1
|
Harris H, Kittur J. Unlocking the potential of CRISPR-Cas9 for cystic fibrosis: A systematic literature review. Gene 2025; 942:149257. [PMID: 39832688 DOI: 10.1016/j.gene.2025.149257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
CRISPR-Cas9 technology has revolutionized genetic engineering, offering precise and efficient genome editing capabilities. This review explores the application of CRISPR-Cas9 for cystic fibrosis (CF), particularly targeting mutations in the CFTR gene. CF is a multiorgan disease primarily affecting the lungs, gastrointestinal system (e.g., CF-related diabetes (CFRD), CF-associated liver disease (CFLD)), bones (CF-bone disease), and the reproductive system. CF, a genetic disorder characterized by defective ion transport leading to thick mucus accumulation, is often caused by mutations like ΔF508 in the CFTR gene. This review employs a systematic methodology, incorporating an extensive literature search across multiple academic databases, including PubMed, Web of Science, and ScienceDirect, to identify 40 high-quality studies focused on CRISPR-Cas9 applications for CFTR gene editing. The data collection process involved predefined inclusion criteria targeting experimental approaches, gene-editing outcomes, delivery methods, and verification techniques. Data analysis synthesized findings on editing efficiency, off-target effects, and delivery system optimization to present a comprehensive overview of the field. The review highlights the historical development of CRISPR-Cas9, its mechanism, and its transformative role in genetic engineering and medicine. A detailed examination of CRISPR-Cas9's application in CFTR gene correction emphasizes the potential for therapeutic interventions while addressing challenges such as off-target effects, delivery efficiency, and ethical considerations. Future directions include optimizing delivery systems, integrating advanced editing tools like prime and base editing, and expanding personalized medicine approaches to improve treatment outcomes. By systematically analyzing the current landscape, this review provides a foundation for advancing CRISPR-Cas9 technologies for cystic fibrosis treatment and related disorders.
Collapse
Affiliation(s)
- Hudson Harris
- Department of Biomedical Engineering, Gallogly College of Engineering, University of Oklahoma Norman OK USA.
| | - Javeed Kittur
- Department of Biomedical Engineering, Gallogly College of Engineering, University of Oklahoma Norman OK USA
| |
Collapse
|
2
|
Abstract
Cystic fibrosis (CF) is a monogenic recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator gene (CFTR). Remarkable progress in basic research has led to the discovery of highly effective CFTR modulators. Now ~90% of CF patients are treatable. However, these modulator therapies are not curative and do not cover the full spectrum of CFTR mutations. Thus, there is a continued need to develop a complete and durable therapy that can treat all CF patients once and for all. As CF is a genetic disease, the ultimate therapy would be in-situ repair of the genetic lesions in the genome. Within the past few years, new technologies, such as CRISPR/Cas gene editing, have emerged as an appealing platform to revise the genome, ushering in a new era of genetic therapy. This review provided an update on this rapidly evolving field and the status of adapting the technology for CF therapy.
Collapse
Affiliation(s)
- Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Peters KW, Gong X, Frizzell RA. Cystic Fibrosis Transmembrane Conductance Regulator Folding Mutations Reveal Differences in Corrector Efficacy Linked to Increases in Immature Cystic Fibrosis Transmembrane Conductance Regulator Expression. Front Physiol 2021; 12:695767. [PMID: 34764878 PMCID: PMC8576290 DOI: 10.3389/fphys.2021.695767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Most cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that lead to protein misfolding and degradation by the ubiquitin–proteasome system. Previous studies demonstrated that PIAS4 facilitates the modification of wild-type (WT) and F508del CFTR by small ubiquitin-like modifier (SUMO)-1, enhancing CFTR biogenesis by slowing immature CFTR degradation and producing increased immature CFTR band B. Methods: We evaluated two correction strategies using misfolding mutants, including the common variant, F508del. We examined the effects on mutant expression of co-expression with PIAS4 (E3 SUMO ligase), and/or the corrector, C18. To study the impact of these correction conditions, we transfected CFBE410- cells, a bronchial epithelial cell line, with a CFTR mutant plus: (1) empty vector, (2) empty vector plus overnight 5 μM C18, (3) PIAS4, and (4) PIAS4 plus C18. We assessed expression at steady state by immunoblot of CFTR band B, and if present, band C, and the corresponding C:B band ratio. The large PIAS4-induced increase in band B expression allowed us to ask whether C18 could act on the now abundant immature protein to enhance correction above the control level, as reported by the C:B ratio. Results: The data fell into three mutant CFTR categories as follows: (1) intransigent: no observable band C under any condition (i.e., C:B = 0); (2) throughput responsive: a C:B ratio less than control, but suggesting that the increased band C resulted from PIAS4-induced increases in band B production; and (3) folding responsive: a C:B ratio greater than control, reflecting C18-induced folding greater than that expected from increased throughput due to the PIAS4-induced band B level. Conclusion: These results suggest that the immature forms of CFTR folding intermediates occupy different loci within the energetic/kinetic folding landscape of CFTR. The evaluation of their properties could assist in the development of correctors that can target the more difficult-to-fold mutant conformations that occupy different sites within the CFTR folding pathway.
Collapse
Affiliation(s)
- Kathryn W Peters
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiaoyan Gong
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Raymond A Frizzell
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Viotti Perisse I, Fan Z, Van Wettere A, Liu Y, Leir S, Keim J, Regouski M, Wilson MD, Cholewa KM, Mansbach SN, Kelley TJ, Wang Z, Harris A, White KL, Polejaeva IA. Sheep models of F508del and G542X cystic fibrosis mutations show cellular responses to human therapeutics. FASEB Bioadv 2021; 3:841-854. [PMID: 34632318 PMCID: PMC8493969 DOI: 10.1096/fba.2021-00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023] Open
Abstract
Cystic Fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The F508del and G542X are the most common mutations found in US patients, accounting for 86.4% and 4.6% of all mutations, respectively. The F508del causes deletion of the phenylalanine residue at position 508 and is associated with impaired CFTR protein folding. The G542X is a nonsense mutation that introduces a stop codon into the mRNA, thus preventing normal CFTR protein synthesis. Here, we describe the generation of CFTRF508del / F508del and CFTRG542X / G542X lambs using CRISPR/Cas9 and somatic cell nuclear transfer (SCNT). First, we introduced either F508del or G542X mutations into sheep fetal fibroblasts that were subsequently used as nuclear donors for SCNT. The newborn CF lambs develop pathology similar to CFTR -/- sheep and CF patients. Moreover, tracheal epithelial cells from the CFTRF508del / F508del lambs responded to a human CFTR (hCFTR) potentiator and correctors, and those from CFTRG542X / G542X lambs showed modest restoration of CFTR function following inhibition of nonsense-mediated decay (NMD) and aminoglycoside antibiotic treatments. Thus, the phenotype and electrophysiology of these novel models represent an important advance for testing new CF therapeutics and gene therapy to improve the health of patients with this life-limiting disorder.
Collapse
Affiliation(s)
- Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Arnaud Van Wettere
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Ying Liu
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Shih‐Hsing Leir
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Jacob Keim
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Michael D. Wilson
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Kelly M. Cholewa
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Sara N. Mansbach
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Thomas J. Kelley
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Zhongde Wang
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Ann Harris
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Kenneth L. White
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| |
Collapse
|
5
|
Poletto E, Baldo G. Creating cell lines for mimicking diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:59-87. [PMID: 34127202 DOI: 10.1016/bs.pmbts.2021.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell lines can be good models for the disease they are derived from but can also be used to study general physiological and pathological processes. They can also be used to generate cell models of diseases when primary cultures are not available. Recent genome editing tools have been very promising tools toward creating cell models to mimic diseases in vitro. In this chapter, we highlight techniques used to obtain genome-edited cell lines, including cell line selection, transfection and gene editing tools available, together with methods of phenotype characterization and, lastly, a few examples of how in vitro disease models were created using CRISPR-Cas9.
Collapse
Affiliation(s)
- Edina Poletto
- Gene Therapy Center, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Post-Graduate Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Post-Graduate Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Karlgren M, Simoff I, Keiser M, Oswald S, Artursson P. CRISPR-Cas9: A New Addition to the Drug Metabolism and Disposition Tool Box. Drug Metab Dispos 2018; 46:1776-1786. [PMID: 30126863 DOI: 10.1124/dmd.118.082842] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9), i.e., CRISPR-Cas9, has been extensively used as a gene-editing technology during recent years. Unlike earlier technologies for gene editing or gene knockdown, such as zinc finger nucleases and RNA interference, CRISPR-Cas9 is comparably easy to use, affordable, and versatile. Recently, CRISPR-Cas9 has been applied in studies of drug absorption, distribution, metabolism, and excretion (ADME) and for ADME model generation. To date, about 50 papers have been published describing in vitro or in vivo CRISPR-Cas9 gene editing of ADME and ADME-related genes. Twenty of these papers describe gene editing of clinically relevant genes, such as ATP-binding cassette drug transporters and cytochrome P450 drug-metabolizing enzymes. With CRISPR-Cas9, the ADME tool box has been substantially expanded. This new technology allows us to develop better and more predictive in vitro and in vivo ADME models and map previously underexplored ADME genes and gene families. In this mini-review, we give an overview of the CRISPR-Cas9 technology and summarize recent applications of CRISPR-Cas9 within the ADME field. We also speculate about future applications of CRISPR-Cas9 in ADME research.
Collapse
Affiliation(s)
- M Karlgren
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - I Simoff
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - M Keiser
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - S Oswald
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - P Artursson
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| |
Collapse
|
7
|
Jih KY, Lin WY, Sohma Y, Hwang TC. CFTR potentiators: from bench to bedside. Curr Opin Pharmacol 2017; 34:98-104. [PMID: 29073476 DOI: 10.1016/j.coph.2017.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 01/14/2023]
Abstract
One major breakthrough in cystic fibrosis research in the past decade is the development of drugs that target the root cause of the disease-dysfunctional CFTR protein. One of the compounds, Ivacaftor or Kalydeco, which has been approved for clinical use since 2012, acts by promoting the gating function of CFTR. Our recent studies have led to a gating model that features energetic coupling between nucleotide-binding domain (NBD) dimerization and gate opening/closing in CFTR's transmembrane domains (TMDs). Based on this model, we showed that ATP analogs can enhance CFTR gating by facilitating NBD dimerization, whereas Ivacaftor works by stabilizing the open channel conformation of the TMDs. This latter idea also explains the near omnipotence of Ivacaftor. Furthermore, this model identifies multiple approaches to synergistically boost the open probability of CFTR by influencing distinct molecular events that control gating conformational changes.
Collapse
Affiliation(s)
- Kang-Yang Jih
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Ying Lin
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yoshiro Sohma
- Department of Pharmacology, Keio University, Tokyo, Japan; Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Tzyh-Chang Hwang
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
8
|
Animal and model systems for studying cystic fibrosis. J Cyst Fibros 2017; 17:S28-S34. [PMID: 28939349 DOI: 10.1016/j.jcf.2017.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 01/07/2023]
Abstract
The cystic fibrosis (CF) field is the beneficiary of five species of animal models that lack functional cystic fibrosis transmembrane conductance regulator (CFTR) channel. These models are rapidly informing mechanisms of disease pathogenesis and CFTR function regardless of how faithfully a given organ reproduces the human CF phenotype. New approaches of genetic engineering with RNA-guided nucleases are rapidly expanding both the potential types of models available and the approaches to correct the CFTR defect. The application of new CRISPR/Cas9 genome editing techniques are similarly increasing capabilities for in vitro modeling of CFTR functions in cell lines and primary cells using air-liquid interface cultures and organoids. Gene editing of CFTR mutations in somatic stem cells and induced pluripotent stem cells is also transforming gene therapy approaches for CF. This short review evaluates several areas that are key to building animal and cell systems capable of modeling CF disease and testing potential treatments.
Collapse
|