1
|
Kim JW, Kim S, Jang YH, Lim KI, Lee WH. Attomolar detection of virus by liquid coplanar-gate graphene transistor on plastic. NANOTECHNOLOGY 2019; 30:345502. [PMID: 30865941 DOI: 10.1088/1361-6528/ab0f52] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The direct method of detecting a virus with extremely low concentration is recommended for the diagnosis of viral disease. In this study, coplanar-gate graphene field-effect transistors (GFETs) were built on flexible polyethylene terephthalate substrates for the attomolar detection of a virus. The GFETs exhibited a very low detection limit of 47.8 aM with relatively low source/drain voltage due to aqueous dielectric media which stabilizes viruses and antibodies for specific bonding. The antibody as a probe molecule was decorated on a graphene surface using 1-pyrenebutanoic acid succinimidyl ester that had previously been immobilized on a graphene surface. The Dirac point voltage shifted downward after dropping the virus solution, due to the electrostatic gating effect of graphene in the antigen (namely, virus)-antibody complex. The virus detection platform used in this study is expected to be beneficial for direct diagnosis in saline environments, since the performances of GFETs were not significantly affected by the presence of Na+ and Cl-. Furthermore, since our flexible and transparent virus sensors can be used in a wearable device, they provide a simple and fast method for diagnosing viruses.
Collapse
Affiliation(s)
- Jin Woo Kim
- Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | | | | | | |
Collapse
|
2
|
Oberschmidt O, Morgan M, Huppert V, Kessler J, Gardlowski T, Matthies N, Aleksandrova K, Arseniev L, Schambach A, Koehl U, Kloess S. Development of Automated Separation, Expansion, and Quality Control Protocols for Clinical-Scale Manufacturing of Primary Human NK Cells and Alpharetroviral Chimeric Antigen Receptor Engineering. Hum Gene Ther Methods 2019; 30:102-120. [PMID: 30997855 PMCID: PMC6590729 DOI: 10.1089/hgtb.2019.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In cellular immunotherapies, natural killer (NK) cells often demonstrate potent antitumor effects in high-risk cancer patients. But Good Manufacturing Practice (GMP)-compliant manufacturing of clinical-grade NK cells in high numbers for patient treatment is still a challenge. Therefore, new protocols for isolation and expansion of NK cells are required. In order to attack resistant tumor entities, NK cell killing can be improved by genetic engineering using alpharetroviral vectors that encode for chimeric antigen receptors (CARs). The aim of this work was to demonstrate GMP-grade manufacturing of NK cells using the CliniMACS® Prodigy device (Prodigy) with implemented applicable quality controls. Additionally, the study aimed to define the best time point to transduce expanding NK cells with alpharetroviral CAR vectors. Manufacturing and clinical-scale expansion of primary human NK cells were performed with the Prodigy starting with 8-15.0 × 109 leukocytes (including 1.1–2.3 × 109 NK cells) collected by small-scale lymphapheresis (n = 3). Positive fraction after immunoselection, in-process controls (IPCs), and end product were quantified by flow cytometric no-wash, single-platform assessment, and gating strategy using positive (CD56/CD16/CD45), negative (CD14/CD19/CD3), and dead cell (7-aminoactinomycine [7-AAD]) discriminators. The three runs on the fully integrated manufacturing platform included immunomagnetic separation (CD3 depletion/CD56 enrichment) followed by NK cell expansion over 14 days. This process led to high NK cell purities (median 99.1%) and adequate NK cell viabilities (median 86.9%) and achieved a median CD3+ cell depletion of log −3.6 after CD3 depletion and log −3.7 after immunomagnetic CD3 depletion and consecutive CD56 selection. Subsequent cultivation of separated NK cells in the CentriCult® chamber of Prodigy resulted in approximately 4.2–8.5-fold NK cell expansion rates by adding of NK MACS® basal medium containing NK MACS® supplement, interleukin (IL)-2/IL-15 and initial IL-21. NK cells expanded for 14 days revealed higher expression of natural cytotoxicity receptors (NKp30, NKp44, NKp46, and NKG2D) and degranulation/apoptotic markers and stronger cytolytic properties against K562 compared to non-activated NK cells before automated cultivation. Moreover, expanded NK cells had robust growth and killing activities even after cryopreservation. As a crucial result, it was possible to determine the appropriate time period for optimal CAR transduction of cultivated NK cells between days 8 and 14, with the highest anti-CD123 CAR expression levels on day 14. The anti-CD123 CAR NK cells showed retargeted killing and degranulation properties against CD123-expressing KG1a target cells, while basal cytotoxicity of non-transduced NK cells was determined using the CD123-negative cell line K562. Time-lapse imaging to monitor redirected effector-to-target contacts between anti-CD123 CAR NK and KG1a showed long-term effector–target interaction. In conclusion, the integration of the clinical-scale expansion procedure in the automated and closed Prodigy system, including IPC samples and quality controls and optimal time frames for NK cell transduction with CAR vectors, was established on 48-well plates and resulted in a standardized GMP-compliant overall process.
Collapse
Affiliation(s)
- Olaf Oberschmidt
- 1 Institute for Cellular Therapeutics, ATMP-GMP Development Unit, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- 2 Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,3 REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | | | | | - Tanja Gardlowski
- 6 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Nadine Matthies
- 1 Institute for Cellular Therapeutics, ATMP-GMP Development Unit, Hannover Medical School, Hannover, Germany
| | - Krasimira Aleksandrova
- 7 Institute for Cellular Therapeutics, Cellular Therapy Centre, Hannover Medical School, Hannover, Germany
| | - Lubomir Arseniev
- 7 Institute for Cellular Therapeutics, Cellular Therapy Centre, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- 2 Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,3 REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,8 Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ulrike Koehl
- 1 Institute for Cellular Therapeutics, ATMP-GMP Development Unit, Hannover Medical School, Hannover, Germany.,6 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,9 Institute of Clinical Immunology, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Stephan Kloess
- 1 Institute for Cellular Therapeutics, ATMP-GMP Development Unit, Hannover Medical School, Hannover, Germany.,6 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
3
|
Kim SH, Lim KI. Stability of Retroviral Vectors Against Ultracentrifugation Is Determined by the Viral Internal Core and Envelope Proteins Used for Pseudotyping. Mol Cells 2017; 40:339-345. [PMID: 28535668 PMCID: PMC5463042 DOI: 10.14348/molcells.2017.0043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 01/08/2023] Open
Abstract
Retroviral and lentiviral vectors are mostly pseudotyped and often purified and concentrated via ultracentrifugation. In this study, we quantified and compared the stabilities of retroviral [murine leukemia virus (MLV)-based] and lentiviral [human immunodeficiency virus (HIV)-1-based] vectors pseudotyped with relatively mechanically stable envelope proteins, vesicular stomatitis virus glycoproteins (VSVGs), and the influenza virus WSN strain envelope proteins against ultracentrifugation. Lentiviral genomic and functional particles were more stable than the corresponding retroviral particles against ultracentrifugation when pseudotyped with VSVGs. However, both retroviral and lentiviral particles were unstable when pseudotyped with the influenza virus WSN strain envelope proteins. Therefore, the stabilities of pseudotyped retroviral and lentiviral vectors against ultracentrifugation process are a function of not only the type of envelope proteins, but also the type of viral internal core (MLV or HIV-1 core). In addition, the fraction of functional viral particles among genomic viral particles greatly varied at times during packaging, depending on the type of envelope proteins used for pseudotyping and the viral internal core.
Collapse
Affiliation(s)
- Soo-hyun Kim
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Kwang-il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Seoul 04310,
Korea
| |
Collapse
|