1
|
Li M, Zhou J, Li Y, Zhu G, Hu Z, Liu S, Han B, Zhao H, Liang Y, Liu D, Xu D, Li J. Enhanced antibacterial and corrosion resistance of copper-containing 2205 duplex stainless steel against the corrosive bacterium Shewanella algae. Bioelectrochemistry 2024; 160:108768. [PMID: 38897000 DOI: 10.1016/j.bioelechem.2024.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
2205 DSS is an excellent corrosion-resistant engineering metal material, but it is still threatened by microbiological corrosion. The addition of copper elements is a new approach to improving the resistance of 2205 DSS to microbiological corrosion. In this study, 2205-Cu DSS was compared with 2205 DSS to study its antimicrobial properties and resistance to microbiological corrosion in the presence of the electroactive bacterium Shewanella algae. The results showed that compared to 2205 DSS, the biofilm thickness and the number of live bacteria on the surface of 2205-Cu DSS were significantly reduced, demonstrating excellent antimicrobial properties against S. algae. Electrochemical tests and surface morphology characterization results showed that the corrosion rate and pitting of 2205-Cu DSS by S. algae were lower than that of 2205 DSS, indicating better resistance to microbiological corrosion. The good antimicrobial properties and resistance to microbiological corrosion exhibited by 2205-Cu DSS are attributed to the contact antimicrobial properties of copper elements in the 2205-Cu DSS matrix and the release of copper ions for antimicrobial effects. This study provides a new strategy for combating microbiological corrosion.
Collapse
Affiliation(s)
- Mankun Li
- Hebei Short Process Steelmaking Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Junye Zhou
- Hebei Short Process Steelmaking Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Yaqiang Li
- Department of Automotive Engineering, Hebei Vocational University of Technology and Engineering, Xingtai 054000, Hebei, China; Hebei Surpass Technology Research Center, Xingtai 054000, Hebei, China
| | - Guangqian Zhu
- Department of Automotive Engineering, Hebei Vocational University of Technology and Engineering, Xingtai 054000, Hebei, China; Hebei Surpass Technology Research Center, Xingtai 054000, Hebei, China
| | - Zishuai Hu
- Hebei Short Process Steelmaking Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Shijia Liu
- Hebei Short Process Steelmaking Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Baochen Han
- Hebei Short Process Steelmaking Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Hanyu Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yongmei Liang
- Hebei Short Process Steelmaking Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Dan Liu
- Hebei Short Process Steelmaking Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang 050000, China.
| | - Dake Xu
- Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China.
| | - Jianhui Li
- Hebei Short Process Steelmaking Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang 050000, China.
| |
Collapse
|
2
|
Gao Y, Wu J, Zhang D, Wang P, Wang Y, Zhu L, Li C, Wang W, Zhao J, Yang C, Yang K. The impact of alloying element Cu on corrosion and biofilms of 316L stainless steel exposed to seawater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18842-18855. [PMID: 38351355 DOI: 10.1007/s11356-024-32354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024]
Abstract
Copper-containing stainless steel (SS) has been reported to mitigate biofilms in industrial and clinical environments. However, the impact of copper released from copper-containing SS in natural seawater on biofilms and corrosion is still unclear. In this study, three kinds of 316L SS were immersed in natural seawater for 6 months, and the pitting depth decreased in the order: 316L-Cu SS (annealed) > 316L SS > 316L-Cu SS (aged). The biofilm thickness and number of sessile cells on the surface of 316L-Cu SS (annealed) and 316L SS were similar but notably greater than those of 316L-Cu SS (aged). Furthermore, the results of the community analysis indicated that the addition of copper in 316L-Cu SS (aged) reduced the diversity and richness of the microbial community, resulting in a significant reduction in the number of genera constituting the biofilms. Copper ions exhibit a broad-spectrum bactericidal effect, effectively reducing the abundance of dominant populations and microbial genera in the biofilms, thereby mitigating pitting corrosion induced by microorganisms. In addition, the PCoA scatter plot showed that time also played an important role in the regulation of microbial community structure.
Collapse
Affiliation(s)
- Yaohua Gao
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajia Wu
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Peng Wang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yi Wang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Liyang Zhu
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ce Li
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Wang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinlong Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chunguang Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
3
|
Abstract
A wide diversity of microorganisms, typically growing as biofilms, has been implicated in corrosion, a multi-trillion dollar a year problem. Aerobic microorganisms establish conditions that promote metal corrosion, but most corrosion has been attributed to anaerobes. Microbially produced organic acids, sulfide and extracellular hydrogenases can accelerate metallic iron (Fe0) oxidation coupled to hydrogen (H2) production, as can respiratory anaerobes consuming H2 as an electron donor. Some bacteria and archaea directly accept electrons from Fe0 to support anaerobic respiration, often with c-type cytochromes as the apparent outer-surface electrical contact with the metal. Functional genetic studies are beginning to define corrosion mechanisms more rigorously. Omics studies are revealing which microorganisms are associated with corrosion, but new strategies for recovering corrosive microorganisms in culture are required to evaluate corrosive capabilities and mechanisms. Interdisciplinary studies of the interactions among microorganisms and between microorganisms and metals in corrosive biofilms show promise for developing new technologies to detect and prevent corrosion. In this Review, we explore the role of microorganisms in metal corrosion and discuss potential ways to mitigate it.
Collapse
Affiliation(s)
- Dake Xu
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
| | - Tingyue Gu
- Department of Chemical & Biomolecular Engineering, Ohio University, Athens, OH, USA.
- Department of Biological Sciences, Ohio University, Athens, OH, USA.
- Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH, USA.
- Institute for Sustainable Energy and the Environment, Ohio University, Athens, OH, USA.
| | - Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
4
|
Mugge RL, Moseley RD, Hamdan LJ. Substrate Specificity of Biofilms Proximate to Historic Shipwrecks. Microorganisms 2023; 11:2416. [PMID: 37894074 PMCID: PMC10608953 DOI: 10.3390/microorganisms11102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The number of built structures on the seabed, such as shipwrecks, energy platforms, and pipelines, is increasing in coastal and offshore regions. These structures, typically composed of steel or wood, are substrates for microbial attachment and biofilm formation. The success of biofilm growth depends on substrate characteristics and local environmental conditions, though it is unclear which feature is dominant in shaping biofilm microbiomes. The goal of this study was to understand the substrate- and site-specific impacts of built structures on short-term biofilm composition and functional potential. Seafloor experiments were conducted wherein steel and wood surfaces were deployed for four months at distances extending up to 115 m away from three historic (>50 years old) shipwrecks in the Gulf of Mexico. DNA from biofilms on the steel and wood was extracted, and metagenomes were sequenced on an Illumina NextSeq. A bioinformatics analysis revealed that the taxonomic composition was significantly different between substrates and sites, with substrate being the primary determining factor. Regardless of site, the steel biofilms had a higher abundance of genes related to biofilm formation, and sulfur, iron, and nitrogen cycling, while the wood biofilms showed a higher abundance of manganese cycling and methanol oxidation genes. This study demonstrates how substrate composition shapes biofilm microbiomes and suggests that marine biofilms may contribute to nutrient cycling at depth. Analyzing the marine biofilm microbiome provides insight into the ecological impact of anthropogenic structures on the seabed.
Collapse
Affiliation(s)
- Rachel L. Mugge
- U.S. Naval Research Laboratory, Ocean Sciences Division, Stennis Space Center, MS 39529, USA;
| | - Rachel D. Moseley
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Leila J. Hamdan
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| |
Collapse
|
5
|
Luo X, Yang Y, Xie S, Wang W, Li N, Wen C, Zhu S, Chen L. Drying and rewetting induce changes in biofilm characteristics and the subsequent release of metal ions. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128832. [PMID: 35390615 DOI: 10.1016/j.jhazmat.2022.128832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Drying and rewetting can markedly influence the microbial structure and function of river biofilm communities and potentially result in the release of metal ions from biofilms containing metals. However, little information is available on the response of metal-enriched biofilms to drying and rewetting over time. In this study, natural biofilms were allowed to develop in four rotating annular bioreactors for 2-11 weeks, followed by drying for 5 days and rewetting for another 5 days. Subsequently, we assessed Zn, Cd, and As desorption from the biofilms and other related parameters (microbial community structure, biofilm morphology, enzyme activity, and surface components as well as characteristics). High-throughput sequencing of the 16 S rRNA gene and confocal laser scanning microscopy revealed that the biofilm architecture and bacterial communities were distinct in different growth phases and under drying and rewetting conditions (permutational multivariate analysis of variance; p = 0.001). Proteobacteria was the dominant bacterial phylum, accounting for 69.7-90.1% of the total content. Kinetic experiments revealed that the drying and rewetting process increased metal desorption from the biofilm matrix. The desorption of heavy metals was affected by the age of the biofilm, with the maximum amount of metal ions released from 2-week-old biofilms (one-way ANOVA, Zn: p < 0.001; Cd: p = 0.008; As: p < 0.001). The modifications in biofilm properties and decreased diversity of the bacterial community (paired t-test, p < 0.05) after drying and rewetting decreased the number of specific binding sites for metal ions. In addition, negatively charged arsenate and other anions in the liquid phase could compete with As ions for adsorption sites to promote the release of As(V) and/or reductive desorption of As(III). The results of this study and their interpretation are expected to help refine the behaviors of heavy metals in the aquatic environment.
Collapse
Affiliation(s)
- Xia Luo
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
| | - Yuanhao Yang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Shanshan Xie
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Wenwen Wang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Nihong Li
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Chen Wen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Shijun Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Liqiang Chen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
| |
Collapse
|
6
|
Gong P, Zhang G. The corrosion behavior of 316L stainless steel in an Fe(II)EDTA-based liquid-phase denitrification system. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Liu J, Ge X, Ding H, Yang S, Sun Y, Li Y, Ji X, Li Y, Lu A. Effect of Photoreduction of Semiconducting Iron Mineral-Goethite on Microbial Community in the Marine Euphotic Zone. Front Microbiol 2022; 13:846441. [PMID: 35479644 PMCID: PMC9037543 DOI: 10.3389/fmicb.2022.846441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
Marine euphotic zone is the pivotal region for interplay of light-mineral-microorganism and elements cycle, in which semiconducting minerals exist widely and iron-bearing goethite is a typical and widespread one. In this work, we have conducted in-depth researches on the effect of ferrous [Fe(II)] ions dissolved by photoreduction of goethite on microbial community structure and diversity. The mineral phase, structure and morphology of synthesized goethite were characterized by Raman, X-ray diffraction (XRD), energy disperse spectroscopy (EDS), environmental scanning electron microscope (ESEM), and atomic force microscope (AFM). Photoelectrochemical measurements tested photoelectric response and redox activity of goethite, having proved its significant property of photoelectric response with 44.11% increment of the average photocurrent density relative to the dark current density. The photoreduction experiments of goethite were conducted under light condition in simulated seawater. It has suggested the photoreduction of goethite could occur and Fe(III) was reduced to Fe(II). The dissolved Fe(II) from the photoreduction of goethite under light condition was nearly 11 times than that group without light after a 10-day reaction. Furthermore, results of microbial community sequencing analysis indicated that dissolved Fe(II) could affect the structure and regulate the decrease of microbial community diversity. The emergence of dominant bacteria associated with iron oxidation and transport protein has suggested their obvious selectivity and adaptability in the environment with adding dissolved Fe(II). This work revealed the photoreduction process of semiconducting goethite was remarkable, giving rise to a non-negligible dissolved Fe(II) and its selective effect on the structure, diversity, as well as the function of microbial community. This light-induced interaction between minerals and microorganisms may also further regulate correlative metabolic pathways of carbon cycle in the marine euphotic zone.
Collapse
Affiliation(s)
| | | | - Hongrui Ding
- Beijing Key Laboratory of Mineral Environmental Function, The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China
| | | | | | | | | | | | - Anhuai Lu
- Beijing Key Laboratory of Mineral Environmental Function, The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
de Souza LC, Procópio L. The adaptations of the microbial communities of the savanna soil over a period of wildfire, after the first rains, and during the rainy season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14070-14082. [PMID: 34601674 DOI: 10.1007/s11356-021-16731-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Annually, the Cerrado ecosystem alternates between dry periods and long rainy seasons. During the dry season, severe forest fires occur, consuming a considerable part of the native vegetation, which impacts directly on the microbiome of the soil. Evaluate the adaptations of the soil microbiome to drought, rain and wildfire. Sequencing of the 16S rRNA gene was carried out for three significant conditions: drought and forest fires ("Fire"), after the first recorded rains ("First_Rain"), and during the rainy season ("Rainy"). It has been shown that under the "Fire" condition, there was a predominance of Phylum Actinobacteria, followed by Proteobacteria and Firmicutes. With the advent of the rainy season, "First_Rain," there was a change in the predominant taxonomic groups, with a higher prevalence of members of Proteobacteria and Firmicutes. During the rainy season, Proteobacteria and Firmicutes continued as the most prevalent groups. However, it was noted that in this period, there was an increase in bacterial diversity when compared with other periods analyzed. These results show how environmental factors influence adaptations in microbial communities. This allows for a better understanding of how to link the structure of the microbial community to the performance of ecosystems, and assist in preventing the consequences of increased frequency of wildfires, and long periods of drought.
Collapse
Affiliation(s)
- Lucas Conceição de Souza
- Faculty of Geosciences (FAGEO), Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Universidade Federal do Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Microbially induced corrosion impacts on the oil industry. Arch Microbiol 2022; 204:138. [PMID: 35032195 DOI: 10.1007/s00203-022-02755-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/02/2022]
Abstract
The numerous structural impacts on oil installations caused by corrosion make this issue a concern in the oil industry. Although chemical corrosion is relevant in this sector, it is indisputable that the microbial corrosion or bio-corrosion plays a preponderant role, with considerable economic losses. Microbial corrosion invariably depends on the formation of a biofilm on the attacked surface. Biofilm structures provide the conditions that favor the development of microbial groups related to corrosion. Despite the several microbial species are described as corrosive, certain groups, such as sulfate- and nitrate-reducing bacteria, acetogenic bacteria, and methanogenic archaea are the most commonly related. In spite of environmental factors influence the prevalence of certain species, it is increasingly accepted that the relationships between different species are determinant in corrosion. Such relationships can be evidenced by several surveys of microbial communities involved in bio-corrosion. Here, the main microbes related to corrosion in metallic structures used in oil installations are presented, as well as their metabolisms involved in the deterioration of metallic surfaces.
Collapse
|
10
|
The influence of the marine Bacillus cereus over carbon steel, stainless corrosion, and copper coupons. Arch Microbiol 2021; 204:9. [PMID: 34873663 DOI: 10.1007/s00203-021-02607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
The present study evaluated the influence of the marine bacteria Bacillus cereus Mc-1 on the corrosion of 1020 carbon steel, 316L stainless steel, and copper alloy. The Mc-1 strain was grown in a modified ammoniacal citrate culture medium (CFA.ico-), CFA.ico- with sodium nitrate supplementation (NO3-), and CFA.ico- with sodium chloride supplementation (NaCl). The mass loss and corrosion rate were evaluated after the periods of 7, 15, and 30 days. The results showed that in CFA.ico- and CFA.ico- medium added NO3- the corrosion rates of carbon steel and copper alloy were high when compared to the control. Whereas the medium was supplemented with NaCl, despite the rates being above the averages of the control system, they were considerably below the previous results. In general, the corrosion rates induced by Mc-1 on 316L coupons were below the results compared to carbon steel and copper alloy. When analyzing the corrosion rate measurements, regardless of the culture medium, the corrosion levels decreased consistently after 15 days, being below the levels evaluated after 7 days of the experiment. Our analyses suggest that B. cereus Mc-1 has different influences on corrosion in different metals and environmental conditions, such as the presence of NO3- and NaCl. These results can help to better understand the influence of this bacteria genus on the corrosion of metals in marine environments.
Collapse
|
11
|
Rufino BN, Procópio L. Influence of Salt Water Flow on Structures and Diversity of Biofilms Grown on 316L Stainless Steel. Curr Microbiol 2021; 78:3394-3402. [PMID: 34232364 DOI: 10.1007/s00284-021-02596-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Salt water, in addition to being a naturally corrosive environment, also includes factors such as temperature, pressure, and the presence of the microbial community in the environment that influence degradation processes on metal surfaces. The presence or absence of water flow over the metal surfaces is also an important aspect that influences the corrosion of metals. The objective of this study was to evaluate the presence or absence of salt water flow in the formation of biofilms grown in 316L stainless steel coupons. For this, the 316L stainless steel coupons were exposed in two different microcosms, the first being a system with continuous salt water flow, and the second without salt water flow system. The results of the sequencing of the 16S rDNA genes showed a clear difference in structures and diversity between the evaluated biofilms. There was greater abundance and diversity in the "In Flux" system when compared to the "No Flux" biofilm. The analysis of bacterial diversity showed a predominance of the Gammaproteobacteria class in both systems. However, at lower taxonomic levels, there were considerable differences in representativeness. Representatives of Vibrionales, Alteromonadales, Oceanospirillales, and Flavobacteriales were predominant in "No Flux", whereas in "In Flux" there was a greater representation of Alteromonadales, Rhodobacterales, and Saprospirales. These findings help to understand how the flow of water influences the dynamics of the formation of microbial biofilms on metal surfaces, which will contribute to the choice of strategies used to mitigate microbial biofouling.
Collapse
Affiliation(s)
- Bárbara Nascimento Rufino
- Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room AG405, Rio de Janeiro, Rio de Janeiro, 20261-063, Brazil
| | - Luciano Procópio
- Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room AG405, Rio de Janeiro, Rio de Janeiro, 20261-063, Brazil. .,Industrial Microbiology and Bioremediation Department, Federal University of Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Procópio L. The oil spill and the use of chemical surfactant reduce microbial corrosion on API 5L steel buried in saline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26975-26989. [PMID: 33496949 DOI: 10.1007/s11356-021-12544-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
In order to evaluate the biocorrosion of API 5L metal buried in saline soils, three different conditions in microcosms were evaluated. The control microcosm contained only saline soil, the second had the addition of petroleum, and the third contained the addition of both petroleum and surfactant. The corrosion rate of the metals was measured by loss of mass after 30 days, and the microbial communities were delineated using 16S rRNA gene sequencing techniques. The species were dominated by halophiles in all samples analyzed. Among the bacteria, the predominant group was Proteobacteria, with emphasis on the Alphaproteobacteria and Gammaproteobacteria. Betaproteobacteria and Deltaproteobacteria members were also identified in a smaller number in all conditions. Firmicutes were especially abundant in the control system, although it was persistently present in other conditions evaluated. Bacteroidetes and Actinobacteria were also present in a considerable number of OTUs in the three microcosms. Halobacteria were predominant among archaea and were present in all conditions. The analysis pointed to a conclusion that in the control microcosm, the corrosion rate was higher, while the microcosm containing only oil had the lowest corrosion rate. These results suggest that, under these conditions, the entry of other carbon sources favors the presence of petroleum degraders, rather than samples involved in the corrosion of metals.
Collapse
Affiliation(s)
- Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Universidade Federal do Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Han R, Liu L, Meng Y, Han H, Xiong R, Li Y, Chen L. Archaeal and bacterial community structures of rural household biogas digesters with different raw materials in Qinghai Plateau. Biotechnol Lett 2021; 43:1337-1348. [PMID: 33811593 DOI: 10.1007/s10529-021-03105-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/10/2021] [Indexed: 10/21/2022]
Abstract
The present study aims to investigate microbial community structures household biogas digesters with different raw materials in Qinghai Plateau rural. High-throughput 16S rRNA gene sequencing analysis revealed that Firmicutes, Bacteroidetes, and Proteobacteria are the most abundant bacterial phyla (64.08%). Prevotella group 7 was the most abundant genus in digester YL9 and YL10 (69.72% and 26.96%, respectively) using vegetable waste raw materials. Trichococcus exhibited the highest abundance (14.55%) in YL1 digester using sheep and pig manure. Clostridium sensu stricto 1 (13.89%) and Synergistaceae_uncultured (15.52%) comprised the highest abundances in digester YL5 with mixed raw materials (i.e., dairy manure, sheep manure, and human feces). In addition, Proteiniphilum and Pseudomonas exhibited the highest abundances among bacterial genera in YL4 digester using pig manure. Methanomicrobiales was the most dominant archaeal communities, ranging from 13.35% to 81.34% in abundance. Methanocorpusculum exhibited dominant abundances in all digesters using various raw materials. Methanogenium was the most abundant archaeal genera in YL4 and YL6 digesters, which consume pig manure as primary raw material. In addition, Methanosarcina and Methanosaeta exhibited the highest abundances in digester YL1 (55.03%) and YL9 (51.40%), respectively. Moreover, fermentation temperatures and pH both contributed to the archaeal and bacterial community structures in all the investigated digesters. Specially, fermentation temperature showed positive correlation with the abundances of Synergistaceae_uncultured, Methanogenium, and Methanosaeta, and pH was positively correlated with the abundances of Prevotella group 7 and Methanosarcina abundances.
Collapse
Affiliation(s)
- Rui Han
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China
| | - Li Liu
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China
| | - Yan Meng
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China
| | - Hairong Han
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China
| | - Rongbo Xiong
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China
| | - Yi Li
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China.
| | - Laisheng Chen
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China.
| |
Collapse
|
14
|
Lekbach Y, Liu T, Li Y, Moradi M, Dou W, Xu D, Smith JA, Lovley DR. Microbial corrosion of metals: The corrosion microbiome. Adv Microb Physiol 2021; 78:317-390. [PMID: 34147188 DOI: 10.1016/bs.ampbs.2021.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microbially catalyzed corrosion of metals is a substantial economic concern. Aerobic microbes primarily enhance Fe0 oxidation through indirect mechanisms and their impact appears to be limited compared to anaerobic microbes. Several anaerobic mechanisms are known to accelerate Fe0 oxidation. Microbes can consume H2 abiotically generated from the oxidation of Fe0. Microbial H2 removal makes continued Fe0 oxidation more thermodynamically favorable. Extracellular hydrogenases further accelerate Fe0 oxidation. Organic electron shuttles such as flavins, phenazines, and possibly humic substances may replace H2 as the electron carrier between Fe0 and cells. Direct Fe0-to-microbe electron transfer is also possible. Which of these anaerobic mechanisms predominates in model pure culture isolates is typically poorly documented because of a lack of functional genetic studies. Microbial mechanisms for Fe0 oxidation may also apply to some other metals. An ultimate goal of microbial metal corrosion research is to develop molecular tools to diagnose the occurrence, mechanisms, and rates of metal corrosion to guide the implementation of the most effective mitigation strategies. A systems biology approach that includes innovative isolation and characterization methods, as well as functional genomic investigations, will be required in order to identify the diagnostic features to be gleaned from meta-omic analysis of corroding materials. A better understanding of microbial metal corrosion mechanisms is expected to lead to new corrosion mitigation strategies. The understanding of the corrosion microbiome is clearly in its infancy, but interdisciplinary electrochemical, microbiological, and molecular tools are available to make rapid progress in this field.
Collapse
Affiliation(s)
- Yassir Lekbach
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
| | - Tao Liu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Yingchao Li
- Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/Gas Facility Materials, College of New Energy and Materials, China University of Petroleum-Beijing, Beijing, China
| | - Masoumeh Moradi
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
| | - Wenwen Dou
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China.
| | - Jessica A Smith
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, CT, United States
| | - Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China; Department of Microbiology, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
15
|
Lamim VB, Procópio L. Influence of Acidification and Warming of Seawater on Biofouling by Bacteria Grown over API 5L Steel. Indian J Microbiol 2021; 61:151-159. [PMID: 33927456 DOI: 10.1007/s12088-021-00925-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
The acidification and warming of seawater have several impacts on marine organisms, including over microorganisms. The influence of acidification and warming of seawater on biofilms grown on API 5L steel surfaces was evaluated by sequencing the 16S ribosomal gene. For this, three microcosms were designed, the first simulating the natural marine environment (MCC), the second with a decrease in pH from 8.1 to 7.9, and an increase in temperature by 2 °C (MMS), and the third with pH in around 7.7 and an increase in temperature of 4 °C (MES). The results showed that MCC was dominated by the Gammaproteobacteria class, mainly members of the Alteromonadales Order. The second most abundant group was Alphaproteobacteria, with a predominance of Rhodobacterales and Oceanospirillales. In the MMS system there was a balance between representatives of the Gammaproteobacteria and Alphaproteobacteria classes. In MES there was an inversion in the representations of the most prevalent classes previously described in MCC. In this condition, there was a predominance of members of the Alphaproteobacteria Class, in contrast to the decrease in the abundance of Gammaproteobacteria members. These results suggest that possible future climate changes may influence the dynamics of the biofouling process in surface metals. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-021-00925-7.
Collapse
Affiliation(s)
- Victória Brigido Lamim
- Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room, AG405, Rio de Janeiro, Rio de Janeiro 20261-063 Brazil
| | - Luciano Procópio
- Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room, AG405, Rio de Janeiro, Rio de Janeiro 20261-063 Brazil
- Industrial Microbiology and Bioremediation Department, Federal University of Rio de Janeiro (UFRJ), Estrada de Xerém, 27, Duque de Caxias, Rio de Janeiro Brazil
| |
Collapse
|