1
|
Chen C, Li M, Guo A, Guo P, Zhang W, Gu C, Wen G, Zhou H, Tao P. Addressing unexpected bacterial RNA safety concerns of E. coli produced influenza NP through CpG loaded mutant. NPJ Vaccines 2025; 10:32. [PMID: 39955275 PMCID: PMC11829966 DOI: 10.1038/s41541-025-01087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Influenza virus nucleoprotein (NP) is a promising target for universal influenza vaccines due to its conservation and high immunogenicity. Here, we uncovered a previously unknown factor that E. coli-produced NP carries bacterial RNA, which is crucial for its high immunogenicity but may pose safety and consistency concerns due to batch variability. To address these concerns, we developed a NP mutant (NPmut) that lacks RNA binding activity but can be loaded with CpG1826, a synthetic oligodeoxynucleotide adjuvant that has been used in the FDA-approved Hepatitis B vaccine. The CpG1826-loaded NPmut induced immune responses comparable to RNA-bound NP while eliminating safety risks. Additionally, the mixture of CpG1826-loaded NPmut and 3M2e protein (three tandem copies of the ectodomain of influenza M2 protein) provided enhanced protection against influenza viruses challenge. Our findings highlight the adjuvant activity of bacterial RNA in E. coli-produced NP and propose a safer strategy for developing universal influenza vaccines.
Collapse
Affiliation(s)
- Cen Chen
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Mengling Li
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Aili Guo
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Pengju Guo
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Wanpo Zhang
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Changqin Gu
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430070, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China.
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China.
| |
Collapse
|
2
|
Norizwan JAM, Tan WS. Multifaceted virus-like particles: Navigating towards broadly effective influenza A virus vaccines. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100317. [PMID: 39717209 PMCID: PMC11665419 DOI: 10.1016/j.crmicr.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The threat of influenza A virus (IAV) remains an annual health concern, as almost 500,000 people die each year due to the seasonal flu. Current flu vaccines are highly dependent on embryonated chicken eggs for production, which is time consuming and costly. These vaccines only confer moderate protections in elderly people, and they lack cross-protectivity; thereby requiring annual reformulation to ensure effectiveness against contemporary circulating strains. To address current limitations, new strategies are being sought, with great emphasis given on exploiting IAV's conserved antigens for vaccine development, and by using different vaccine technologies to enhance immunogenicity and expedite vaccine production. Among these technologies, there are growing pre-clinical and clinical studies involving virus-like particles (VLPs), as they are capable to display multiple conserved IAV antigens and augment their immune responses. In this review, we outline recent findings involving broadly effective IAV antigens and strategies to display these antigens on VLPs. Current production systems for IAV VLP vaccines are comprehensively reviewed. Pain-free methods for administration of IAV VLP vaccines through intranasal and transdermal routes, as well as the mechanisms in stimulating immune responses are discussed in detail. The future perspectives of VLPs in IAV vaccine development are discussed, particularly concerning their potentials in overcoming current immunological limitations of IAV vaccines, and their inherent advantages in exploring intranasal vaccination studies. We also propose avenues to expedite VLP vaccine production, as we envision that there will be more clinical trials involving IAV VLP vaccines, leading to commercialization of these vaccines in the near future.
Collapse
Affiliation(s)
- Jaffar Ali Muhamad Norizwan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Ma D, Tian S, Qin Q, Yu Y, Jiao J, Xiong X, Guo Y, Zhang X, Ouyang X. Construction of an inhalable recombinant M2e-FP-expressing Bacillus subtilis spores-based vaccine and evaluation of its protection efficacy against influenza in a mouse model. Vaccine 2023; 41:4402-4413. [PMID: 37308364 DOI: 10.1016/j.vaccine.2023.05.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 01/29/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Influenza A virus (IAV) is a deadly zoonotic pathogen that remains a burden to global health systems despite continuous vaccinations, indicating the need for an improved vaccine strategy. In this work, we constructed a new recombinant influenza vaccine using Bacillus subtilis spores expressing M2e-FP protein (RSM2eFP) and assessed its potency and efficacy in BALB/c mouse immunized via aerosolized intratracheal inoculation (i.t.) or intragastric (i.g.) administration. Immunization via i.t. route conferred 100 % protection against 20 × LD50 A/PR/8/34 (H1N1) virus compared with only 50 % via the i.g. route. Even when challenged with 40 × LD50 virus, the RSM2eFP vaccine immunized via i.t. provided 80 % protection. Consistently, i.t. inoculation of RSM2eFP spore vaccine induced a stronger lung mucosal immune response and a greater cellular immune response than i.g. administration, as indicated by the high production of IgG and SIgA. In addition, the RSM2eFP spore vaccine diminished the yield of infectious virus in the lung of mice immunized via i.t. These results suggest that i.t. immunization of the RSM2eFP spore vaccine may be a promising strategy for the development of mucosal vaccines against IAV infections.
Collapse
Affiliation(s)
- Di Ma
- School of Life Science, Ludong University, 186# Hong-Qi-Zhong Street, Zhifu, Yantai 264000, Shandong, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Da-Jie Street, Fengtai, Beijing 100071, China
| | - Shengyuan Tian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Da-Jie Street, Fengtai, Beijing 100071, China; College of Life Sciences, Hebei Normal University, 20# Nan-Er-Huan-Dong Street, Yuhua, Hebei 050010, China
| | - Qingqing Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Da-Jie Street, Fengtai, Beijing 100071, China; College of Life Sciences and Technology, Beijing University of Chemical Technology, 15(#) Bei-San-Huan-Dong Street, Chaoyang, Beijing 100029, China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Da-Jie Street, Fengtai, Beijing 100071, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Da-Jie Street, Fengtai, Beijing 100071, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Da-Jie Street, Fengtai, Beijing 100071, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Da-Jie Street, Fengtai, Beijing 100071, China.
| | - Xingxiao Zhang
- School of Life Science, Ludong University, 186# Hong-Qi-Zhong Street, Zhifu, Yantai 264000, Shandong, China.
| | - Xuan Ouyang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Da-Jie Street, Fengtai, Beijing 100071, China.
| |
Collapse
|
4
|
Maleki M, Hosseini SM, Farahmand B, Saleh M, Shokouhi H, Torabi A, Fotouhi F. Induction of Homosubtypic and Heterosubtypic Immunity to Influenza Viruses Using a Conserved Internal and External Proteins. Curr Microbiol 2023; 80:212. [PMID: 37191741 DOI: 10.1007/s00284-023-03331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
The immunogenicity and protective properties of the designed recombinant fusion peptide of 3M2e and truncated nucleoprotein (trNP), originating from Influenza A virus, were investigated in the BALB/c mice model in comparison with the Mix protein (3M2e + trNP). The results were evaluated by antibody response, cytokine production, lymphocyte proliferation assay, and mortality rate after challenge with homologous (H1N1) and heterologous (H3N2) influenza viruses in BALB/c mice. The animals that received the chimer protein with or without adjuvant had more specific antibody responses and elicited memory CD4 T cells, and cytokines of Th1 and Th2 cells compared to the Mix protein. Moreover, the Mix protein, like the recombinant chimer protein, provided equal and effective protection against both homologous and heterologous challenges in mice. Nevertheless, the chimer protein demonstrated superior immune protection compared to the Mix protein. The percentage of survived animals in the adjuvanted protein group (78.4%) was less than the non-adjuvanted one (85.7%). However, the Mix protein plus Alum could induce protective immunity in only 57.1% and 42.8% of homologous and heterologous virus-challenged mice, respectively. Regarding the sufficient immunogenicity and protectivity of the chimer protein construct against influenza viruses, the findings of the study suggest that the chimer protein without a requirement of adjuvant can be used as an adequate vaccine formulation to protect against a broad spectrum of influenza viruses.
Collapse
Affiliation(s)
- Mahnoosh Maleki
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Behrokh Farahmand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran
| | - Maryam Saleh
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran
| | - Hadiseh Shokouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran
| | - Ali Torabi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran
| | - Fatemeh Fotouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran.
| |
Collapse
|
5
|
Li J, Zhang Y, Zhang X, Liu L. Influenza and Universal Vaccine Research in China. Viruses 2022; 15:116. [PMID: 36680158 PMCID: PMC9861666 DOI: 10.3390/v15010116] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Influenza viruses usually cause seasonal influenza epidemics and influenza pandemics, resulting in acute respiratory illness and, in severe cases, multiple organ complications and even death, posing a serious global and human health burden. Compared with other countries, China has a large population base and a large number of influenza cases and deaths. Currently, influenza vaccination remains the most cost-effective and efficient way to prevent and control influenza, which can significantly reduce the risk of influenza virus infection and serious complications. The antigenicity of the influenza vaccine exhibits good protective efficacy when matched to the seasonal epidemic strain. However, when influenza viruses undergo rapid and sustained antigenic drift resulting in a mismatch between the vaccine strain and the epidemic strain, the protective effect is greatly reduced. As a result, the flu vaccine must be reformulated and readministered annually, causing a significant drain on human and financial resources. Therefore, the development of a universal influenza vaccine is necessary for the complete fight against the influenza virus. By statistically analyzing cases related to influenza virus infection and death in China in recent years, this paper describes the existing marketed vaccines, vaccine distribution and vaccination in China and summarizes the candidate immunogens designed based on the structure of influenza virus, hoping to provide ideas for the design and development of new influenza vaccines in the future.
Collapse
Affiliation(s)
| | | | | | - Longding Liu
- Key Laboratory of Systemic Innovative Research on Virus Vaccine, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
6
|
Kumar A, Ladha A, Choudhury A, Ikbal AMA, Bhattacharjee B, Das T, Gupta G, Sharma C, Sarbajna A, Mandal SC, Choudhury MD, Ali N, Slama P, Rezaei N, Palit P, Tiwari ON. The chimera of S1 and N proteins of SARS-CoV-2: can it be a potential vaccine candidate for COVID-19? Expert Rev Vaccines 2022; 21:1071-1086. [PMID: 35604776 DOI: 10.1080/14760584.2022.2081156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as one of the biggest global health issues. Spike protein (S) and nucleoprotein (N), the major immunogenic components of SARS-CoV-2, have been shown to be involved in the attachment and replication of the virus inside the host cell. AREAS COVERED Several investigations have shown that the SARS-CoV-2 nucleoprotein can elicit a cell-mediated immune response capable of regulating viral replication and lowering viral burden. However, the development of an effective vaccine that can stop the transmission of SARS-CoV-2 remains a matter of concern. Literature was retrieved using the keywords COVID-19 vaccine, role of nucleoprotein as vaccine candidate, spike protein, nucleoprotein immune responses against SARS-CoV-2, and chimera vaccine in PubMed, Google Scholar, and Google. EXPERT OPINION We have focussed on the use of chimera protein, consisting of N and S-1 protein components of SARS-CoV-2, as a potential vaccine candidate. This may act as a polyvalent mixed recombinant protein vaccine to elicit a strong T and B cell immune response, which will be capable of neutralizing the wild and mutated variants of SARS-CoV-2, and also restricting its attachment, replication, and budding in the host cell.
Collapse
Affiliation(s)
- Amresh Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, India
| | - Amit Ladha
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India
| | - Ankita Choudhury
- Department of Pharmaceutical Sciences, Allama TR College of Pharmacy, Hospital Rd, Srigouri, India
| | - Abu Md Ashif Ikbal
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Tripura (W), India
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Tanmay Das
- Department of Business Administration, Assam University Silchar, India
| | - Gaurav Gupta
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chhavi Sharma
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India
| | - Adity Sarbajna
- Department of Zoology, Surendranath College, Kolkata, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | | | - Nahid Ali
- Division of Immunology, Department of Infectious Diseases, INDIAN INSTITUTE OF CHEMICAL BIOLOGY, Kolkata, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| | - Partha Palit
- Department of Pharmaceutical Sciences Drug Discovery research Laboratory, Assam University, Silchar, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| |
Collapse
|
7
|
Universal influenza vaccine technologies and recombinant virosome production. METHODS IN MICROBIOLOGY 2022. [DOI: 10.1016/bs.mim.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Karaaslan E, Çetin NS, Kalkan-Yazıcı M, Hasanoğlu S, Karakeçili F, Özdarendeli A, Kalkan A, Kılıç AO, Doymaz MZ. Immune responses in multiple hosts to Nucleocapsid Protein (NP) of Crimean-Congo Hemorrhagic Fever Virus (CCHFV). PLoS Negl Trop Dis 2021; 15:e0009973. [PMID: 34851958 PMCID: PMC8635347 DOI: 10.1371/journal.pntd.0009973] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
In 2019, the World Health Organization declared 3 billion to be at risk of developing Crimean Congo Hemorrhagic Fever (CCHF). The causative agent of this deadly infection is CCHFV. The data related to the biology and immunology of CCHFV are rather scarce. Due to its indispensable roles in the viral life cycle, NP becomes a logical target for detailed viral immunology studies. In this study, humoral immunity to NP was investigated in CCHF survivors, as well as in immunized mice and rabbits. Abundant antibody response against NP was demonstrated both during natural infection in humans and following experimental immunizations in mice and rabbits. Also, cellular immune responses to recombinant NP (rNP) was detected in multispecies. This study represents the most comprehensive investigation on NP as an inducer of both humoral and cellular immunity in multiple hosts and proves that rNP is an excellent candidate warranting further immunological studies specifically on vaccine investigations. Crimean Congo Hemorrhagic Fever Virus (CCHFV) is the most lethal human pathogen of medical importance after the dengue virus among arboviruses. The increasing geographic spread of Hyalomma ticks, which are responsible for viral transmission widespread, threatens billions of people. WHO currently declares the field of research on CCHFV as the second most urgently needed areas of investigations on emerging pathogens. About 10 to 40% of those infected with the virus lose their life due to the rapidly developing severe clinical manifestations. Pandemic potential and the lack of any approved treatment or vaccine make raise the studies on CCHFV as critical. The studies on CCHFV are challenging due to the necessities of BSL-4 facilities and the immunological characterization of individual structural proteins will lay the groundwork for the steps to be taken to treat and prevent this emerging disease. As is known from other RNA viruses, nucleoprotein (NP) has crucial roles in the viral life cycle, both in viral replication and transcription and in the formation of the virion structure. So far, detailed and comprehensive immunological characterizations on NP in multiple are not undertaken. Our study was set out to embark such detailed investigation. The strong humoral and cellular immune response to NP demonstrated by this study indicates that NP might be an excellent candidate for future scrutinies on vaccines and diagnostic reagents.
Collapse
Affiliation(s)
- Elif Karaaslan
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Nesibe Selma Çetin
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakıf University, Istanbul, Turkey
- Department of Medical Microbiology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Merve Kalkan-Yazıcı
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Sevde Hasanoğlu
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakıf University, Istanbul, Turkey
| | - Faruk Karakeçili
- Department of Infectious Diseases and Clinical Microbiology, Erzincan University School of Medicine, Erzincan, Turkey
| | - Aykut Özdarendeli
- Erciyes University Vectors and Vector Borne Diseases Implementation and Research Center, Kayseri, Turkey; Department of Microbiology, Erciyes University School of Medicine, Kayseri, Turkey
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ahmet Kalkan
- Department of Infectious Diseases and Clinical Microbiology, Medical Faculty, Karadeniz Technical University, Trabzon, Turkey
| | - Ali Osman Kılıç
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Ziya Doymaz
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakıf University, Istanbul, Turkey
- Department of Medical Microbiology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
9
|
Combination of conserved recombinant proteins (NP & 3M2e) formulated with Alum protected BALB/c mice against influenza A/PR8/H1N1 virus challenge. Biotechnol Lett 2021; 43:2137-2147. [PMID: 34491470 DOI: 10.1007/s10529-021-03174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Influenza is one of the most important agents of pandemic outbreak causing substantial morbidity and mortality. Vaccination strategies of influenza must be adapted annually due to constant antigenic changes in various strains. Therefore, the present study was conducted to evaluate protective immunity of the conserved influenza proteins. METHODS For this purpose, three tandem repeats of M2e (3M2e) and NP were separately expressed in E. coli and were purified using column chromatography. Female Balb/c mice were injected intradermally with a combination of the purified 3M2e and NP alone or formulated with Alum (AlOH3) adjuvant in three doses. The mice were challenged by intranasal administration of H1N1 (A/PR/8/34) 2 weeks after the last vaccination. RESULTS The results demonstrated that recombinant NP and M2e proteins are immunogenic and could efficiently elicit immune responses in mice compared to non-immunized mice. The combination of 3M2e and NP supplemented with Alum stimulated both NP and M2e-specific antibodies, which were higher than those stimulated by each single antigen plus Alum. In addition, the secretion of IFN-γ and IL-4 as well as the induction of lymphocyte proliferation in mice received the mixture of these proteins with Alum was considerably higher than other groups. Moreover, the highest survival rate (86%) with the least body weight change was observed in the mice immunized with 3M2e and NP supplemented with Alum followed by the mice received NP supplemented with Alum (71%). CONCLUSION Accordingly, this regimen can be considered as an attractive candidate for global vaccination against influenza.
Collapse
|
10
|
Targeting Antigens for Universal Influenza Vaccine Development. Viruses 2021; 13:v13060973. [PMID: 34073996 PMCID: PMC8225176 DOI: 10.3390/v13060973] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Traditional influenza vaccines generate strain-specific antibodies which cannot provide protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and drift of influenza viruses, annual reformulation and revaccination are required in order to match circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for long-term protection against all seasonal influenza virus strains, as well as to provide protection against a potential pandemic virus. One of the most important strategies in the development of UIVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing antibodies or cross-reactive T cell responses against divergent influenza virus strains. However, each type of target antigen for UIVs has advantages and limitations for the generation of sufficient immune responses against divergent influenza viruses. Herein, we review current strategies and perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins, and internal proteins, for universal influenza vaccine development.
Collapse
|