1
|
Renye JA, Somkuti GA, Qi PX, Steinberg DH, McAnulty MJ, Miller AL, Guron GKP, Oest AM. BlpU is a broad-spectrum bacteriocin in Streptococcus thermophilus. Front Microbiol 2024; 15:1409359. [PMID: 39081891 PMCID: PMC11286413 DOI: 10.3389/fmicb.2024.1409359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/11/2024] [Indexed: 08/02/2024] Open
Abstract
Streptococcus thermophilus strain B59671 naturally produces thermophilin 110, a broad-spectrum bacteriocin encoded within the bacteriocin-like peptide (blp) gene cluster, and thermophilin 13 from a separate chromosomal locus. Analysis of the blp gene cluster revealed two genes, blpU and blpK, as potentially encoding bacteriocins. Deletion of blpK from the B59671 chromosome did not result in a loss of antimicrobial activity against either S. thermophilus ST113 or Pediococcus acidilactici F. A deletion mutant of blpU could not be generated in B59671, but the mature BlpU peptide obtained through overexpression in E. coli BL21 or chemical synthesis inhibited the growth of S. thermophilus strains, Streptococcus mutans UA159, P. acidilactici F, and Listeria innocua GV9 L-S, evidencing as a broad-spectrum bacteriocin that does not require modification for activity. This study also showed that the transcription of blpU was approximately 16-fold higher in B59671 than in an induced culture of S. thermophilus LMD-9, which produces a blp-encoded bacteriocin. The increased expression of BlpU in B59671 may explain the unique antimicrobial spectrum associated with this strain. Additionally, it was shown that a blpC deletion mutant of B59671, which prevents expression of BlpU and BlpK, inhibited the growth of other S. thermophilus strains and Bacillus cereus, suggesting that thermophilin 13 produced by B59671 possessed both intra- and interspecies antimicrobial activity. While this study confirmed that BlpU can function as an independent antimicrobial peptide, further studies are required to determine if BlpK can function independently as a broad-spectrum antimicrobial.
Collapse
Affiliation(s)
- John A. Renye
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agricultural, Wyndmoor, PA, United States
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Miller AL, Renye JA, Oest AM, Liang C, Garcia RA, Plumier BM, Tomasula PM. Bacteriocin production by lactic acid bacteria using ice cream co-product as the fermentation substrate. J Dairy Sci 2024; 107:3468-3477. [PMID: 38246535 DOI: 10.3168/jds.2023-24249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Ice cream manufacture commonly results in the accumulation of wasted product that contains valuable food-grade quality components, including fat, carbohydrates, and protein. Methods have been developed for recovering the fat from this waste stream, but this results in the generation of a co-product rich in fermentable carbohydrates. This study aimed to investigate the potential for using this co-product as a fermentation substrate for production of antimicrobial peptides, called bacteriocins, by dairy starter cultures. Results showed that Streptococcus thermophilus B59671 and Lactococcus lactis 11454 produced the broad-spectrum bacteriocins thermophilin 110 and nisin, respectively, when the fermentation substrate was melted ice cream, or a co-product generated by a modified butter churning technique. Bacteriocin production varied depending on the brand and variety of vanilla ice cream used in this study. When an alternate enzyme-assisted fat extraction technique was used, S. thermophilus metabolism was impaired within the resulting co-product, and thermophilin 110 production was not observed. Lactococcus lactis was still able to grow in this co-product, but antimicrobial activity was not observed. Results from this study suggest the co-product generated when using the churning technique is a better choice to use as a base medium for future studies to optimize bacteriocin production.
Collapse
Affiliation(s)
- Amanda L Miller
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038.
| | - John A Renye
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| | - Adam M Oest
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| | - Chen Liang
- Department of Viticulture & Enology, University of California, Davis, Davis, CA 95616
| | - Rafael A Garcia
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| | - Benjamin M Plumier
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| | - Peggy M Tomasula
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, Wyndmoor, PA 19038
| |
Collapse
|
3
|
McAnulty MJ, Guron GK, Oest AM, Miller AL, Renye JA. The quorum sensing peptide BlpC regulates the transcription of genes outside its associated gene cluster and impacts the growth of Streptococcus thermophilus. Front Microbiol 2024; 14:1304136. [PMID: 38293552 PMCID: PMC10826417 DOI: 10.3389/fmicb.2023.1304136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024] Open
Abstract
Bacteriocin production in Streptococcus thermophilus is regulated by cell density-dependent signaling molecules, including BlpC, which regulates transcription from within the bacteriocin-like peptide (blp) gene cluster. In some strains, such as S. thermophilus ST106, this signaling system does not function properly, and BlpC must be supplied exogenously to induce bacteriocin production. In other strains, such as S. thermophilus B59671, bacteriocin (thermophilin 110 in strain B59671) production occurs naturally. Here, transcriptomic analyses were used to compare global gene expression within ST106 in the presence or absence of synthetic BlpC and within B59671 to determine if BlpC regulates the expression of genes outside the blp cluster. Real-time semi-quantitative PCR was used to find genes differentially expressed in the absence of chromosomal blpC in the B59671 background. Growth curve experiments and bacteriocin activity assays were performed with knockout mutants and BlpC supplementation to identify effects on growth and bacteriocin production. In addition to the genes involved in bacteriocin production, BlpC affected the expression of several transcription regulators outside the blp gene cluster, including a putative YtrA-subfamily transcriptional repressor. In strain B59671, BlpC not only regulated the expression of thermophilin 110 but also suppressed the production of another bacteriocin, thermophilin 13, and induced the same YtrA-subfamily transcriptional repressor identified in ST106. Additionally, it was shown that the broad-spectrum antimicrobial activity associated with strain B59671 was due to the production of thermophilin 110, while thermophilin 13 appears to be a redundant system for suppressing intraspecies growth. BlpC production or induction negatively affected the growth of strains B59671 and ST106, revealing selective pressure to not produce bacteriocins that may explain bacteriocin production phenotype differences between S. thermophilus strains. This study identifies additional genes regulated by BlpC and assists in defining conditions to optimize the production of bacteriocins for applications in agriculture or human and animal health.
Collapse
Affiliation(s)
- Michael J. McAnulty
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States
| | | | | | | | | |
Collapse
|
4
|
Renye JA, Mendez-Encinas MA, White AK, Miller AL, McAnulty MJ, Yadav MP, Hotchkiss AT, Guron GKP, Oest AM, Martinez-Robinson KG, Carvajal-Millan E. Antimicrobial activity of thermophilin 110 against the opportunistic pathogen Cutibacterium acnes. Biotechnol Lett 2023; 45:1365-1379. [PMID: 37606751 DOI: 10.1007/s10529-023-03419-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE Thermophilin 110, a bacteriocin produced by Streptococcus thermophilus B59671, inhibited planktonic growth and biofilm formation of Cutibacterium acnes, a commensal skin bacterium associated with the inflammatory disease, acne vulgaris, and more invasive deep tissue infections. RESULTS Thermophilin 110 prevented planktonic growth of C. acnes at a concentration ≥ 160 AU mL-1; while concentrations ≥ 640 AU mL-1 resulted in a > 5 log reduction in viable planktonic cell counts and inhibited biofilm formation. Arabinoxylan (AX) and sodium alginate (SA) hydrogels were shown to encapsulate thermophilin 110, but as currently formulated, the encapsulated bacteriocin was unable to diffuse out of the gel and inhibit the growth of C. acnes. Hydrogels were also used to encapsulate S. thermophilus B59671, and inhibition zones were observed against C. acnes around intact SA gels, or S. thermophilus colonies that were released from AX gels. CONCLUSIONS Thermophilin 110 has potential as an antimicrobial for preventing C. acnes infections and further optimization of SA and AX gel formulations could allow them to serve as delivery systems for bacteriocins or bacteriocin-producing probiotics.
Collapse
Affiliation(s)
- John A Renye
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | - Mayra A Mendez-Encinas
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, S/N, 83621, Caborca, SON, Mexico
| | - Andre K White
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Amanda L Miller
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Michael J McAnulty
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Madhav P Yadav
- Sustainable Biofuels and Co-Products Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Arland T Hotchkiss
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Giselle K P Guron
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Adam M Oest
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Karla G Martinez-Robinson
- Research Center for Food and Development, A.C. Carretera Gustavo E. Astiazaran Rosas 46, 83304, Hermosillo, SON, Mexico
| | - Elizabeth Carvajal-Millan
- Research Center for Food and Development, A.C. Carretera Gustavo E. Astiazaran Rosas 46, 83304, Hermosillo, SON, Mexico
| |
Collapse
|
5
|
Corrêa JAF, de Melo Nazareth T, Rocha GFD, Luciano FB. Bioactive Antimicrobial Peptides from Food Proteins: Perspectives and Challenges for Controlling Foodborne Pathogens. Pathogens 2023; 12:pathogens12030477. [PMID: 36986399 PMCID: PMC10052163 DOI: 10.3390/pathogens12030477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Bioactive peptides (BAPs) derived from food proteins have been extensively studied for their health benefits, majorly exploring their potential use as nutraceuticals and functional food components. These peptides possess a range of beneficial properties, including antihypertensive, antioxidant, immunomodulatory, and antibacterial activities, and are naturally present within dietary protein sequences. To release food-grade antimicrobial peptides (AMPs), enzymatic protein hydrolysis or microbial fermentation, such as with lactic acid bacteria (LAB), can be employed. The activity of AMPs is influenced by various structural characteristics, including the amino acid composition, three-dimensional conformation, liquid charge, putative domains, and resulting hydrophobicity. This review discusses the synthesis of BAPs and AMPs, their potential for controlling foodborne pathogens, their mechanisms of action, and the challenges and prospects faced by the food industry. BAPs can regulate gut microbiota by promoting the growth of beneficial bacteria or by directly inhibiting pathogenic microorganisms. LAB-promoted hydrolysis of dietary proteins occurs naturally in both the matrix and the gastrointestinal tract. However, several obstacles must be overcome before BAPs can replace antimicrobials in food production. These include the high manufacturing costs of current technologies, limited in vivo and matrix data, and the difficulties associated with standardization and commercial-scale production.
Collapse
Affiliation(s)
- Jessica Audrey Feijó Corrêa
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Tiago de Melo Nazareth
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giovanna Fernandes da Rocha
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| |
Collapse
|
6
|
Wang SY, Huang RF, Ng KS, Chen YP, Shiu JS, Chen MJ. Co-Culture Strategy of Lactobacillus kefiranofaciens HL1 for Developing Functional Fermented Milk. Foods 2021; 10:foods10092098. [PMID: 34574208 PMCID: PMC8466150 DOI: 10.3390/foods10092098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022] Open
Abstract
Our previous studies indicated that Lactobacillus kefiranofaciens HL1, isolated from kefir grain, has strong antioxidant activities and anti-aging effects. However, this strain is difficult to use in isolation when manufacturing fermented products due to poor viability in milk. Thus, the purpose of this study was to apply a co-culture strategy to develop a novel probiotic fermented milk rich in L. kefiranofaciens HL1. Each of four selected starter cultures was co-cultured with kefir strain HL1 in different media to evaluate their effects on microbial activity and availability of milk fermentation. The results of a colony size test on de Man, Rogosa and Sharpe (MRS) agar agar, microbial viability, and acidification performance in MRS broth and skimmed milk suggested that Lactococcus lactis subsp. cremoris APL15 is a suitable candidate for co-culturing with HL1. We then co-cultured HL1 and APL15 in skimmed milk and report remarkable improvement in fermentation ability and no negative impact on the viability of strain HL1 or textural and rheological properties of the milk. Through a co-culture strategy, we have improved the viability of kefir strain HL1 in fermented skimmed milk products and successfully developed a novel milk product with a unique flavor and sufficient probiotics.
Collapse
Affiliation(s)
- Sheng-Yao Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (S.-Y.W.); (R.-F.H.); (K.-S.N.)
| | - Ren-Feng Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (S.-Y.W.); (R.-F.H.); (K.-S.N.)
| | - Ker-Sin Ng
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (S.-Y.W.); (R.-F.H.); (K.-S.N.)
| | - Yen-Po Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan;
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jia-Shian Shiu
- Hengchun Branch, Livestock Research Institute, Council of Agriculture, Executive Yuan, Pingtung 94644, Taiwan;
| | - Ming-Ju Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan; (S.-Y.W.); (R.-F.H.); (K.-S.N.)
- Correspondence: ; Tel.: +886-2-33664169
| |
Collapse
|
7
|
Renye JA, Steinberg DH. Thermophilin 110 inhibits growth and biofilm formation of Streptococcus mutans. ACTA ACUST UNITED AC 2021; 31:e00647. [PMID: 34307072 PMCID: PMC8258636 DOI: 10.1016/j.btre.2021.e00647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/06/2022]
Abstract
S. thermophilus B59671 naturally produces thermophilin 110, a bacteriocin that inhibits the growth of the oral pathogen Streptococcus mutans Thermophilin 110 was shown to prevent biofilm formation by S. mutans UA159 Co-culturing S. thermophilus B59671 with S. mutans UA159 prevented biofilm formation.
Dental caries continues to occur in both children and adults worldwide resulting in significant economic burden, and consumers have expressed interest in natural products that can prevent these recurrent infections. In this study, S. thermophilus B59671, which produces thermophilin 110, was shown to inhibit the growth of S. mutans UA159. A thermophilin concentration ≥ 80 AU ml−1 prevented the growth of S. mutans UA159 in batch culture, while ≥ 160 AU ml−1 was required to prevent biofilm growth. Co-culturing S. thermophilus B59671 and S. mutans UA159 also resulted in impaired biofilm growth. Thermophillin 110 was also shown inhibit additional S. mutans strains and commensal oral streptococci at higher concentrations (640-1280 AU ml−1). These results suggest that thermophilin 110 could be used as a natural antimicrobial in oral care products and support the need for additional studies to assess the probiotic potential of S. thermophilus B59671.
Collapse
Affiliation(s)
- John A Renye
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA 19038
| | - Dennis H Steinberg
- Dairy and Functional Foods Research Unit, Agricultural Research Service, USDA, 600 E. Mermaid Lane, Wyndmoor, PA 19038
| |
Collapse
|
8
|
Madi-Moussa D, Coucheney F, Drider D. Expression of five class II bacteriocins with activity against Escherichia coli in Lacticaseibacillus paracasei CNCM I-5369, and in a heterologous host. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00632. [PMID: 34136365 PMCID: PMC8181189 DOI: 10.1016/j.btre.2021.e00632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Five open reading frames viz orf010, orf12, orf023, orf030 and orf038 coding class II bacteriocins in Lacticaseibacillus paracasei CNCM I-5369 strain previously isolated from an Algerian dairy product, were found to be expressed after 24 h of growth. The strain has also shown anti-E. coli activity in a narrow pH range between 4.5 and 5. Then, expression and purification of these bacteriocins was conducted in the heterologous host E. coli. This strategy enabled us to purify the peptide encoded by orf030 in large quantities, in contrast to other peptides that were produced but required to be released from the insoluble fraction following 4 M urea and desalting treatments. All peptides heterologously produced were characterized by MALDI TOF Mass spectrometry and successfully tested for their anti-E. coli activity. Furthermore, in silico transcriptional analysis was determined by Findterm tool and with Bagel4 software permitted to locate potential promoters and co-transcription events.
Collapse
Affiliation(s)
- Désiré Madi-Moussa
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, F-59000 Lille, France
| | - Françoise Coucheney
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, F-59000 Lille, France
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, F-59000 Lille, France
| |
Collapse
|
9
|
Anupama PH, Prasad N, Nzana VB, Tiwari JP, Mathew M, Abraham G. Dietary Management in Slowing Down the Progression of CKDu. Indian J Nephrol 2019; 30:256-260. [PMID: 33273790 PMCID: PMC7699662 DOI: 10.4103/ijn.ijn_366_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/20/2019] [Accepted: 05/07/2019] [Indexed: 01/25/2023] Open
Abstract
Chronic kidney disease of unknown etiology (CKDu) is an emerging entity in the South Asian region. This predominately affects the farming community belonging to the lower socioeconomic status. CKDu being a progressive condition often leads to end-stage renal failurerequiring renal replacement therapy (RRT). Due to the high cost and limited availability of RRT in many areas of geographical locations in India and worldwide, there is an unmet need to slow down the progression of CKDu. The intestinal microbiota is different in patients with CKD, with low levels of beneficial bacteria such as Lactobacillus and Bifidobacteria. Prebiotics and probiotics modify the intestinal microbiota and thereby slow down the progression. Soda bicarbonate therapy is cheap and cost-effective in slowing down the progression of CKDu in a subset of patients. There is also evidence of the beneficial effect of N-acetyl cysteine in early stages of CKD and it should benefit CKDu also. Dietary interventions to prevent dehydration, by providing uncontaminated drinking water, sufficient protein containing diet with adequate calories, and tailored salt intake to prevent hypotension, are necessary compared to other causes of CKD. The objective is to prevent malnutrition, and uremic symptoms. Early diagnosis and prompt intervention may delay the progression of CKDu in the early stages.
Collapse
Affiliation(s)
- Priya Haridas Anupama
- Department of Nephrology, Madras Medical Mission Hospital, Chennai, Tamil Nadu, India
| | - Narayan Prasad
- Department of Nephrology, Sanjay Gandhi Post Graduate Institute of Medical, Sciences, Lucknow, Uttar Pradesh, India
| | - Victorine B Nzana
- Department of Nephrology, Madras Medical Mission Hospital, Chennai, Tamil Nadu, India
| | - J P Tiwari
- Department of Nephrology, Goa Medical College and Hospital, Goa, India
| | - Milly Mathew
- Department of Nephrology, Madras Medical Mission Hospital, Chennai, Tamil Nadu, India
| | - Georgi Abraham
- Department of Nephrology, Pondicherry Institute of Medical Sciences, Pondicherry, India
| |
Collapse
|
10
|
Complete Genome Sequences of Bacteriocin-Producing Streptococcus thermophilus Strains ST106 and ST109. Microbiol Resour Announc 2019; 8:MRA01336-18. [PMID: 30801058 PMCID: PMC6376417 DOI: 10.1128/mra.01336-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/04/2019] [Indexed: 12/02/2022] Open
Abstract
Streptococcus thermophilus strains ST106 and ST109 produce broad-spectrum bacteriocins encoded within a bacteriocin-like peptide (blp) gene cluster. This study reports the complete genome sequences for both strains, with the ST109 chromosome containing 1,788,866 nucleotides (nt) and 1,572 predicted genes, and ST106 having 1,856,083 nt and 1,601 predicted genes. Streptococcus thermophilus strains ST106 and ST109 produce broad-spectrum bacteriocins encoded within a bacteriocin-like peptide (blp) gene cluster. This study reports the complete genome sequences for both strains, with the ST109 chromosome containing 1,788,866 nucleotides (nt) and 1,572 predicted genes, and ST106 having 1,856,083 nt and 1,601 predicted genes.
Collapse
|
11
|
Renye JA, Somkuti GA, Steinberg DH. Thermophilin 109 is a naturally produced broad spectrum bacteriocin encoded within the blp gene cluster of Streptococcus thermophilus. Biotechnol Lett 2018; 41:283-292. [DOI: 10.1007/s10529-018-02637-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/05/2018] [Indexed: 11/28/2022]
|
12
|
Stability of Bacteriocin-Like Inhibitory Substance (BLIS) Produced by Pediococcus acidilactici kp10 at Different Extreme Conditions. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5973484. [PMID: 30363649 PMCID: PMC6180926 DOI: 10.1155/2018/5973484] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/12/2018] [Indexed: 11/17/2022]
Abstract
Nowadays, bacteriocin industry has substantially grown replacing the role of chemical preservatives in enhancing shelf-life and safety of food. The progress in bacteriocin study has been supported by the emerging of consumer demand on the applications of natural food preservatives. Since food is a complex ecosystem, the characteristics of bacteriocin determine the effectiveness of their incorporation into the food products. Among four commercial media (M17 broth, MRS broth, tryptic soy broth, and nutrient broth) tested, the highest growth of Pediococcus acidilactici kp10 and bacteriocin-like-inhibitory substance (BLIS) production were obtained in the cultivation with M17. BLIS production was found to be a growth associated process where the production was increased concomitantly with the growth of producing strain, P. acidilactici kp10. The antimicrobial property of BLIS against three indicator microorganisms (Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus) remained stable upon heating at 100°C but not detectable at 121°C. The BLIS activity was also observed to be stable and active at a wide pH range (pH 2 to pH 7). The BLIS activity remained constant at -20°C and -80°C for 1 month of storage. However, the activity dropped after 3 and 6 months of storage at 4°C, -20°C, and -80°C with more than 80% reduction. The ability of bacteriocin from P. acidilactici kp10 to inhibit food-borne pathogens while remaining stable and active at extreme pH and temperature is of potential interest for future applications in food preservatives.
Collapse
|
13
|
Mahony J, Cambillau C, van Sinderen D. Host recognition by lactic acid bacterial phages. FEMS Microbiol Rev 2018; 41:S16-S26. [PMID: 28830088 DOI: 10.1093/femsre/fux019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023] Open
Abstract
Bacteriophage infection of lactic acid bacteria (LAB) is one of the most significant causes of inconsistencies in the manufacture of fermented foods, affecting production schedules and organoleptic properties of the final product. Consequently, LAB phages, and particularly those infecting Lactococcus lactis, have been the focus of intensive research efforts. During the past decade, multidisciplinary scientific approaches have uncovered molecular details on the exquisite process of how a lactococcal phage recognises and binds to its host. Such approaches have incorporated genomic/molecular analyses and their partnership with phage structural analysis and host cell wall biochemical studies are discussed in this review, which will also provide our views on future directions of this research field.
Collapse
Affiliation(s)
- Jennifer Mahony
- School of Microbiology, University College Cork, Cork T12 YT20, Ireland.,APC Microbiome Institute, University College Cork, Cork T12 YT20, Ireland
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, 13288 Marseille, France.,Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, Marseille, 13288 Marseille, France
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork T12 YT20, Ireland.,APC Microbiome Institute, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
14
|
Yang E, Fan L, Yan J, Jiang Y, Doucette C, Fillmore S, Walker B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express 2018; 8:10. [PMID: 29368243 PMCID: PMC5783981 DOI: 10.1186/s13568-018-0536-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/15/2018] [Indexed: 11/18/2022] Open
Abstract
There has been continued interest in bacteriocins research from an applied perspective as bacteriocins have potential to be used as natural preservative. Four bacteriocinogenic lactic acid bacteria (LAB) strains of Lactobacillus curvatus (Arla-10), Enterococcus faecium (JFR-1), Lactobacillus paracasei subsp. paracasei (JFR-5) and Streptococcus thermophilus (TSB-8) were previously isolated and identified in our lab. The objective of this study was to determine the optimal growth conditions for both LAB growth and bacteriocins production. In this study, various growth conditions including culture media (MRS and BHI), initial pH of culture media (4.5, 5.5, 6.2, 7.4 and 8.5), and incubation temperatures (20, 37 and 44 °C) were investigated for LAB growth measured as optical density (OD), bacteriocin activity determined as arbitrary unit and viability of LAB expressed as log CFU ml-1. Growth curves of the bacteriocinogenic LAB were generated using a Bioscreen C. Our results indicated that Arla-10, JFR-1, and JFR-5 strains grew well on both MRS and BHI media at growth temperature tested whereas TSB-8 strain, unable to grow at 20 °C. LAB growth was significantly affected by the initial pH of culture media (p < 0.001) and the optimal pH was found ranging from 6.2 to 8.5. Bacteriocin activity was significantly different in MRS versus BHI (p < 0.001), and the optimal condition for LAB to produce bacteriocins was determined in MRS broth, pH 6.2 at 37 °C. This study provides useful information on potential application of bacteriocinogenic LAB in food fermentation processes.
Collapse
Affiliation(s)
- En Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5 Canada
| | - Lihua Fan
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5 Canada
| | - Jinping Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guang Zhou, China
| | - Craig Doucette
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5 Canada
| | - Sherry Fillmore
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5 Canada
| | - Bradley Walker
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5 Canada
| |
Collapse
|
15
|
Complete Genome Sequence of Streptococcus thermophilus Strain B59671, Which Naturally Produces the Broad-Spectrum Bacteriocin Thermophilin 110. GENOME ANNOUNCEMENTS 2017; 5:5/45/e01213-17. [PMID: 29122869 PMCID: PMC5679802 DOI: 10.1128/genomea.01213-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Streptococcus thermophilus strain B59671 is a Gram-positive lactic acid bacterium that naturally produces a broad-spectrum bacteriocin, thermophilin 110, and is capable of producing gamma-aminobutyric acid (GABA). The complete genome sequence for this strain contains 1,821,173 nucleotides, 1,936 predicted genes, and an average G+C content of 39.1%.
Collapse
|
16
|
Evivie SE, Li B, Ding X, Meng Y, Yu S, Du J, Xu M, Li W, Jin D, Huo G, Liu F. Complete Genome Sequence of Streptococcus thermophilus KLDS 3.1003, A Strain with High Antimicrobial Potential against Foodborne and Vaginal Pathogens. Front Microbiol 2017; 8:1238. [PMID: 28744258 PMCID: PMC5504653 DOI: 10.3389/fmicb.2017.01238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022] Open
Abstract
Lactic acid bacteria play increasingly important roles in the food industry. Streptococcus thermophilus KLDS 3.1003 strain was isolated from traditional yogurt in Inner Mongolia, China. It has shown high antimicrobial activity against selected foodborne and vaginal pathogens. In this study, we investigated and analyzed its complete genome sequence. The S. thermophilus KLDS 3.1003 genome comprise of a 1,899,956 bp chromosome with a G+C content of 38.92%, 1,995 genes, and 6 rRNAs. With the exception of S. thermophilus M17TZA496, S. thermophilus KLDS 3.1003 has more tRNAs (amino acid coding genes) compared to some S. thermophilus strains available on the National Centre for Biotechnology Information database. MG-RAST annotation showed that this strain has 317 subsystems with most genes associated with amino acid and carbohydrate metabolism. This strain also has a unique EPS gene cluster containing 23 genes, and may be a mixed dairy starter culture. This information provides more insight into the molecular basis of its potentials for further applications in the dairy and allied industries.
Collapse
Affiliation(s)
- Smith E Evivie
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Sciences, Northeast Agricultural UniversityHarbin, China.,Food Science and Nutrition Unit, Department of Animal Science, Faculty of Agriculture, University of BeninBenin City, Nigeria
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Sciences, Northeast Agricultural UniversityHarbin, China
| | - Xiuyun Ding
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Sciences, Northeast Agricultural UniversityHarbin, China
| | - Yueyue Meng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Sciences, Northeast Agricultural UniversityHarbin, China
| | - Shangfu Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Sciences, Northeast Agricultural UniversityHarbin, China
| | - Jincheng Du
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Sciences, Northeast Agricultural UniversityHarbin, China
| | - Min Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Sciences, Northeast Agricultural UniversityHarbin, China
| | - Wan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Sciences, Northeast Agricultural UniversityHarbin, China
| | - Da Jin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Sciences, Northeast Agricultural UniversityHarbin, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Sciences, Northeast Agricultural UniversityHarbin, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Sciences, Northeast Agricultural UniversityHarbin, China
| |
Collapse
|