1
|
Yuan Y, Wei T, Qiang J, Wen Y, Lu J, Shi Y, Zhang J. Improving the catalytic activity and stability of Bacillus alcalophilus serine protease BAPB92 by rational design. Int J Biol Macromol 2024; 283:137782. [PMID: 39557243 DOI: 10.1016/j.ijbiomac.2024.137782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
The catalytic activity and stability of proteases are essential for their application in the detergent industry. To enhance the catalytic properties of BAPB92, homologous sequence comparison combined with rational design was employed. Six mutants were generated: BAPB92 (A188P), BAPB92 (V262I), BAPB92 (Q239R), BAPB92 (A188P/V262I), BAPB92 (Q239R/V262I), and BAPB92 (Q239R/A188P). Remarkably, the mutant BAPB92 (A188P/V262I) exhibited the most significant improvement, exhibiting a 4.30-fold increase in kcat/Km compared to the wild type, and a 0.75-fold enhancement in thermal stability at 60 °C. The enzymatic activity of BAPB92 (A188P/V262I) reached 6511.81 U/mg, which was 2.95 times higher than that of the wild type BAPB92. Furthermore, the optimal reaction temperature of this mutant increased from 50 °C to 60 °C. The BAPB92 (A188P/V262I) mutant also showed a marked improvement in detergent stability. In sodium tripolyphosphate liquid detergent, its washing efficacy was 17.84 % higher than that of the wild type, and in methyl glycine diacetate liquid detergent, the improvement was 18.51 %. These findings suggested that BAPB92 (A188P/V262I) holds significant potential as a detergent protease in the washing industry. Structural analysis and molecular dynamics simulations further confirmed the enhanced stability of this mutant compared to the wild type. This study provides valuable theoretical insights for the application of the serine protease BAPB92 in detergent formulations.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Tingting Wei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Jiyu Qiang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Yangxuan Wen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Jing Lu
- College of life sciences of Shanxi University, Taiyuan 030006, Shanxi, China
| | - Yawei Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Jian Zhang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
2
|
Bautista C, Arredondo-Nuñez A, Intiquilla A, Flores-Fernández CN, Brandelli A, Jiménez-Aliaga K, Zavaleta AI. One-step purification and characterization of a haloprotease from Micrococcus sp. PC7 for the production of protein hydrolysates from Andean legumes. Arch Microbiol 2024; 206:377. [PMID: 39141120 DOI: 10.1007/s00203-024-04109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
The high content and quality of protein in Andean legumes make them valuable for producing protein hydrolysates using proteases from bacteria isolated from extreme environments. This study aimed to carry out a single-step purification of a haloprotease from Micrococcus sp. PC7 isolated from Peru salterns. In addition, characterize and apply the enzyme for the production of bioactive protein hydrolysates from underutilized Andean legumes. The PC7 protease was fully purified using only tangential flow filtration (TFF) and exhibited maximum activity at pH 7.5 and 40 °C. It was characterized as a serine protease with an estimated molecular weight of 130 kDa. PC7 activity was enhanced by Cu2+ (1.7-fold) and remained active in the presence of most surfactants and acetonitrile. Furthermore, it stayed completely active up to 6% NaCl and kept ̴ 60% of its activity up to 8%. The protease maintained over 50% of its activity at 25 °C and 40 °C and over 70% at pH from 6 to 10 for up to 24 h. The determined Km and Vmax were 0.1098 mg mL-1 and 273.7 U mL-1, respectively. PC7 protease hydrolyzed 43%, 22% and 11% of the Lupinus mutabilis, Phaseolus lunatus and Erythrina edulis protein concentrates, respectively. Likewise, the hydrolysates from Lupinus mutabilis and Erythrina edulis presented the maximum antioxidant and antihypertensive activities, respectively. Our results demonstrated the feasibility of a simple purification step for the PC7 protease and its potential to be applied in industrial and biotechnological processes. Bioactive protein hydrolysates produced from Andean legumes may lead to the development of nutraceuticals and functional foods contributing to address some United Nations Sustainable Development Goals (SDGs).
Collapse
Affiliation(s)
- Cesar Bautista
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru
| | - Annsy Arredondo-Nuñez
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru
| | - Arturo Intiquilla
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru
| | - Carol N Flores-Fernández
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru.
| | - Adriano Brandelli
- Laboratory of Nanobiotechnology and Applied Microbiology, Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre, 91501-970, Brazil
| | - Karim Jiménez-Aliaga
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru
| | - Amparo Iris Zavaleta
- Laboratorio de Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima 01, Peru
| |
Collapse
|
3
|
Falkenberg F, Voß L, Bott M, Bongaerts J, Siegert P. New robust subtilisins from halotolerant and halophilic Bacillaceae. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12553-w. [PMID: 37160606 DOI: 10.1007/s00253-023-12553-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
The aim of the present study was the characterisation of three true subtilisins and one phylogenetically intermediate subtilisin from halotolerant and halophilic microorganisms. Considering the currently growing enzyme market for efficient and novel biocatalysts, data mining is a promising source for novel, as yet uncharacterised enzymes, especially from halophilic or halotolerant Bacillaceae, which offer great potential to meet industrial needs. Both halophilic bacteria Pontibacillus marinus DSM 16465T and Alkalibacillus haloalkaliphilus DSM 5271T and both halotolerant bacteria Metabacillus indicus DSM 16189 and Litchfieldia alkalitelluris DSM 16976T served as a source for the four new subtilisins SPPM, SPAH, SPMI and SPLA. The protease genes were cloned and expressed in Bacillus subtilis DB104. Purification to apparent homogeneity was achieved by ethanol precipitation, desalting and ion-exchange chromatography. Enzyme activity could be observed between pH 5.0-12.0 with an optimum for SPPM, SPMI and SPLA around pH 9.0 and for SPAH at pH 10.0. The optimal temperature for SPMI and SPLA was 70 °C and for SPPM and SPAH 55 °C and 50 °C, respectively. All proteases showed high stability towards 5% (w/v) SDS and were active even at NaCl concentrations of 5 M. The four proteases demonstrate potential for future biotechnological applications. KEY POINTS: • Halophilic and halotolerant Bacillaceae are a valuable source of new subtilisins. • Four new subtilisins were biochemically characterised in detail. • The four proteases show potential for future biotechnological applications.
Collapse
Affiliation(s)
- Fabian Falkenberg
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Leonie Voß
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428, Jülich, Germany.
| |
Collapse
|
4
|
Falkenberg F, Rahba J, Fischer D, Bott M, Bongaerts J, Siegert P. Biochemical characterization of a novel oxidatively stable, halotolerant, and high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101 T. FEBS Open Bio 2022; 12:1729-1746. [PMID: 35727859 PMCID: PMC9527586 DOI: 10.1002/2211-5463.13457] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022] Open
Abstract
Halophilic and halotolerant microorganisms represent a promising source of salt-tolerant enzymes suitable for various biotechnological applications where high salt concentrations would otherwise limit enzymatic activity. Considering the current growing enzyme market and the need for more efficient and new biocatalysts, the present study aimed at the characterization of a high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T . The protease gene was cloned and expressed in Bacillus subtilis DB104. The recombinant protease SPAO with 269 amino acids belongs to the subfamily of high-alkaline subtilisins. The biochemical characteristics of purified SPAO were analyzed in comparison with subtilisin Carlsberg, Savinase, and BPN'. SPAO, a monomer with a molecular mass of 27.1 kDa, was active over a wide range of pH 6.0-12.0 and temperature 20-80 °C, optimally at pH 9.0-9.5 and 55 °C. The protease is highly oxidatively stable to hydrogen peroxide and retained 58% of residual activity when incubated at 10 °C with 5% (v/v) H2 O2 for 1 h while stimulated at 1% (v/v) H2 O2 . Furthermore, SPAO was very stable and active at NaCl concentrations up to 5.0 m. This study demonstrates the potential of SPAO for biotechnological applications in the future.
Collapse
Affiliation(s)
- Fabian Falkenberg
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Jade Rahba
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - David Fischer
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Michael Bott
- Institute of Bio‐ and GeosciencesIBG‐1: Biotechnology, Forschungszentrum JülichGermany
| | - Johannes Bongaerts
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Petra Siegert
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| |
Collapse
|
5
|
Rozanov AS, Shekhovtsov SV, Bogacheva NV, Pershina EG, Ryapolova AV, Bytyak DS, S E Peltek. Production of subtilisin proteases in bacteria and yeast. Vavilovskii Zhurnal Genet Selektsii 2021; 25:125-134. [PMID: 34901710 PMCID: PMC8629363 DOI: 10.18699/vj21.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
In this review, we discuss the progress in the study and modification of subtilisin proteases. Despite longstanding applications of microbial proteases and a large number of research papers, the search for new protease genes, the construction of producer strains, and the development of methods for their practical application are still relevant and important, judging by the number of citations of the research articles on proteases and their microbial producers. This enzyme class represents the largest share of the industrial production of proteins worldwide. This situation can explain the high level of interest in these enzymes and points to the high importance of designing domestic technologies for their manufacture. The review covers subtilisin classification, the history of their discovery, and subsequent research on the optimization of their properties. An overview of the classes of subtilisin proteases and related enzymes is provided too. There is a discussion about the problems with the search for (and selection of) subtilases from natural strains of various microorganisms, approaches to (and specifics of) their modification, as well as the relevant genetic engineering techniques. Details are provided on the methods for expression optimization of industrial subtilases of various strains: the details of the most important parameters of cultivation, i.e., composition of the media, culture duration, and the influence of temperature and pH. Also presented are the results of the latest studies on cultivation techniques: submerged and solid-state fermentation. From the literature data reviewed, we can conclude that native enzymes (i.e., those obtained from natural sources) currently hardly have any practical applications because of the decisive advantages of the enzymes modified by genetic engineering and having better properties: e.g., thermal stability, general resistance to detergents and specific resistance to various oxidants, high activity in various temperature ranges, independence from metal ions, and stability in the absence of calcium. The vast majority of subtilisin proteases are expressed in producer strains belonging to different species of the genus Bacillus. Meanwhile, there is an effort to adapt the expression of these enzymes to other microbes, in particular species of the yeast Pichia pastoris.
Collapse
Affiliation(s)
- A S Rozanov
- Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Laboratory of Molecular Biotechnologies, Novosibirsk, Russia
| | - S V Shekhovtsov
- Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Laboratory of Molecular Biotechnologies, Novosibirsk, Russia
| | - N V Bogacheva
- Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Laboratory of Molecular Biotechnologies, Novosibirsk, Russia
| | - E G Pershina
- Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Laboratory of Molecular Biotechnologies, Novosibirsk, Russia
| | - A V Ryapolova
- Innovation Centre "Biruch-NT", Malobykovo village, Belgorod region, Russia
| | - D S Bytyak
- Innovation Centre "Biruch-NT", Malobykovo village, Belgorod region, Russia
| | - S E Peltek
- Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Laboratory of Molecular Biotechnologies, Novosibirsk, Russia
| |
Collapse
|
6
|
Takenaka S, Takada A, Kimura Y, Watanabe M, Kuntiya A. Improvement of the halotolerance of a Bacillus serine protease by protein surface engineering. J Basic Microbiol 2021; 62:174-184. [PMID: 34811778 DOI: 10.1002/jobm.202100335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/24/2021] [Accepted: 11/06/2021] [Indexed: 11/07/2022]
Abstract
A moderately halotolerant serine protease was previously isolated from Bacillus subtilis from salted, fermented food. Eight mutation sites on the protein surface were selected for protein engineering based on sequence and structural comparisons with moderately halotolerant proteases and homologous non-halotolerant proteases. The newly constructed multiple mutants with substituted Asp and Arg residues were compared with the recombinant wild type (rApr) and the previously constructed mAla-8 substituted with Ala to analyze the contribution of protein surface charge to the salt adaptation of the protease. The three mutants showed >1.2-fold greater halotolerance than rApr. In addition, the mutants showed a broader range of pH stability than rApr, retaining >80% of their maximum activity in the pH range 5.0-11. The mutants also retained >75% of their activity after incubation for 1 h at pH 8.0 and 55°C or at pH 11.5 and 25°C. The Asp and Arg residues exchanged by multiple substitution probably played a role in increasing protein surface hydration and solubility in high salt conditions. This study illustrated that increasing a high proportion of the negative or positive charge on the surface of the Bacillus serine protease stably improved the protein's salt adaptation.
Collapse
Affiliation(s)
- Shinji Takenaka
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Airi Takada
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Masanori Watanabe
- Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Yamagata, Japan
| | - Ampin Kuntiya
- Bioprocess Research Cluster, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Nakamura AM, Kadowaki MAS, Godoy A, Nascimento AS, Polikarpov I. Low-resolution envelope, biophysical analysis and biochemical characterization of a short-chain specific and halotolerant carboxylesterase from Bacillus licheniformis. Int J Biol Macromol 2018; 120:1893-1905. [PMID: 30290254 DOI: 10.1016/j.ijbiomac.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 11/26/2022]
|