1
|
Kellner K, Lao NT, Barron N. CRISPR Deletion of miR-27 Impacts Recombinant Protein Production in CHO Cells. Methods Mol Biol 2024; 2810:285-300. [PMID: 38926286 DOI: 10.1007/978-1-0716-3878-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
MicroRNAs represent an interesting group of regulatory molecules with the unique ability of a single miRNA able to regulate the expression of potentially hundreds of target genes. In that regard, their utility has been demonstrated as a strategy to improve the cellular phenotypes important in the biomanufacturing of recombinant proteins. Common approaches to stably deplete miRNAs are the use of sponge decoy transcripts or shRNA inhibitors, both of which require the introduction and expression of extra genetic material in the cell. As an alternative, we implemented the CRISPR/Cas9 system in our laboratory to generate CHO cells which lack the expression of a specific miRNA for the purpose of functional studies. To implement the system, miR-27a/b was chosen as it has been shown to be upregulated during hypothermic conditions and therefore may be involved in influencing CHO cell growth and recombinant protein productivity. In this chapter, we present a protocol for targeting miRNAs in CHO cells using CRISPR/Cas9 and the analysis of the resulting phenotype, using miR-27 as an example. We show that it is possible to target miRNAs in CHO cells and achieved ≥80% targeting efficiency. Indel analysis and TOPO-TA cloning combined with Sanger sequencing showed a range of different indels. Furthermore, it was possible to identify clones with no detectable expression of mature miR-27b. Depletion of miR-27b led to improved viability in late stages of batch and fed-batch cultures, making it a potentially interesting target to improve bioprocess performance of CHO cells.
Collapse
Affiliation(s)
- Kevin Kellner
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Nga T Lao
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Niall Barron
- National Institute for Bioprocessing Research and Training, Dublin, Ireland.
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Bazaz M, Adeli A, Azizi M, Karimipoor M, Mahboudi F, Davoudi N. Overexpression of miR-32 in Chinese hamster ovary cells increases production of Fc-fusion protein. AMB Express 2023; 13:45. [PMID: 37160545 PMCID: PMC10170017 DOI: 10.1186/s13568-023-01540-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/22/2023] [Indexed: 05/11/2023] Open
Abstract
The demand for industrial genetically modified host cells were increased with the growth of the biopharmaceutical market. Numerous studies on improving host cell productivity have shown that altering host cell growth and viability through genetic engineering can increase recombinant protein production. During the last decades, it was demonstrated that overexpression or downregulation of some microRNAs in Chinese Hamster Ovary (CHO) cells as the host cell in biopharmaceutical manufacturing, can improve their productivity. The selection of microRNA targets has been based on their previously identified role in human cancers. MicroRNA-32 (miR-32), which is conserved between humans and hamsters (Crisetulus griseus), was shown to play a role in the regulation of cell proliferation and apoptosis in some human cancers. In this study, we investigated the effect of miR-32 overexpression on the productivity of CHO-VEGF-trap cells. Our results indicated that stable overexpression of miR-32 could dramatically increase the productivity of CHO cells by 1.8-fold. It also significantly increases cell viability, batch culture longevity, and cell growth. To achieve these results, following the construction of a single clone producing an Fc-fusion protein, we transfected cells with a pLexJRed-miR-32 plasmid to stably produce the microRNA and evaluate the impact of mir-32 overexpression on cell productivity, growth and viability in compare with scrambled control. Our findings highlight the application of miRNAs as engineering tools and indicated that miR-32 could be a target for engineering CHO cells to increase cell productivity.
Collapse
Affiliation(s)
- Masoume Bazaz
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Adeli
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Azizi
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Freidoun Mahboudi
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Noushin Davoudi
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Recent developments in miRNA based recombinant protein expression in CHO. Biotechnol Lett 2022; 44:671-681. [PMID: 35507207 DOI: 10.1007/s10529-022-03250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/30/2022] [Indexed: 11/02/2022]
Abstract
It is widely accepted that the growing demand for recombinant therapeutic proteins has led to the expansion of the biopharmaceutical industry and the development of strategies to increase recombinant protein production in mammalian cell lines such as SP2/0 HEK and particularly Chinese hamster ovary cells. For a long time now, most investigations have been focused on increasing host cell productivity using genetic manipulating of cellular processes like cell cycle, apoptosis, cell growth, protein secretory and other pathways. In recent decades MicroRNAs beside different genetic engineering tools (e.g., TALEN, ZFN, and Crisper/Cas) have attracted further attention as a tool in the genetic engineering of host cells to increase protein expression levels. Their ability to simultaneously target multiple mRNAs involved in one or more cellular processes made them a favorable tool in this field. Accordingly, this study aimed to review the methods of selecting target miRNA for cell line engineering, miRNA gain- or loss-of-function strategies, examples of laboratory and pilot studies in this field and discussed advantages and disadvantages of this technology.
Collapse
|
4
|
Busch DJ, Zhang Y, Kumar A, Huhn SC, Du Z, Liu R. Identification of RNA Content of CHO-derived Extracellular Vesicles from a Production Process. J Biotechnol 2022; 348:36-46. [DOI: 10.1016/j.jbiotec.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023]
|
5
|
Belliveau J, Papoutsakis ET. Extracellular Vesicles Facilitate Large-Scale Dynamic Exchange of Proteins and RNA Among Cultured Chinese Hamster Ovary (CHO) and Human Cells. Biotechnol Bioeng 2022; 119:1222-1238. [PMID: 35120270 DOI: 10.1002/bit.28053] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
Cells in culture are viewed as unique individuals in a large population communicating through extracellular molecules and, more recently extracellular vesicles (EVs). Our data here paint a different picture: large-scale exchange of cellular material through EVs. To visualize the dynamic production and cellular uptake of EVs, we used correlative confocal microscopy and scanning electron microscopy, as well as flow cytometry to interrogate labeled cells. Using cells expressing fluorescent proteins (GFP, miRFP703) and cells tagged with protein and RNA dyes, we show that Chinese Hamster Ovary (CHO) cells dynamically produce and uptake EVs to exchange proteins and RNAs at a large scale. Applying a simple model to our data, we estimate, for the first time, the per cell specific rates of EV production (68 and 203 microparticles and exosomes, respectively, per day). This EV-mediated massive exchange of cellular material observed in CHO cultures was also observed in cultured human CHRF-288-11 and primary hematopoietic stem and progenitor cells. This study demonstrates an underappreciated massive protein and RNA exchange between cells mediated by EVs spanning cell type, suggesting that the proximity of cells in normal and tumor tissues may also result in prolific exchange of cellular material. This exchange would be expected to homogenize the cell-population cytosol and dynamically regulate cell proliferation and the cellular state. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jessica Belliveau
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19711.,Delaware Biotechnology Institute,, University of Delaware, Newark, DE, 19711
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19711.,Delaware Biotechnology Institute,, University of Delaware, Newark, DE, 19711.,Department of Biological Sciences, University of Delaware, Newark, DE, 19711
| |
Collapse
|
6
|
Keysberg C, Hertel O, Schelletter L, Busche T, Sochart C, Kalinowski J, Hoffrogge R, Otte K, Noll T. Exploring the molecular content of CHO exosomes during bioprocessing. Appl Microbiol Biotechnol 2021; 105:3673-3689. [PMID: 33937930 PMCID: PMC8102462 DOI: 10.1007/s00253-021-11309-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 01/21/2023]
Abstract
Abstract In biopharmaceutical production, Chinese hamster ovary (CHO) cells derived from Cricetulus griseus remain the most commonly used host cell for recombinant protein production, especially antibodies. Over the last decade, in-depth multi-omics characterization of these CHO cells provided data for extensive cell line engineering and corresponding increases in productivity. However, exosomes, extracellular vesicles containing proteins and nucleic acids, are barely researched at all in CHO cells. Exosomes have been proven to be a ubiquitous mediator of intercellular communication and are proposed as new biopharmaceutical format for drug delivery, indicator reflecting host cell condition and anti-apoptotic factor in spent media. Here we provide a brief overview of different separation techniques and subsequently perform a proteome and regulatory, non-coding RNA analysis of exosomes, derived from lab-scale bioreactor cultivations of a CHO-K1 cell line, to lay out reference data for further research in the field. Applying bottom-up orbitrap shotgun proteomics and next-generation small RNA sequencing, we detected 1395 proteins, 144 micro RNA (miRNA), and 914 PIWI-interacting RNA (piRNA) species differentially across the phases of a batch cultivation process. The exosomal proteome and RNA data are compared with other extracellular fractions and cell lysate, yielding several significantly exosome-enriched species. Graphical Abstract ![]()
Key points • First-time comprehensive protein and miRNA characterization of CHO exosomes. • Isolation protocol and time point of bioprocess strongly affect quality of extracellular vesicles. • CHO-derived exosomes also contain numerous piRNA species of yet unknown function. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11309-8.
Collapse
Affiliation(s)
- Christoph Keysberg
- Bielefeld University, Bielefeld, Germany. .,University of Applied Sciences Biberach, Biberach, Germany.
| | - Oliver Hertel
- Bielefeld University, Bielefeld, Germany.,Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Louise Schelletter
- Bielefeld University, Bielefeld, Germany.,Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Raimund Hoffrogge
- Bielefeld University, Bielefeld, Germany.,Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Kerstin Otte
- University of Applied Sciences Biberach, Biberach, Germany
| | - Thomas Noll
- Bielefeld University, Bielefeld, Germany.,Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
7
|
Henry MN, MacDonald MA, Orellana CA, Gray PP, Gillard M, Baker K, Nielsen LK, Marcellin E, Mahler S, Martínez VS. Attenuating apoptosis in Chinese hamster ovary cells for improved biopharmaceutical production. Biotechnol Bioeng 2020; 117:1187-1203. [DOI: 10.1002/bit.27269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Matthew N. Henry
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Michael A. MacDonald
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| | - Camila A. Orellana
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Peter P. Gray
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Marianne Gillard
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Kym Baker
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Patheon Biologics—A Part of Thermo Fisher Scientific Brisbane Queensland Australia
| | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Metabolomics Australia The University of Queensland Brisbane Queensland Australia
- The Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Kgs. Lyngby Denmark
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Metabolomics Australia The University of Queensland Brisbane Queensland Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| | - Verónica S. Martínez
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
8
|
Ru X, Cao P, Li L, Zou Q. Selecting Essential MicroRNAs Using a Novel Voting Method. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:16-23. [PMID: 31479921 PMCID: PMC6727015 DOI: 10.1016/j.omtn.2019.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/20/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Among the large number of known microRNAs (miRNAs), some miRNAs play negligible roles in cell regulation. Therefore, selecting essential miRNAs is an important initial step for a deeper understanding of miRNAs and their functions. In this study, we generated 60 classification models by combining 12 representative feature extraction methods and 5 commonly used classification algorithms. The optimal model for essential miRNA classification that we obtained is based on the Mismatch feature extraction method combined with the random forest algorithm. The F-Measure, area under the curve, and accuracy values of this model were 93.2%, 96.7%, and 93.0%, respectively. We also found that the distribution of the positive and negative examples of the first few features greatly influenced the classification results. The feature extraction methods performed best when the differences between the positive and negative examples were obvious, and this led to better classification of essential miRNAs. Because each classifier's predictions for the same sample may be different, we employed a novel voting method to improve the accuracy of the classification of essential miRNAs. The performance results showed that the best classification results were obtained when five classification models were used in the voting. The five classification models were constructed based on the Mismatch, pseudo-distance structure status pair composition, Subsequence, Kmer, and Triplet feature extraction methods. The voting result was 95.3%. Our results suggest that the voting method can be an important tool for selecting essential miRNAs.
Collapse
Affiliation(s)
- Xiaoqing Ru
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China; School of Information and Electrical Engineering, Hebei University of Engineering, Handan, China
| | - Peigang Cao
- Department of Cardiology, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Lihong Li
- School of Information and Electrical Engineering, Hebei University of Engineering, Handan, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
9
|
Inwood S, Abaandou L, Betenbaugh M, Shiloach J. Improved protein expression in HEK293 cells by over-expressing miR-22 and knocking-out its target gene, HIPK1. N Biotechnol 2019; 54:28-33. [PMID: 31425885 DOI: 10.1016/j.nbt.2019.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/01/2019] [Accepted: 08/15/2019] [Indexed: 02/08/2023]
Abstract
Stable cell lines can continuously produce a recombinant protein without the need to repeatedly engineer the genome. In a previous study HIPK1, Homeodomain-interacting Protein Kinase 1, was found to be a target of the microRNA miR-22 that, when repressed, improved expression of both an intracellular and a secreted protein. In this report, HEK293 cells stably over-expressing miR-22 were compared with HEK293 with knockout of HIPK1, executed by CRISPR/Cas9, for their ability to improve recombinant protein expression. In this model case of luciferase, over-expression of miR-22 improved overall activity 2.4-fold while the HIPK1 knockout improved overall activity 4.7-fold.
Collapse
Affiliation(s)
- Sarah Inwood
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, Maryland, 20892, USA; Department of Chemical and Biomolecular Engineering Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Laura Abaandou
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, Maryland, 20892, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Joseph Shiloach
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
10
|
Klanert G, Bydlinski N, Agu P, Diendorfer AB, Hackl M, Hanscho M, Melcher M, Baumann M, Grillari J, Borth N. Transient manipulation of the expression level of selected growth rate correlating microRNAs does not increase growth rate in CHO-K1 cells. J Biotechnol 2019; 295:63-70. [PMID: 30853633 DOI: 10.1016/j.jbiotec.2019.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/22/2019] [Accepted: 02/19/2019] [Indexed: 02/05/2023]
Abstract
Engineering of Chinese Hamster Ovary cells by manipulating microRNA (miRNA) expression levels has been shown to induce advantageous, desired phenotypes. Most of these studies so far were concerned with increasing productivity or reducing growth rate (with the implied intention of thus freeing cellular resources to also increase productivity). Here we evaluated the ability of growth correlating miRNAs to increase the growth rate of CHO-K1 cells by transient overexpression or knock down, respectively. Candidates were selected based on the correlation between growth rate and miRNA expression levels as observed in previous studies. These candidates were then up- or downregulated initially by transfection of mimics or inhibitors and subsequently by transfection of plasmids bearing the corresponding miRNAs or sponges. None of the 40 selected candidates was able to induce a better growth phenotype under these conditions. Overlap between miRNAs identified to correlate to growth in published miRNA expression studies and those identified to actively increase growth rate in a functional screen is minimal, indicating that the here selected approach of traditional overexpression/knock down engineering of miRNAs may not be a suitable strategy for the purpose of increasing growth rate.
Collapse
Affiliation(s)
- Gerald Klanert
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Nina Bydlinski
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Patrice Agu
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| | | | | | | | - Michael Melcher
- Austrian Centre of Industrial Biotechnology, Graz, Austria; University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Johannes Grillari
- University of Natural Resources and Life Sciences, Vienna, Austria; TAmiRNA Gmbh, Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology, Graz, Austria; University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
11
|
Dangi AK, Sinha R, Dwivedi S, Gupta SK, Shukla P. Cell Line Techniques and Gene Editing Tools for Antibody Production: A Review. Front Pharmacol 2018; 9:630. [PMID: 29946262 PMCID: PMC6006397 DOI: 10.3389/fphar.2018.00630] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/25/2018] [Indexed: 12/16/2022] Open
Abstract
The present day modern formulation practices for drugs are based on newer tools and techniques toward effective utilization. The methods of antibody formulations are to be revolutionized based on techniques of cell engineering and gene editing. In the present review, we have discussed innovations in cell engineering toward production of novel antibodies for therapeutic applications. Moreover, this review deciphers the use of RNAi, ribozyme engineering, CRISPR-Cas-based techniques for better strategies for antibody production. Overall, this review describes the multidisciplinary aspects of the production of therapeutic proteins that has gained more attention due to its increasing demand.
Collapse
Affiliation(s)
- Arun K. Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | | | - Shailja Dwivedi
- Advanced Biotech Lab, Ipca Laboratories Limited, Mumbai, India
| | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
12
|
Lu Y, Zhou Q, Han Q, Wu P, Zhang L, Zhu L, Weaver DT, Xu C, Zhang B. Inactivation of deubiquitinase CYLD enhances therapeutic antibody production in Chinese hamster ovary cells. Appl Microbiol Biotechnol 2018; 102:6081-6093. [DOI: 10.1007/s00253-018-9070-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
|
13
|
Kamachi Y, Omasa T. Development of hyper osmotic resistant CHO host cells for enhanced antibody production. J Biosci Bioeng 2018; 125:470-478. [DOI: 10.1016/j.jbiosc.2017.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/29/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022]
|
14
|
Methods for Using Small Non-Coding RNAs to Improve Recombinant Protein Expression in Mammalian Cells. Genes (Basel) 2018; 9:genes9010025. [PMID: 29315258 PMCID: PMC5793178 DOI: 10.3390/genes9010025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 12/27/2022] Open
Abstract
The ability to produce recombinant proteins by utilizing different “cell factories” revolutionized the biotherapeutic and pharmaceutical industry. Chinese hamster ovary (CHO) cells are the dominant industrial producer, especially for antibodies. Human embryonic kidney cells (HEK), while not being as widely used as CHO cells, are used where CHO cells are unable to meet the needs for expression, such as growth factors. Therefore, improving recombinant protein expression from mammalian cells is a priority, and continuing effort is being devoted to this topic. Non-coding RNAs are RNA segments that are not translated into a protein and often have a regulatory role. Since their discovery, major progress has been made towards understanding their functions. Non-coding RNA has been investigated extensively in relation to disease, especially cancer, and recently they have also been used as a method for engineering cells to improve their protein expression capability. In this review, we provide information about methods used to identify non-coding RNAs with the potential of improving recombinant protein expression in mammalian cell lines.
Collapse
|
15
|
Inwood S, Buehler E, Betenbaugh M, Lal M, Shiloach J. Identifying HIPK1 as Target of miR-22-3p Enhancing Recombinant Protein Production From HEK 293 Cell by Using Microarray and HTP siRNA Screen. Biotechnol J 2017; 13. [PMID: 28987030 DOI: 10.1002/biot.201700342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/11/2017] [Indexed: 01/20/2023]
Abstract
Protein expression from human embryonic kidney cells (HEK 293) is an important tool for structural and clinical studies. It is previously shown that microRNAs (small, noncoding RNAs) are effective means for improved protein expression from these cells, and by conducting a high-throughput screening of the human microRNA library, several microRNAs are identified as potential candidates for improving expression. From these, miR-22-3p is chosen for further study since it increased the expression of luciferase, two membrane proteins and a secreted fusion protein with minimal effect on the cells' growth and viability. Since each microRNA can interact with several gene targets, it is of interest to identify the repressed genes for understanding and exploring the improved expression mechanism for further implementation. Here, the authors describe a novel approach for identification of the target genes by integrating the differential gene expression analysis with information obtained from our previously conducted high-throughput siRNA screening. The identified genes were validated as being involved in improving luciferase expression by using siRNA and qRT-PCR. Repressing the target gene, HIPK1, is found to increase luciferase and GPC3 expression 3.3- and 2.2-fold, respectively.
Collapse
Affiliation(s)
- Sarah Inwood
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, Maryland 20892, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Eugen Buehler
- Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Madhu Lal
- Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850
| | - Joseph Shiloach
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Griffith A, Kelly PS, Vencken S, Lao NT, Greene CM, Clynes M, Barron N. miR-CATCH Identifies Biologically Active miRNA Regulators of the Pro-Survival Gene XIAP, in Chinese Hamster Ovary Cells. Biotechnol J 2017; 13:e1700299. [PMID: 28976632 DOI: 10.1002/biot.201700299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/18/2017] [Indexed: 01/01/2023]
Abstract
Genetic engineering of mammalian cells is of interest as a means to boost bio-therapeutic protein yield. X-linked inhibitor of apoptosis (XIAP) overexpression has previously been shown to enhance CHO cell growth and prolong culture longevity while additionally boosting productivity. The authors confirmed this across a range of recombinant products (SEAP, EPO, and IgG). However, stable overexpression of an engineering transgene competes for the cells translational machinery potentially compromising product titre. MicroRNAs are attractive genetic engineering candidates given their non-coding nature and ability to regulate multiple genes simultaneously, thereby relieving the translational burden associated with stable overexpression of a protein-encoding gene. The large number of potential targets of a single miRNA, falsely predicted in silico, presents difficulties in identifying those that could be useful engineering tools. The authors explored the identification of direct miRNA regulators of the pro-survival endogenous XIAP gene in CHO-K1 cells by using a miR-CATCH protocol. A biotin-tagged antisense DNA oligonucleotide for XIAP mRNA is designed and used to pull down and capture bound miRNAs. Two miRNAs are chosen out of the 14 miRNAs identified for further validation, miR-124-3p and miR-19b-3p. Transient transfection of mimics for both results in the diminished translation of endogenous CHO XIAP protein whereas their inhibition increases XIAP protein levels. A 3'UTR reporter assay confirms miR-124-3p to be a bona fide regulator of XIAP in CHO-K1 cells. This method demonstrates a useful approach to finding miRNA candidates for CHO cell engineering without competing for the cellular translational machinery.
Collapse
Affiliation(s)
- Alan Griffith
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paul S Kelly
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Sebastian Vencken
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Nga T Lao
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Catherine M Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Niall Barron
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,National Institute for Bioprocessing Research and Training, Fosters Ave, Dublin 4, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
17
|
Brown AJ, Kalsi D, Fernandez-Martell A, Cartwright J, Barber NOW, Patel YD, Turner R, Bryant CL, Johari YB, James DC. Expression Systems for Recombinant Biopharmaceutical Production by Mammalian Cells in Culture. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527699124.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Brown
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Devika Kalsi
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Joe Cartwright
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Nicholas O. W. Barber
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yash D. Patel
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Claire L. Bryant
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yusuf B. Johari
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - David C. James
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| |
Collapse
|
18
|
BP Neural Network Could Help Improve Pre-miRNA Identification in Various Species. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9565689. [PMID: 27635401 PMCID: PMC5011242 DOI: 10.1155/2016/9565689] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/05/2016] [Accepted: 07/17/2016] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) are a set of short (21–24 nt) noncoding RNAs that play significant regulatory roles in cells. In the past few years, research on miRNA-related problems has become a hot field of bioinformatics because of miRNAs' essential biological function. miRNA-related bioinformatics analysis is beneficial in several aspects, including the functions of miRNAs and other genes, the regulatory network between miRNAs and their target mRNAs, and even biological evolution. Distinguishing miRNA precursors from other hairpin-like sequences is important and is an essential procedure in detecting novel microRNAs. In this study, we employed backpropagation (BP) neural network together with 98-dimensional novel features for microRNA precursor identification. Results show that the precision and recall of our method are 95.53% and 96.67%, respectively. Results further demonstrate that the total prediction accuracy of our method is nearly 13.17% greater than the state-of-the-art microRNA precursor prediction software tools.
Collapse
|
19
|
A signature of 12 microRNAs is robustly associated with growth rate in a variety of CHO cell lines. J Biotechnol 2016; 235:150-61. [PMID: 26993211 DOI: 10.1016/j.jbiotec.2016.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/25/2022]
Abstract
As Chinese Hamster Ovary (CHO) cells are the cell line of choice for the production of human-like recombinant proteins, there is interest in genetic optimization of host cell lines to overcome certain limitations in their growth rate and protein secretion. At the same time, a detailed understanding of these processes could be used to advantage by identification of marker transcripts that characterize states of performance. In this context, microRNAs (miRNAs) that exhibit a robust correlation to the growth rate of CHO cells were determined by analyzing miRNA expression profiles in a comprehensive collection of 46 samples including CHO-K1, CHO-S and CHO-DUKXB11, which were adapted to various culture conditions, and analyzed in different growth stages using microarrays. By applying Spearman or Pearson correlation coefficient criteria of>|0.6|, miRNAs with high correlation to the overall growth, or growth rates observed in exponential, serum-free, and serum-free exponential phase were identified. An overlap of twelve miRNAs common for all sample sets was revealed, with nine positively and three negatively correlating miRNAs. The here identified panel of miRNAs can help to understand growth regulation in CHO cells and contains putative engineering targets as well as biomarkers for cell lines with advantageous growth characteristics.
Collapse
|
20
|
Kelly PS, Breen L, Gallagher C, Kelly S, Henry M, Lao NT, Meleady P, O'Gorman D, Clynes M, Barron N. Re-programming CHO cell metabolism using miR-23 tips the balance towards a highly productive phenotype. Biotechnol J 2015; 10:1029-40. [DOI: 10.1002/biot.201500101] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/24/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022]
|