAL SCIENCE 2020; 22:712-733. [PMID: 33167616 PMCID: PMC8284915 DOI: 10.1021/acscombsci.0c00179] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The power of ribosomes has increasingly been harnessed for the synthesis and selection of molecular libraries. Technologies, such as phage display, yeast display, and mRNA display, effectively couple genotype to phenotype for the molecular evolution of high affinity epitopes for many therapeutic targets. Genetic code expansion is central to the success of these technologies, allowing researchers to surpass the intrinsic capabilities of the ribosome and access new, genetically encoded materials for these selections. Here, we review techniques for the chemical expansion of genetically encoded libraries, their abilities and limits, and opportunities for further development. Importantly, we also discuss methods and metrics used to assess the efficiency of modification and library diversity with these new techniques.
Collapse
Affiliation(s)
- Sabrina E Iskandar
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Victoria A Haberman
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Fluorescent amino acids as versatile building blocks for chemical biology. Nat Rev Chem 2020; 4:275-290. [PMID: 37127957 DOI: 10.1038/s41570-020-0186-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Fluorophores have transformed the way we study biological systems, enabling non-invasive studies in cells and intact organisms, which increase our understanding of complex processes at the molecular level. Fluorescent amino acids have become an essential chemical tool because they can be used to construct fluorescent macromolecules, such as peptides and proteins, without disrupting their native biomolecular properties. Fluorescent and fluorogenic amino acids with unique photophysical properties have been designed for tracking protein-protein interactions in situ or imaging nanoscopic events in real time with high spatial resolution. In this Review, we discuss advances in the design and synthesis of fluorescent amino acids and how they have contributed to the field of chemical biology in the past 10 years. Important areas of research that we review include novel methodologies to synthesize building blocks with tunable spectral properties, their integration into peptide and protein scaffolds using site-specific genetic encoding and bioorthogonal approaches, and their application to design novel artificial proteins, as well as to investigate biological processes in cells by means of optical imaging.
Collapse
|
5
|
K C TB, Tada S, Zhu L, Uzawa T, Minagawa N, Luo SC, Zhao H, Yu HH, Aigaki T, Ito Y. In vitro selection of electrochemical peptide probes using bioorthogonal tRNA for influenza virus detection. Chem Commun (Camb) 2018; 54:5201-5204. [PMID: 29718049 DOI: 10.1039/c8cc01775a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrosensitive peptide probe has been developed from an in vitro selection technique using biorthogonal tRNA prepared with an electroreactive non-natural amino acid, 3,4-ethylenedioxythiophene-conjugated aminophenylalanine. The selected probe quantitatively detected the influenza virus based on a signal "turn-on" mechanism. The developed strategy could be used to develop electrochemical biosensors toward a variety of targets.
Collapse
Affiliation(s)
- Tara Bahadur K C
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
K.C. TB, Suga K, Isoshima T, Aigaki T, Ito Y, Shiba K, Uzawa T. Wash-free and selective imaging of epithelial cell adhesion molecule (EpCAM) expressing cells with fluorogenic peptide ligands. Biochem Biophys Res Commun 2018; 500:283-287. [DOI: 10.1016/j.bbrc.2018.04.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022]
|
7
|
Interactions of in vitro selected fluorogenic peptide aptamers with calmodulin. Biotechnol Lett 2016; 39:375-382. [DOI: 10.1007/s10529-016-2257-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
|
8
|
Maini R, Umemoto S, Suga H. Ribosome-mediated synthesis of natural product-like peptides via cell-free translation. Curr Opin Chem Biol 2016; 34:44-52. [DOI: 10.1016/j.cbpa.2016.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/06/2016] [Indexed: 11/29/2022]
|
9
|
Wang W, Zhu L, Hirano Y, Kariminavargani M, Tada S, Zhang G, Uzawa T, Zhang D, Hirose T, Taiji M, Ito Y. Fluorogenic Enhancement of an in Vitro-Selected Peptide Ligand by Replacement of a Fluorescent Group. Anal Chem 2016; 88:7991-7. [DOI: 10.1021/acs.analchem.6b01032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wei Wang
- High
Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Liping Zhu
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshinori Hirano
- Laboratory
for Computational Molecular Design, Computational Biology Research
Core, RIKEN Quantitative Biology Center, 2F, QBiC Building B, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Marziyeh Kariminavargani
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate
School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Seiichi Tada
- Emergent
Bioengineering
Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Guanxin Zhang
- Key
Laboratory of Organic Solids, Beijing National Laboratory of Molecular
Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Takanori Uzawa
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent
Bioengineering
Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Deqing Zhang
- Key
Laboratory of Organic Solids, Beijing National Laboratory of Molecular
Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Takuji Hirose
- Graduate
School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Makoto Taiji
- Laboratory
for Computational Molecular Design, Computational Biology Research
Core, RIKEN Quantitative Biology Center, 2F, QBiC Building B, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Yoshihiro Ito
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent
Bioengineering
Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Taki M, Inoue H, Mochizuki K, Yang J, Ito Y. Selection of Color-Changing and Intensity-Increasing Fluorogenic Probe as Protein-Specific Indicator Obtained via the 10BASE(d)-T. Anal Chem 2016; 88:1096-9. [PMID: 26727351 PMCID: PMC5077683 DOI: 10.1021/acs.analchem.5b04687] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To obtain a molecular probe for specific protein detection, we have synthesized fluorogenic probe library of vast diversity on bacteriophage T7 via the gp10 based-thioetherificaion (10BASE(d)-T). A remarkable color-changing and turning-on probe was selected from the library, and its physicochemical properties upon target-specific binding were obtained. Combination analyses of fluorescence emission titration, isothermal titration calorimetry (ITC), and quantitative saturation-transfer difference (STD) NMR measurements, followed by in silico docking simulation, rationalized the most plausible geometry of the ligand-protein interaction.
Collapse
Affiliation(s)
- Masumi Taki
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Hiroaki Inoue
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Kazuto Mochizuki
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Jay Yang
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin 53706 United States
| | - Yuji Ito
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| |
Collapse
|