1
|
Kang DE, Senthilkumar D, Jeon JH, Ganapathy T, You WK, Lakshmanan M, Hong JK. Differential polyamine metabolism in CHO cell lines: Insights into cell growth and antibody quality. N Biotechnol 2025; 88:100-113. [PMID: 40287131 DOI: 10.1016/j.nbt.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/23/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Chinese hamster ovary (CHO) cell lines are widely utilized host cell lines in cell culture bioprocessing. Although they originated from a common ancestor, accumulated genetic mutations have led to significant heterogeneity in their behavior under specific conditions. This study investigates the cell line-specific impact of polyamine (PUT; putrescine) withdrawal on the growth, metabolism, and antibody production among three CHO clones derived from different parental cell lines: CHO-K1, CHO-S, and CHO-DG44. CHO-K1 cells strongly depended on external polyamines, showing a 77 % reduction in viable cell density and an 88 % decrease in growth rate under PUT depletion, although their culture longevity was extended. In contrast, CHO-S and CHO-DG44 cells demonstrated greater resilience, with CHO-DG44 experiencing only a 25 % reduction in cell density. PUT deprivation also impacted antibody production across all cell lines, with CHO-K1 displaying the lowest yield, antibody purity and altered charge heterogeneity. Notably, PUT depletion led to increased galactosylation of antibodies, suggesting that modulating PUT levels in the media could be used as a strategy to tailor the quality of therapeutic antibodies. These findings, together, provide valuable insights in the design of cell line-specific media, thereby optimizing both bioprocess efficiency and product quality in biopharmaceutical production.
Collapse
Affiliation(s)
- Da Eun Kang
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493, Republic of Korea
| | - Deepikka Senthilkumar
- Center for Integrative Biology and Systems Medicine (IBSE), Indian Institute of Technology Madras, India
| | - Jae Hong Jeon
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493, Republic of Korea
| | - Tejaswini Ganapathy
- Center for Integrative Biology and Systems Medicine (IBSE), Indian Institute of Technology Madras, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, India
| | - Weon-Kyoo You
- R&D Center, ABL Bio Inc., 2F, 16 Daewangpangyo-ro, 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Meiyappan Lakshmanan
- Center for Integrative Biology and Systems Medicine (IBSE), Indian Institute of Technology Madras, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, India; Robert Bosch Centre for Data Science and AI (RBCDSAI), Indian Institute of Technology Madras, India; Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), Singapore.
| | - Jong Kwang Hong
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493, Republic of Korea.
| |
Collapse
|
2
|
Lee M, Han SH, Kim D, Yun S, Yeom J, Kyeong M, Park SY, Lee DY. Systematic identification of genomic hotspots for high-yield protein production in CHO cells. N Biotechnol 2025; 88:61-72. [PMID: 40228657 DOI: 10.1016/j.nbt.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
The efficient and stable production of therapeutic proteins in Chinese hamster ovary (CHO) cells hinges on robust cell line development (CLD). Traditional methods relying on random transgene integration often result in clonal variability, requiring extensive and resource-intensive screening. To address this limitation, we established a systematic, multiomics-driven framework that integrates 202 RNA-sequencing datasets and whole-genome sequencing data to identify genomic "hotspot" loci for precise and high-yield transgene integration. From an initial pool of 20 candidate loci, 5 top-performing hotspots were validated using site-specific integration in CHO-DG44 cells via the CRISPR/Cas9 system with Recombinase-mediated cassette exchange (RMCE). These genomic hotspots achieved 2.2- to 15.0-fold higher relative specific productivity compared to previously known controls (Fer1L4 and Locus1 sites), across multiple therapeutic proteins, including a lysosomal storage disorder-related enzyme and an Immunoglobulin G (IgG)-related monoclonal antibody (mAb) expression. This study offers a transformative approach to CLD, achieving significant improvements in productivity, genomic stability, and efficiency, as well as paving the way for enhanced biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Minouk Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Sung-Hyuk Han
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea; Cell-based Process Engineering, R&D, GC Biopharma, 93, Ihyun-ro, 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 16924, Republic of Korea
| | - Dongseok Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seongtae Yun
- Cell-based Process Engineering, R&D, GC Biopharma, 93, Ihyun-ro, 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 16924, Republic of Korea
| | - Jinho Yeom
- Cell-based Process Engineering, R&D, GC Biopharma, 93, Ihyun-ro, 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 16924, Republic of Korea
| | - Minji Kyeong
- Cell-based Process Engineering, R&D, GC Biopharma, 93, Ihyun-ro, 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 16924, Republic of Korea
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
3
|
Zhang M, Zhao X, Li Y, Ye Q, Wu Y, Niu Q, Zhang Y, Fan G, Chen T, Xia J, Wu Q. Advances in serum-free media for CHO cells: From traditional serum substitutes to microbial-derived substances. Biotechnol J 2024; 19:e2400251. [PMID: 39031790 DOI: 10.1002/biot.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
The Chinese hamster ovary (CHO) cell is an epithelial-like cell that produces proteins with post-translational modifications similar to human glycosylation. It is widely used in the production of recombinant therapeutic proteins and monoclonal antibodies. Culturing CHO cells typically requires the addition of a certain proportion of fetal bovine serum (FBS) to maintain cell proliferation and passaging. However, serum is characterized by its complex composition, batch-to-batch variability, high cost, and potential risk of exogenous contaminants such as mycoplasma and viruses, which impact the purity and safety of the synthesized proteins. Therefore, search for serum alternatives and development of serum-free media for CHO-based protein biomanufacturing are of great significance. This review systematically summarizes the application advantages of CHO cells and strategies for high-density expression. It highlights the developmental trends of serum substitutes from human platelet lysates to animal-free extracts and microbial-derived substances and elucidates the mechanisms by which these substitutes enhance CHO cell culture performance and recombinant protein production, aiming to provide theoretical guidance for exploring novel serum alternatives and developing serum-free media for CHO cells.
Collapse
Affiliation(s)
- Mingcan Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinya Niu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanghan Fan
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tianxiang Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiarui Xia
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Braga APA, de Souza LR, Lima MGF, de Moraes Cunha Gonçalves M, Marin-Morales MA. A study on phytogenotoxicity induced by biogenic amines: cadaverine and putrescine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30902-30913. [PMID: 38622416 DOI: 10.1007/s11356-024-33328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Among the compounds present in necro-leachate, a liquid released during the process of decomposition of the human body, are the biogenic amines cadaverine and putrescine. Although some studies on necro-leachate have indicated a potential ecotoxicological and public health risk associated with it, the research on this type of contamination is still rather limited. This study presents information about the phytotoxic and cytogenotoxic potential of cadaverine and putrescine, evaluated separately and within a mixture. Phytotoxicity was evaluated through a germination test, the initial growth of seedlings with Lactuca sativa, and cytogenotoxicity through chromosomal aberration and micronucleus tests with Allium cepa. The L. sativa results showed a phytotoxic effect for the evaluated amines, by reducing root (> 90%) and hypocotyl (> 80%) elongation. The co-exposure of cadaverine and putrescine potentiated cytogenotoxic activity by aneugenic action in the meristematic cells of A. cepa. From this result, it is possible to infer the eco-toxicogenic potential of cadaverine and putrescine. This study not only highlights the importance of the phytotoxic and cytogenotoxic effects of these amines but also emphasizes the urgent need for further investigation into contamination originating from cemetery environments. By evaluating the risks associated with necro-leachate, this research is aimed at informing global efforts to protect ecological and public health.
Collapse
Affiliation(s)
- Ana Paula Andrade Braga
- Department of Biology, São Paulo State University, Avenue 24-A, P.O Box 178, Rio Claro, São Paulo, 151513506-900, Brazil.
| | - Letícia Rosa de Souza
- Department of Biology, São Paulo State University, Avenue 24-A, P.O Box 178, Rio Claro, São Paulo, 151513506-900, Brazil
| | - Maria Gabriela Franco Lima
- Department of Biology, São Paulo State University, Avenue 24-A, P.O Box 178, Rio Claro, São Paulo, 151513506-900, Brazil
| | | | - Maria Aparecida Marin-Morales
- Department of Biology, São Paulo State University, Avenue 24-A, P.O Box 178, Rio Claro, São Paulo, 151513506-900, Brazil
| |
Collapse
|
5
|
Kang DE, An YB, Kim Y, Ahn S, Kim YJ, Lim JS, Ryu SH, Choi H, Yoo J, You WK, Lee DY, Park J, Hong M, Lee GM, Baik JY, Hong JK. Enhanced cell growth, production, and mAb quality produced in Chinese hamster ovary-K1 cells by supplementing polyamine in the media. Appl Microbiol Biotechnol 2023; 107:2855-2870. [PMID: 36947192 DOI: 10.1007/s00253-023-12459-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Polyamines such as putrescine (PUT), spermidine (SPD), and spermine (SPM) are amine group-containing biomolecules that regulate multiple intracellular functions such as proliferation, differentiation, and stress response in mammalian cells. Although these biomolecules can be generated intracellularly, lack of polyamine-synthesizing activity has occasionally been reported in a few mammalian cell lines such as Chinese hamster ovary (CHO)-K1; thus, polyamine supplementation in serum-free media is required to support cell growth and production. In the present study, the effects of biogenic polyamines PUT, SPD, and SPM in media on cell growth, production, metabolism, and antibody quality were explored in cultures of antibody-producing CHO-K1 cells. Polyamine withdrawal from media significantly suppressed cell growth and production. On the other hand, enhanced culture performance was achieved in polyamine-containing media conditions in a dose-dependent manner regardless of polyamine type. In addition, in polyamine-deprived medium, distinguishing metabolic features, such as enriched glycolysis and suppressed amino acid consumption, were observed and accompanied by higher heterogeneity of antibody quality compared with the optimal concentration of polyamines. Furthermore, an excessive concentration of polyamines negatively affected culture performance as well as antibody quality. Hence, the results suggest that polyamine-related metabolism needs to be further investigated and polyamines in cell growth media should be optimized as a controllable parameter in CHO cell culture bioprocessing. KEY POINTS: • Polyamine supplementation enhanced cell growth and production in a dose-dependent manner • Polyamine type and concentration in the media affected mAb quality • Optimizing polyamines in the media is suggested in CHO cell bioprocessing.
Collapse
Affiliation(s)
- Da Eun Kang
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Yeong Bin An
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Yeunju Kim
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Seawon Ahn
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Young Jin Kim
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Jung Soo Lim
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Soo Hyun Ryu
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Hyoju Choi
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Jiseon Yoo
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Weon-Kyoo You
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, South Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, South Korea
| | - Jong Youn Baik
- Department of Biological Engineering, Inha University, Incheon, 22212, South Korea.
| | - Jong Kwang Hong
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea.
| |
Collapse
|