1
|
Begum M, Saikia R, Saikia SP. Triple quadrupole liquid chromatography-mass spectrometry-mediated evaluation of vitamin D 2 accumulation potential, antioxidant capacities, and total polyphenol content of white jelly mushroom ( Tremella fuciformis Berk.). Mycologia 2024; 116:464-474. [PMID: 38489159 DOI: 10.1080/00275514.2024.2313435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
Tremella fuciformis Berk. (TF), or the white jelly mushroom, is well known for its myriad of pharmacological properties, such as immunomodulatory, anti-inflammatory, antidiabetic, antitumor, and antioxidant activities, and hypocholesterolemic and hepatoprotective effects that boost human health. Most of the studies of TF are concentrated on its polysaccharide (glucuronoxylomannan) composition, which is responsible for its pharmacological as well as rheological properties. It is well established that mushrooms are a great source of dietary vitamin D due to the presence of ergosterol in their cell membrane. There is a lack of published data on TF as a source of vitamin D2. Therefore, this study aimed to evaluate the vitamin D2 composition of the fruiting bodies of TF using triple quadrupole liquid chromatography-mass spectrometry (LC-MS/QQQ). The results showed highest vitamin D2 content (292.02 µg/g dry weight) in the sample irradiated with ultraviolet B (UVB; 310 nm) for 180 min as compared with the control group (52.47 µg/g dry weight) (P ≤ 0.001). The results showed higher accumulation potential of vitamin D2 in TF as compared with published data available for other extensively studied culinary mushrooms, such as Agaricus bisporus, Lentinula edodes, Pleurotus ostreatus, Cordiceps militaris, and Calocybe indica. Moreover, the impact of UV treatment on antioxidant capacities and total polyphenol content of TF was also studied. The accumulation potential of vitamin D in TF reveals a novel commercial source for this nutrient.
Collapse
Affiliation(s)
- Marium Begum
- Agrotechnology and Rural Development Division, Council of Scientific and Industrial Research North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ratul Saikia
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
- Biological Sciences and Technology Division, Council of Scientific and Industrial Research North East Institute of Science and Technology, Jorhat 785006, India
| | - Siddhartha Proteem Saikia
- Agrotechnology and Rural Development Division, Council of Scientific and Industrial Research North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
2
|
Zhu H, Liu D, Zheng L, Chen L, Ma A. Characterization of a G protein α subunit encoded gene from the dimorphic fungus-Tremella fuciformis. Antonie van Leeuwenhoek 2021; 114:1949-1960. [PMID: 34510304 DOI: 10.1007/s10482-021-01653-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/02/2021] [Indexed: 11/26/2022]
Abstract
Tremella fuciformis is a dimorphic fungus which can undertake the reversible transition between yeast and pseudohypha forms. G protein α subunit (Gα) carries different signals to regulate a variety of biological processes in eukaryotes, including fungal dimorphism. In this study, a novel Gα subunit encoded gene, TrGpa1, was firstly cloned from T. fuciformis. The TrGpa1 open reading frame has 1059 nucleotides, and encodes a protein which belongs to the group I of Gαi superfamily. Furthermore, the role of TrGpa1 in the T. fuciformis dimorphism was analysed by gene overexpression and knockdown. Stable integration of the target gene into the genome was confirmed by PCR and Southern blot hybridization. Transformants with the highest and lowest TrGpa1 expression levels were selected via quantitative real-time PCR analysis and Western blot. Each transformant was compared with the wild-type strain about the morphological change under different environmental factors, including pH values, temperature, cultivation time, inoculum size, and quorum-sensing molecules (farnesol and tyrosol). Comparing with the wild-type strain, the overexpression transformant always had higher ratios of pseudohyphae, while the knockdown transformant had less proportions of pseudohyphae. Therefore, the TrGpa1 is involved in the dimorphism of T. fuciformis and plays a positive role in promoting pseudohyphal growth.
Collapse
Affiliation(s)
- Hanyu Zhu
- College of Life Science and Environment, Hengyang Normal University, Hengyang, 421000, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongmei Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liesheng Zheng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liguo Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Wang Y, Xu D, Liu D, Sun X, Chen Y, Zheng L, Chen L, Ma A. A Rapid and Effective Colony PCR Procedure for Screening Transformants in Several Common Mushrooms. MYCOBIOLOGY 2019; 47:350-354. [PMID: 31565472 PMCID: PMC6758613 DOI: 10.1080/12298093.2019.1628523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 06/10/2023]
Abstract
In the post-genomic era, gene function analysis has attracted much attention. Transformation is often needed to investigate gene function. In this study, an easy, rapid, reliable, and cost-effective colony polymerase chain reaction (PCR) method for screening mushroom transformants was developed: picking up a suitable amount of transformant's tissue (1-10 μg) to 20 μl 0.25% Lywallzyme solution, and vortexing for 10 s followed by incubation at 34 °C for 15 min. Finally, 2 μl of the suspension was used as templates to perform PCR and single target bands were successfully amplified from respective transformants of Tremella fuciformis, Pleurotus ostreatus, and Pleurotus tuber-regium. This procedure could be widely employed for screening transformants in mushroom transformation experiments.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Danyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongmei Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yue Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lisheng Zheng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liguo Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Wang Y, Xu D, Sun X, Zheng L, Chen L, Ma A. An Enzymolysis-Assisted Agrobacterium tumefaciens-Mediated Transformation Method for the Yeast-Like Cells of Tremella fuciformis. MYCOBIOLOGY 2019; 47:59-65. [PMID: 30988990 PMCID: PMC6450501 DOI: 10.1080/12298093.2018.1559121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Agrobacterium tumefaciens-mediated transformation (ATMT), as a simple and versatile method, achieves successful transformation in the yeast-like cells (YLCs) of Tremella fuciformis with lower efficiency. Establishment of a more efficient transformation system of YLCs is important for functional genomics research and biotechnological application. In this study, an enzymolysis-assisted ATMT method was developed. The degradation degree of YLCs depends on the concentration and digestion time of Lywallzyme. Lower concentration (≤0.1%) of Lywallzyme was capable of formation of limited wounds on the surface of YLCs and has less influence on their growth. In addition, there is no significant difference of YLCs growth among groups treated with 0.1% Lywallzyme for different time. The binary vector pGEH under the control of T. fuciformis glyceraldehyde-3-phosphate dehydrogenase gene (gpd) promoter was utilized to transform the enzymolytic wounded YLCs with different concentrations and digestion time. The results of PCR, Southern blot, quantitative real-time PCR (qRT-PCR) and fluorescence microscopy revealed that the T-DNA was integrated into the YLCs genome, suggesting an efficient enzymolysis-assisted ATMT method of YLCs was established. The highest transformation frequency reached 1200 transformants per 106 YLCs by 0.05% (w/v) Lywallzyme digestion for 15 min, and the transformants were genetically stable. Compared with the mechanical wounding methods, enzymolytic wounding is thought to be a tender, safer and more effective method.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Danyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lisheng Zheng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liguo Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agro-Microbial Resources and Utilization Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Cloning and heterologous expression of a hydrophobin gene Ltr.hyd from the tiger milk mushroom Lentinus tuber-regium in yeast-like cells of Tremella fuciformis. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|