1
|
Zhang D, Bai Y, Niu H, Chen L, Xiao J, Guo Q, Jia P. Enzyme Immobilization by Inkjet Printing on Reagentless Biosensors for Electrochemical Phosphate Detection. BIOSENSORS 2024; 14:168. [PMID: 38667161 PMCID: PMC11047959 DOI: 10.3390/bios14040168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Enzyme-based biosensors commonly utilize the drop-casting method for their surface modification. However, the drawbacks of this technique, such as low reproducibility, coffee ring effects, and challenges in mass production, hinder its application. To overcome these limitations, we propose a novel surface functionalization strategy of enzyme crosslinking via inkjet printing for reagentless enzyme-based biosensors. This method includes printing three functional layers onto a screen-printed electrode: the enzyme layer, crosslinking layer, and protective layer. Nanomaterials and substrates are preloaded together during our inkjet printing. Inkjet-printed electrodes feature a uniform enzyme deposition, ensuring high reproducibility and superior electrochemical performance compared to traditional drop-casted ones. The resultant biosensors display high sensitivity, as well as a broad linear response in the physiological range of the serum phosphate. This enzyme crosslinking method has the potential to extend into various enzyme-based biosensors through altering functional layer components.
Collapse
Affiliation(s)
- Dongxing Zhang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| | - Yang Bai
- Department of Biomedical Engineering, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Haoran Niu
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| | - Lingyun Chen
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| | - Junfeng Xiao
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| | - Qiuquan Guo
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| | - Peipei Jia
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen 518110, China; (D.Z.); (H.N.); (L.C.); (J.X.)
| |
Collapse
|
2
|
Timpel J, Klinghammer S, Riemenschneider L, Ibarlucea B, Cuniberti G, Hannig C, Sterzenbach T. Sensors for in situ monitoring of oral and dental health parameters in saliva. Clin Oral Investig 2023; 27:5719-5736. [PMID: 37698630 PMCID: PMC10560166 DOI: 10.1007/s00784-023-05206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVES The oral cavity is an easily accessible unique environment and open system which is influenced by the oral fluids, microbiota, and nutrition. Little is known about the kinetics and dynamics of metabolic processes at the intraoral surfaces. Real-time monitoring of salivary biomarkers, e.g., glucose, lactate, fluoride, calcium, phosphate, and pH with intraoral sensors is therefore of major interest. The aim of this review is to overview the existing literature for intraoral saliva sensors. MATERIALS AND METHODS A comprehensive literature search was performed to review the most relevant studies on intraoral saliva sensor technology. RESULTS There is limited literature about the in situ saliva monitoring of salivary biomarkers. Bioadhesion and biofouling processes at the intraoral surfaces limit the performances of the sensors. Real-time, long-term, and continuous intraoral measurement of salivary metabolites remains challenging and needs further investigation as only few well-functioning sensors have been developed until today. Until now, there is no sensor that measures reliably beyond hours for any analyte other than glucose. CONCLUSIONS Saliva's complex and dynamic structure as well as bioadhesion are key challenges and should be addressed in the future developments. Consequently, more studies that focus particularly on biofouling processes and interferential effects of the salivary matrix components on sensor surfaces are required. CLINICAL RELEVANCE By monitoring fluids in the oral cavity, as the entrance to the digestive system, extensive information can be obtained regarding the effects of foods and preventive agents on the oral microbiota and the tooth surfaces. This may lead to a better understanding of strategies to modulate oral and general health.
Collapse
Affiliation(s)
- Julia Timpel
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany.
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany.
| | - Stephanie Klinghammer
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, 01069, Dresden, Germany
| | - Leif Riemenschneider
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, 01069, Dresden, Germany
| | - Bergoi Ibarlucea
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, 01069, Dresden, Germany
| | - Gianaurelio Cuniberti
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, 01069, Dresden, Germany
| | - Christian Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
| | - Torsten Sterzenbach
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
- Else Kröner-Fresenius Center for Digital Health (EKFZ), Dresden University of Technology, 01309, Dresden, Germany
| |
Collapse
|
3
|
Yu J, Zhang Y, Zhao Y, Zhang X, Ren H. Highly Sensitive and Selective Detection of Inorganic Phosphates in the Water Environment by Biosensors Based on Bioluminescence Resonance Energy Transfer. Anal Chem 2023; 95:4904-4913. [PMID: 36942460 DOI: 10.1021/acs.analchem.2c04748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The accurate detection of phosphate in water is very important to prevent water eutrophication and ensure the health of water quality. However, traditional phosphomolybdenum blue spectrophotometry is not sensitive, is time-consuming, and demands large amounts of chemical reagents. Therefore, highly sensitive, rapid, and environmentally friendly Pi detection methods are urgently needed. Here, we developed a bioluminescence resonance energy transfer (BRET)-based biosensor, which can detect Pi in water quickly, highly sensitively, and highly selectively. The NanoLuc and the Venus fluorescent protein were selected as the bioluminescence donor and energy acceptor, respectively. The best-performing BRET sensor variant, VenusΔC10-PΔC12-ΔN4Nluc, was identified by Pi-specific binding protein (PiBP) screening and systematic truncation. Single-factor experiments optimized the key parameters affecting the detection performance of the sensor. Under the optimal detection conditions, the detection limit of this method was 1.3 μg·L-1, the detection range was 3.3-434 μg·L-1, and it had excellent selectivity, repeatability, and stability. This low-cost and environment-friendly BRET sensor showed a good application prospect in real water quality detection.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yanping Zhao
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
4
|
Alacid Y, Martínez-Tomé MJ, Esquembre R, Herrero MA, Mateo CR. Portable Alkaline Phosphatase-Hydrogel Platform: From Enzyme Characterization to Phosphate Sensing. Int J Mol Sci 2023; 24:2672. [PMID: 36769007 PMCID: PMC9917215 DOI: 10.3390/ijms24032672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Here, we present a study on the incorporation and characterization of the enzyme alkaline phosphatase (ALP) into a three-dimensional polymeric network through a green protocol to obtain transparent hydrogels (ALP@AETA) that can be stored at room temperature and potentially used as a disposable biosensor platform for the rapid detection of ALP inhibitors. For this purpose, different strategies for the immobilization of ALP in the hydrogel were examined and the properties of the new material, compared to the hydrogel in the absence of enzyme, were studied. The conformation and stability of the immobilized enzyme were characterized by monitoring the changes in its intrinsic fluorescence as a function of temperature, in order to study the unfolding/folding process inside the hydrogel, inherently related to the enzyme activity. The results show that the immobilized enzyme retains its activity, slightly increases its thermal stability and can be stored as a xerogel at room temperature without losing its properties. A small portion of a few millimeters of ALP@AETA xerogel was sufficient to perform enzymatic activity inhibition assays, so as a proof of concept, the device was tested as a portable optical biosensor for the detection of phosphate in water with satisfactory results. Given the good stability of the ALP@AETA xerogel and the interesting applications of ALP, not only in the environmental field but also as a therapeutic enzyme, we believe that this study could be of great use for the development of new devices for sensing and protein delivery.
Collapse
Affiliation(s)
- Yolanda Alacid
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Spain
| | - María José Martínez-Tomé
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Spain
| | - Rocío Esquembre
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Spain
| | - M. Antonia Herrero
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Avda. Camilo José Cela, s/n, 13071 Ciudad Real, Spain
| | - C. Reyes Mateo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Spain
| |
Collapse
|
5
|
Potes‐Lesoinne HA, Ramirez‐Alvarez F, Perez‐Gonzalez VH, Martinez‐Chapa SO, Gallo‐Villanueva RC. Nanomaterials for electrochemical detection of pollutants in water: A review. Electrophoresis 2022; 43:249-262. [PMID: 34632600 PMCID: PMC9298077 DOI: 10.1002/elps.202100204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022]
Abstract
The survival of living beings, including humanity, depends on a continuous supply of clean water. However, due to the development of industry, agriculture, and population growth, an increasing number of wastewaters is discarded, and the negative effects of such actions are clear. The first step in solving this situation is the collection and monitoring of pollutants in water bodies to subsequently facilitate their treatment. Nonetheless, traditional sensing techniques are typically laboratory-based, leading to potential diminishment in analysis quality. In this paper, the most recent developments in micro- and nano-electrochemical devices for pollutant detection in wastewater are reviewed. The devices reviewed are based on a variety of electrodes and the sensing of three different categories of pollutants: nutrients and phenolic compounds, heavy metals, and organic matter. From these electrodes, Cu, Co, and Bi showed promise as versatile materials to detect a grand variety of contaminants. Also, the most commonly used material is glassy carbon, present in the detection of all reviewed analytes.
Collapse
Affiliation(s)
| | - Fernando Ramirez‐Alvarez
- School of Engineering and SciencesTecnologico de MonterreyAv. Eugenio Garza Sada 2501 SurMonterreyNL64849Mexico
| | - Victor H. Perez‐Gonzalez
- School of Engineering and SciencesTecnologico de MonterreyAv. Eugenio Garza Sada 2501 SurMonterreyNL64849Mexico
| | - Sergio O. Martinez‐Chapa
- School of Engineering and SciencesTecnologico de MonterreyAv. Eugenio Garza Sada 2501 SurMonterreyNL64849Mexico
| | | |
Collapse
|
6
|
Kilic MS. A Novel Flow‐injection Rhodium Nanoparticles Modified Phosphate Biosensor and its Operation in Artificial Urine. ELECTROANAL 2021. [DOI: 10.1002/elan.202100154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Muhammet Samet Kilic
- Department of Biomedical Engineering Zonguldak Bulent Ecevit University 67100 Zonguldak Turkey
| |
Collapse
|
7
|
Zhu X, Ma J. Recent advances in the determination of phosphate in environmental water samples: Insights from practical perspectives. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Korkut S, Göl S, Kilic MS. Poly(pyrrole‐
co
‐pyrrole‐2‐carboxylic acid)/Pyruvate Oxidase Based Biosensor for Phosphate: Determination of the Potential, and Application in Streams. ELECTROANAL 2020. [DOI: 10.1002/elan.201900517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seyda Korkut
- Department of Environmental EngineeringZonguldak Bulent Ecevit University 67100 Zonguldak Turkey
| | - Saliha Göl
- Department of Environmental EngineeringZonguldak Bulent Ecevit University 67100 Zonguldak Turkey
| | - Muhammet Samet Kilic
- Department of Biomedical EngineeringZonguldak Bulent Ecevit University 67100 Zonguldak Turkey
| |
Collapse
|
9
|
Sharifian S, Homaei A, Kim SK, Satari M. Production of newfound alkaline phosphatases from marine organisms with potential functions and industrial applications. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Advances in Nano Based Biosensors for Food and Agriculture. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2018. [DOI: 10.1007/978-3-319-70166-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Kahveci Z, Martínez-Tomé MJ, Mallavia R, Mateo CR. Fluorescent Biosensor for Phosphate Determination Based on Immobilized Polyfluorene-Liposomal Nanoparticles Coupled with Alkaline Phosphatase. ACS APPLIED MATERIALS & INTERFACES 2017; 9:136-144. [PMID: 27966351 DOI: 10.1021/acsami.6b12434] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This work describes the development of a novel fluorescent biosensor based on the inhibition of alkaline phosphatase (ALP). The biosensor is composed of the enzyme ALP and the conjugated cationic polyfluorene HTMA-PFP. The working principle of the biosensor is based on the fluorescence quenching of this polyelectrolyte by p-nitrophenol (PNP), a product of the hydrolysis reaction of p-nitrophenyl phosphate (PNPP) catalyzed by ALP. Because HTMA-PFP forms unstable aggregates in buffer, with low fluorescence efficiency, previous stabilization of the polyelectrolyte was required before the development of the biosensor. HTMA-PFP was stabilized through its interaction with lipid vesicles to obtain stable blue-emitting nanoparticles (NPs). Fluorescent NPs were characterized, and the ability to be quenched by PNP was evaluated. These nanoparticles were coupled to ALP and entrapped in a sol-gel matrix to produce a biosensor that can serve as a screening platform to identify ALP inhibitors. The components of the biosensor were examined before and after sol-gel entrapment, and the biosensor was optimized to allow the determination of phosphate ion in aqueous medium.
Collapse
Affiliation(s)
- Zehra Kahveci
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández , 03202, Elche, Alicante, Spain
| | - Maria José Martínez-Tomé
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández , 03202, Elche, Alicante, Spain
| | - Ricardo Mallavia
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández , 03202, Elche, Alicante, Spain
| | - C Reyes Mateo
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández , 03202, Elche, Alicante, Spain
| |
Collapse
|