1
|
Wang Z, Wu C, Jiang P. Cloning and characterization of nitrate reductase gene in kelp Saccharina japonica (Laminariales, Phaeophyta). BMC PLANT BIOLOGY 2023; 23:78. [PMID: 36740685 PMCID: PMC9901164 DOI: 10.1186/s12870-023-04064-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Brown macroalgae dominate temperate coastal ecosystems, and their productivity is typically limited by nitrate availability. As an economically important kelp, Saccharina japonica is the most productive farmed seaweed and needs to be supplemented with sufficient nitrate throughout the cultivation process. However, molecular characterization of genes involved in nitrogen assimilation has not been conducted in brown macroalgae. RESULTS Here, we described the identification of the nitrate reductase (NR) gene from S. japonica (SjNR). Using two different cloning methods for SjNR, i.e. rapid amplification of cDNA ends (RACE) and cDNA cloning alone, a single fragment was obtained respectively. According to results of sequence analysis between these two fragments, the tentative coding sequence in two clones, SjNR-L and SjNR-S, were suggested to represent two transcripts of the single copy SjNR, and the ATG of SjNR-S was located inside the third exon of SjNR-L. In the 5' upstream sequence of each transcript, promoter core elements, response elements, especially multiple N response elements which occurred in microalgal NR, were all predicted. Further sequence analysis revealed that both transcripts encoded all five domains conserved in eukaryotic plant NRs. RT-qPCR results showed that the transcription level of SjNR in juvenile sporophytes could be significantly induced by nitrate and inhibited by ammonium, which was in line with plant NRs. The recombinant SjNR-L and SjNR-S were all proved to have NR activity, suggesting that the single-copy gene SjNR might be regulated on transcription level based on alternative promoters and multiple transcriptional start sites. Moreover, both NADH and NADPH were found to be able to act as electron donors for SjNR alone, which is the first confirmation that brown algal NR has a NAD(P)H-bispecific form. CONCLUSION These results will provide a scientific basis for understanding the N demand of kelp in various stages of cultivation and evaluating the environmental remediation potential of kelp in eutrophic sea areas.
Collapse
Affiliation(s)
- Zhenghua Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhui Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Peng Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
2
|
Wang X, Miao X, Chen G, Cui Y, Sun F, Fan J, Gao Z, Meng C. Identification of microRNAs involved in astaxanthin accumulation responding to high light and high sodium acetate (NaAC) stresses in Haematococcus pluvialis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
3
|
Lu Z, Zheng L, Liu J, Dai J, Song L. A novel fed-batch strategy to boost cyst cells production based on the understanding of intracellular carbon and nitrogen metabolism in Haematococcus pluvialis. BIORESOURCE TECHNOLOGY 2019; 289:121744. [PMID: 31323718 DOI: 10.1016/j.biortech.2019.121744] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Haematococcus pluvialis is a prominent feedstock of astaxanthin. The ratio of carbon to nitrogen (C/N) strongly influences the metabolic pathways of mixotrophic-grown microalgae, however, its role involved in astaxanthin biosynthesis is still not fully understood. In this study, integrative metabolic and physiologic profiles were analyzed in elucidating how C/N affected carbon and nitrogen assimilation and thereby exerted influence on astaxanthin biosynthesis. It was demonstrated that high C/N up-regulated the activities of acetate kinase by increase of 5.76 folds in early logarithmic phase, leading a significant increase of acetyl-CoA. The increased carbon skeletons were then funneled into astaxanthin biosynthesis. Additionally, high C/N increased the proportion of carotenoid-intermediates in cytoplasm from chloroplast. Finally, a fed-batch cultivation strategy based on C/N gradient was developed. Biomass attained 9.18 g L-1 in 100% type of immotile cyst cells, which presented astaxanthin productivity at 15.45 mg L-1 d-1 afterward, exhibiting a promising paradigm in commercial production.
Collapse
Affiliation(s)
- Zhe Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lingling Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jingcheng Dai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
4
|
Shi J, Zang X, Cong X, Hou L, He B, Ding Y, Dong M, Sun D, Guo Y, Zhang F, Wang Z, Wei X, Zhang X. Cloning of nitrite reductase gene from Haematococcus pluvialis and transcription and enzymatic activity analysis at different nitrate and phosphorus concentration. Gene 2019; 697:123-130. [PMID: 30794916 DOI: 10.1016/j.gene.2019.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/03/2023]
Abstract
Haematococcus pluvialis is an economic microalga to produce astaxathin. To study the nitrogen metabolic process of H. pluvialis, the transcription level and enzyme content of nitrite reductase at different nitrate and phosphorus concentrations were studied. In this research, nitrite reductase gene (nir) was first cloned from H. pluvialis, which consists of 5592 nucleotides and includes 12 introns. The cDNA ORF is 1776 bp, encoding a 592 amino acid protein with two conserved domains. Phylogenetic analysis showed that the nir gene in H. pluvialis had the highest affinity with other freshwater green algae. Nitrogen and phosphorus play an important role in the growth of H. pluvialis. The single factor experiments of nitrogen on growth conditions showed that the group with 0.2 g/L NaNO3 had a relative high biomass. The single factor experiments of phosphorus on growth conditions showed that the group with 0.06 g/L K2HPO4 had a relative high biomass. The transcription level and enzymatic activity of nitrite reductase were detected at different nitrate and phosphorus concentrations. In the absence of nitrogen and phosphorus in the medium, nitrite reductase activity is the highest. This research provides theoretical guidance for optimization of culture medium for H. pluvialis and also provides an experimental basis for understanding of nitrogen metabolism pathway in H. pluvialis.
Collapse
Affiliation(s)
- Jiawei Shi
- College of Marine Life Sciences, Ocean University of China/Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, Shandong, China
| | - Xiaonan Zang
- College of Marine Life Sciences, Ocean University of China/Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, Shandong, China.
| | - Xiaomei Cong
- College of Marine Life Sciences, Ocean University of China/Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, Shandong, China
| | - Lulu Hou
- College of Marine Life Sciences, Ocean University of China/Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, Shandong, China
| | - Bangxiang He
- College of Marine Life Sciences, Ocean University of China/Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, Shandong, China
| | - Yating Ding
- College of Marine Life Sciences, Ocean University of China/Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, Shandong, China
| | - Manman Dong
- College of Marine Life Sciences, Ocean University of China/Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, Shandong, China
| | - Deguang Sun
- College of Marine Life Sciences, Ocean University of China/Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, Shandong, China
| | - Yalin Guo
- College of Marine Life Sciences, Ocean University of China/Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, Shandong, China
| | - Feng Zhang
- College of Marine Life Sciences, Ocean University of China/Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, Shandong, China
| | - Zhendong Wang
- College of Marine Life Sciences, Ocean University of China/Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, Shandong, China
| | - Xuehong Wei
- College of Marine Life Sciences, Ocean University of China/Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, Shandong, China
| | - Xuecheng Zhang
- College of Marine Life Sciences, Ocean University of China/Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, Shandong, China
| |
Collapse
|