1
|
Antony GS, Ramkumar M, Sujiritha B, Vikash N, Rajaram K, Ganesan P, Ayyadurai N, Kamini NR. Leiotrametes flavida MTCC 12927 laccase: scaleup, purification and its application for dye decolourisation enhanced by water-soluble mediator TEMPOL. 3 Biotech 2025; 15:106. [PMID: 40181804 PMCID: PMC11961788 DOI: 10.1007/s13205-025-04259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/02/2025] [Indexed: 04/05/2025] Open
Abstract
Laccase production from an isolated white rot fungus identified as Leiotrametes flavida MTCC 12927 was optimised in flasks, scaled up in 5 and 10 L working volume fermenters and purified to homogeneity. Purified laccase was tested for its decolourisation potential on 3 dyes: Basic Red 46 (azo class), Acid Blue 9 (triarylmethane class) and Reactive Blue 21 (phthalocyanine class). TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl), a less expensive water-soluble hydroxy derivative of mediator TEMPO (2,2,6,6-tetramethylpiperidin-1-yl) oxidanyl), was tested as a mediator which had not been reported before to our knowledge along with well-known mediators hydroxybenzotriazole (HBT) and syringaldehyde (SYD). Laccase in the presence of HBT could decolourise all the 3 dyes. Basic Red 46 and Acid Blue 9 were completely decolourised in 4 and 8 h, respectively. Reactive Blue 21 showed a decolourisation of 70.3% compared to 50.3% with TEMPOL and 20% with the enzyme alone. Laccase + TEMPOL combination was significantly better than HBT in decolourising azo dye Basic Red 46 completely within 30 min compared to 4 h for HBT. Furthermore, laccase TEMPOL and HBT combinations were also tested in azo dye-containing tannery effluent. TEMPOL showed a higher decolourisation rate of 36% compared to 22% for the latter. Chemical oxygen demand (COD) analysis of treated effluent samples showed a COD reduction of 23.2% for laccase + TEMPOL treatment and 19.2% for laccase + HBT compared to 7.8% with laccase alone. TEMPOL showed potential as a low-cost, water-soluble mediator for azo dye decolourisation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04259-9.
Collapse
Affiliation(s)
- George Sebastian Antony
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research–Central Leather Research Institute (CSIR-CLRI), Chennai, Tamil Nadu 600020 India
| | - Mannankatti Ramkumar
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research–Central Leather Research Institute (CSIR-CLRI), Chennai, Tamil Nadu 600020 India
| | - Baskaran Sujiritha
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research–Central Leather Research Institute (CSIR-CLRI), Chennai, Tamil Nadu 600020 India
| | - Negi Vikash
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research–Central Leather Research Institute (CSIR-CLRI), Chennai, Tamil Nadu 600020 India
| | - Krishnasamy Rajaram
- Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), Council of Scientific and Industrial Research–Central Leather Research Institute (CSIR-CLRI), Chennai, Tamil Nadu 600020 India
| | - Ponesakki Ganesan
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research–Central Leather Research Institute (CSIR-CLRI), Chennai, Tamil Nadu 600020 India
| | - Nirakulam Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research–Central Leather Research Institute (CSIR-CLRI), Chennai, Tamil Nadu 600020 India
| | - Numbi Ramudu Kamini
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research–Central Leather Research Institute (CSIR-CLRI), Chennai, Tamil Nadu 600020 India
| |
Collapse
|
2
|
Salem MM, Mohamed TM, Shaban AM, Mahmoud YAG, Eid MA, El-Zawawy NA. Optimization, purification and characterization of laccase from a new endophytic Trichoderma harzianum AUMC14897 isolated from Opuntia ficus-indica and its applications in dye decolorization and wastewater treatment. Microb Cell Fact 2024; 23:266. [PMID: 39369235 PMCID: PMC11453076 DOI: 10.1186/s12934-024-02530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/14/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Hazardous synthetic dye wastes have become a growing threat to the environment and public health. Fungal enzymes are eco-friendly, compatible and cost-effective approach for diversity of applications. Therefore, this study aimed to screen, optimize fermentation conditions, and characterize laccase from fungal endophyte with elucidating its ability to decolorize several wastewater dyes. RESULTS A new fungal endophyte capable of laccase-producing was firstly isolated from cladodes of Opuntia ficus-indica and identified as T. harzianum AUMC14897 using ITS-rRNA sequencing analysis. Furthermore, the response surface methodology (RSM) was utilized to optimize several fermentation parameters that increase laccase production. The isolated laccase was purified to 13.79-fold. GFC, SDS-PAGE revealed laccase molecular weight at 72 kDa and zymogram analysis elucidated a single band without any isozymes. The peak activity of the pure laccase was detected at 50 °C, pH 4.5, with thermal stability up to 50 °C and half life span for 4 h even after 24 h retained 30% of its activity. The Km and Vmax values were 0.1 mM, 22.22 µmol/min and activation energy (Ea) equal to 5.71 kcal/mol. Furthermore, the purified laccase effectively decolorized various synthetic and real wastewater dyes. CONCLUSION Subsequently, the new endophytic strain produces high laccase activity that possesses a unique characteristic, it could be an appealing candidate for both environmental and industrial applications.
Collapse
Affiliation(s)
- Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Aya M Shaban
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Yehia A-G Mahmoud
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohammed A Eid
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Nessma A El-Zawawy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
3
|
Ghose A, Nuzelu V, Gupta D, Kimoto H, Takashima S, Harlin EW, Ss S, Ueda H, Koketsu M, Rangan L, Mitra S. Micropollutants (ciprofloxacin and norfloxacin) remediation from wastewater through laccase derived from spent mushroom waste: Fate, toxicity, and degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121857. [PMID: 39029166 DOI: 10.1016/j.jenvman.2024.121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Fluoroquinolone antibiotics frequently found in environmental matrices (wastewater treatment plants, hospital wastewater, industrial wastewater and surface wastewater) causes potential threat to the environment. Enzymatic treatment for degradation of antibiotics from environmental matrices is a green and sustainable approach. Focusing on this, this study aimed to degrade two frequently found fluroquinolone emergent pollutants, ciprofloxacin and norfloxacin from wastewater. The trinuclear cluster of copper ions present in laccase has the ability to effectively remove organic micropollutants (OMPs). The uniqueness of this study is that it utilizes laccase enzyme extracted from spent mushroom waste (SMW) of P. florida for degradation of ciprofloxacin and norfloxacin and to achieve highest degradation efficiency various parameters were tweaked such as pH (3-6), temperature (30 °C and 50 °C), and ABTS (0.05, 0.6, and 1 mM) concentration. The results showed that the most effective degradation of ciprofloxacin (86.12-75.94%) and norfloxacin (83.27-65.94%) was achieved in 3 h at pH 4.5, temperature 30 °C, and 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 0.05 mM concentration. Nevertheless, achieving degradation at 50 °C for both antibiotics, indicates thermostability nature of laccase (P. florida). Further, the fate of transformed products obtained from laccase mediated degradation was confirmed by liquid chromatography (LC-MS). Both the antibiotics undergo decarboxylation, depiperylyzation, dealkylation and defluorination as a result of laccase-mediated bond breakage. Anti-microbial activity of the biodegraded products was monitored by residual anti-bacterial toxicity test (E. coli and Staphylococcus aureus). The biodegraded products were found to be non-toxic and resulted in the growth of E. coli and Staphylococcus aureus, as determined by the agar-diffusion method. Moreover, the storage stability of laccase was determined for 28-day duration at varying pH (3-10) and temperature (4-50 °C). The maximum storage stability was obtained at pH 4.5 and temperature 30 °C. Therefore, utilizing SMW for the degradation of OMPs from wastewater not only benefits in degradation but also reuses SMW agro waste, shedding light on agro waste management. Thus, SMW is a one-pot solution for both OMPs biodegradation and circularity in the economy.
Collapse
Affiliation(s)
- Anamika Ghose
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - V Nuzelu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Debaditya Gupta
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Hiroki Kimoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shigeo Takashima
- United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan; Division of Genomics Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Division of Cooperative Research Facility, Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Eka Wahyuni Harlin
- United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Sonu Ss
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Hiroshi Ueda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Latha Rangan
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India.
| |
Collapse
|
4
|
Wang C, Zhang X, Wu K, Liu S, Li X, Zhu C, Xiao Y, Fang Z, Liu J. Two Zn 2Cys 6-type transcription factors respond to aromatic compounds and regulate the expression of laccases in the white-rot fungus Trametes hirsuta. Appl Environ Microbiol 2024; 90:e0054524. [PMID: 38899887 PMCID: PMC11267944 DOI: 10.1128/aem.00545-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
White-rot fungi differentially express laccases when they encounter aromatic compounds. However, the underlying mechanisms are still being explored. Here, proteomics analysis revealed that in addition to increased laccase activity, proteins involved in sphingolipid metabolism and toluene degradation as well as some cytochrome P450s (CYP450s) were differentially expressed and significantly enriched during 48 h of o-toluidine exposure, in Trametes hirsuta AH28-2. Two Zn2Cys6-type transcription factors (TFs), TH8421 and TH4300, were upregulated. Bioinformatics docking and isothermal titration calorimetry assays showed that each of them could bind directly to o-toluidine and another aromatic monomer, guaiacol. Binding to aromatic compounds promoted the formation of TH8421/TH4300 heterodimers. TH8421 and TH4300 silencing in T. hirsuta AH28-2 led to decreased transcriptional levels and activities of LacA and LacB upon o-toluidine and guaiacol exposure. EMSA and ChIP-qPCR analysis further showed that TH8421 and TH4300 bound directly with the promoter regions of lacA and lacB containing CGG or CCG motifs. Furthermore, the two TFs were involved in direct and positive regulation of the transcription of some CYP450s. Together, TH8421 and TH4300, two key regulators found in T. hirsuta AH28-2, function as heterodimers to simultaneously trigger the expression of downstream laccases and intracellular enzymes. Monomeric aromatic compounds act as ligands to promote heterodimer formation and enhance the transcriptional activities of the two TFs.IMPORTANCEWhite-rot fungi differentially express laccase isoenzymes when exposed to aromatic compounds. Clarification of the molecular mechanisms underlying differential laccase expression is essential to elucidate how white-rot fungi respond to the environment. Our study shows that two Zn2Cys6-type transcription factors form heterodimers, interact with the promoters of laccase genes, and positively regulate laccase transcription in Trametes hirsuta AH28-2. Aromatic monomer addition induces faster heterodimer formation and rate of activity. These findings not only identify two new transcription factors involved in fungal laccase transcription but also deepen our understanding of the mechanisms underlying the response to aromatics exposure in white-rot fungi.
Collapse
Affiliation(s)
- Chenkai Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Xinlei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Kun Wu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Shenglong Liu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Xiang Li
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Chaona Zhu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| |
Collapse
|
5
|
Egbewale SO, Kumar A, Mokoena MP, Olaniran AO. Purification, characterization and three-dimensional structure prediction of multicopper oxidase Laccases from Trichoderma lixii FLU1 and Talaromyces pinophilus FLU12. Sci Rep 2024; 14:13371. [PMID: 38862560 PMCID: PMC11167041 DOI: 10.1038/s41598-024-63959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Broad-spectrum biocatalysts enzymes, Laccases, have been implicated in the complete degradation of harmful pollutants into less-toxic compounds. In this study, two extracellularly produced Laccases were purified to homogeneity from two different Ascomycetes spp. Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12). The purified enzymes are monomeric units, with a molecular mass of 44 kDa and 68.7 kDa for TlFLU1 and TpFLU12, respectively, on SDS-PAGE and zymogram. It reveals distinct properties beyond classic protein absorption at 270-280 nm, with TlFLU1's peak at 270 nm aligning with this typical range of type II Cu site (white Laccase), while TpFLU12's unique 600 nm peak signifies a type I Cu2+ site (blue Laccase), highlighting the diverse spectral fingerprints within the Laccase family. The Km and kcat values revealed that ABTS is the most suitable substrate as compared to 2,6-dimethoxyphenol, caffeic acid and guaiacol for both Laccases. The bioinformatics analysis revealed critical His, Ile, and Arg residues for copper binding at active sites, deviating from the traditional two His and a Cys motif in some Laccases. The predicted biological functions of the Laccases include oxidation-reduction, lignin metabolism, cellular metal ion homeostasis, phenylpropanoid catabolism, aromatic compound metabolism, cellulose metabolism, and biological adhesion. Additionally, investigation of degradation of polycyclic aromatic hydrocarbons (PAHs) by purified Laccases show significant reductions in residual concentrations of fluoranthene and anthracene after a 96-h incubation period. TlFLU1 Laccase achieved 39.0% and 44.9% transformation of fluoranthene and anthracene, respectively, while TpFLU12 Laccase achieved 47.2% and 50.0% transformation, respectively. The enzyme structure-function relationship study provided insights into the catalytic mechanism of these Laccases for possible biotechnological and industrial applications.
Collapse
Affiliation(s)
- Samson O Egbewale
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
| | - Mduduzi P Mokoena
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa
- Department of Pathology, School of Medicine, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, 4001, South Africa.
| |
Collapse
|
6
|
Arumugam DP, Uthandi S. Optimization and characterization of laccase (LccH) produced by Hexagonia hirta MSF2 in solid-state fermentation using coir pith wastes (CPW). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120625. [PMID: 38503232 DOI: 10.1016/j.jenvman.2024.120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/21/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
The accumulation of coir pith waste, a byproduct of coconut husk processing, poses environmental and logistical challenges. An innovative and sustainable solution involves using coir pith as a substrate for solid-state fermentation (SSF). In SSF, coir pith can be converted into valuable products, such as enzymes, organic acids, and bioactive compounds. The present study aimed to evaluate laccase production by Hexagonia hirta MSF2 through SSF using the coir pith waste as substrate. Physico-chemical parameters like moisture, pH, temperature, C source, N source, and CuSO4 concentrations were pre-optimized, and optimized through RSM. Laccase activity of 1585.24 U g-1 of dry substrate was recorded by H. hirta MSF2 on coir pith containing 1 % C source, 0.5 % N source, 0.25 mM of CuSO4 concentration, moisture content of 75 % at pH 4.6 and temperature 28 °C. Subsequently, the enzyme extraction parameters including, extraction buffer, mode of extraction, and temperature were optimized. The molecular weight of laccase was 66 kDa as observed by SDS-PAGE and native-PAGE. The optimum activity of partially purified laccase was achieved at 40 °C, and pH 4.0. Increasing salt concentration and use of different inhibitors affected the laccase activity. Organic solvents like dimethyl sulphoxide (DMSO) and methanol, and metal ions like BaCl2, CaCl2, CuSO4, and MnCl2 stimulated the laccase activity. Hence, coir pith used in SSF offers a dual benefit of waste management and enzyme synthesis through an eco-friendly and cost-effective approach.
Collapse
Affiliation(s)
- Devi Priya Arumugam
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU), Coimbatore, 641003, Tamil Nadu, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University (TNAU), Coimbatore, 641003, Tamil Nadu, India.
| |
Collapse
|
7
|
Isanapong J, Suwannoi K, Lertlattanapong S, Panchal S. Purification, characterization of laccase from Pleurotus ostreatus HK35, and optimization for congo red biodecolorization using Box-Behnken design. 3 Biotech 2024; 14:73. [PMID: 39262831 PMCID: PMC11383891 DOI: 10.1007/s13205-024-03926-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/08/2024] [Indexed: 09/13/2024] Open
Abstract
This study is the first report on purification, characterization, and application of laccase derived from the white-rot fungus, Pleurotus ostreatus HK35 (Hungary strain), in Congo Red decolorization. The purification process involved ammonium sulfate precipitation, dialysis, anion exchange chromatography, and ultrafiltration, yielding a specific laccase activity of 15.26 U/mg and a 30.21% recovery rate. The purified enzyme, with a molecular weight of approximately 34 kilodaltons, displayed optimal activity at a temperature of 60 °C and pH 4.0 when using 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) as a substrate. The enzyme maintained over 82.02 ± 1.01% of its activity at temperatures up to 50 °C after 180 min but displayed less than 5% of its activity at 60 and 70 °C. Notably, the enzyme's activity was significantly enhanced by Pb(NO3)2, whereas β-mercaptoethanol completely inhibited the activity. Utilizing the Box-Behnken design, we optimized Congo Red decolorization efficiency to 91.05 ± 0.82% at 100 mg/L Congo Red, 1.5 mM mediator concentration, and 1.6 U/mL laccase activity. Analysis of Variance (ANOVA) suggested the model was significant, and all variables significantly influenced decolorization efficiency. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03926-7.
Collapse
Affiliation(s)
- Jantiya Isanapong
- Faculty of Applied Science, Department of Agro-Industrial, Food and Environmental Technology, King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1, Wongsawang, Bangsue, Bangkok, 10800 Thailand
| | - Kittikarn Suwannoi
- Faculty of Applied Science, Department of Agro-Industrial, Food and Environmental Technology, King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1, Wongsawang, Bangsue, Bangkok, 10800 Thailand
| | - Surangkana Lertlattanapong
- Faculty of Applied Science, Department of Agro-Industrial, Food and Environmental Technology, King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1, Wongsawang, Bangsue, Bangkok, 10800 Thailand
| | - Shweta Panchal
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, 632014 India
| |
Collapse
|
8
|
Lee CS, Wang M, Clyde PM, Mao X, Brownawell BJ, Venkatesan AK. 1,4-Dioxane removal in nitrifying sand filters treating domestic wastewater: Influence of water matrix and microbial inhibitors. CHEMOSPHERE 2023; 324:138304. [PMID: 36871806 DOI: 10.1016/j.chemosphere.2023.138304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
1,4-Dioxane is a recalcitrant pollutant in water and is ineffectively removed during conventional water and wastewater treatment processes. In this study, we demonstrate the application of nitrifying sand filters to remove 1,4-dioxane from domestic wastewater without the need for bioaugmentation or biostimulation. The sand columns were able to remove 61 ± 10% of 1,4-dioxane on average (initial concentration: 50 μg/L) from wastewater, outperforming conventional wastewater treatment approaches. Microbial analysis revealed the presence of 1,4-dioxane degrading functional genes (dxmB, phe, mmox, and prmA) to support biodegradation being the dominant degradation pathway. Adding antibiotics (sulfamethoxazole and ciprofloxacin), that temporarily inhibited the nitrification process during the dosing period, showed a minor effect in 1,4-dioxane removal (6-8% decline, p < 0.05), suggesting solid resilience of the 1,4-dioxane-degrading microbial community in the columns. Columns amended with sodium azide significantly (p < 0.05) depressed 1,4-dioxane removal in the early stage of dosing but followed by a gradual increase of the removal over time to >80%, presumably due to a shift in the microbial community toward azide-resistant 1,4-dioxane degrading microbes (e.g., fungi). This study demonstrated for the first time the resilience of the 1,4-dioxane-degrading microorganisms during antibiotic shocks, and the selective enrichment of efficient 1,4-dioxane-degrading microbes after azide poisoning. Our observation could provide insights into designing better 1,4-dioxane remediation strategies in the future.
Collapse
Affiliation(s)
- Cheng-Shiuan Lee
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794, USA; Research Center for Environmental Changes, Academia Sinica, Taipei, 11529, Taiwan
| | - Mian Wang
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794, USA; Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Patricia M Clyde
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794, USA; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xinwei Mao
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794, USA; Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Bruce J Brownawell
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794, USA; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Arjun K Venkatesan
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, 11794, USA; Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
9
|
Vaidyanathan VK, Kumar PS, Singh I, Singh I, Rangasamy G, Saratale RG, Saratale GD. Removal of pentachlorophenol and phenanthrene from lignocellulosic biorefinery wastewater by a biocatalytic/biosurfactant system comprising cross-linked laccase aggregates and rhamnolipid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121635. [PMID: 37085105 DOI: 10.1016/j.envpol.2023.121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Synthesis and characterization of highly active cross-linked laccase aggregates (CLLAs) were performed and evaluated for removal of pentachlorophenol and phenanthrene from lignocellulosic biorefinery wastewater. Laccase from Tramates versicolor MTCC 138 was insolubilized as CLLAs via precipitation with 70% ammonium sulphate and simultaneous cross-linking with 5 mM glutaraldehyde to obtain activity recovery of 89.1%. Compared to the free laccase, the pH and thermal stability of the prepared CLLAs were significantly higher. At a high temperature of 60 °C, free laccase had a half-life of 0.25 h, while CLLAs had a half-life of 6.2 h. In biorefinery wastewater (pH 7.0), the free and CLLAs were stored for 3 day at a temperature of 30 °C. Free laccase completely lost their initial activity after 60 h; however, the CLLAs retained 39% activity till 72 h. Due to its excellent stability, free laccase and CLLAs were assessed for removing pentachlorophenol and phenanthrene in wastewater. CLLAs could remove 51-58% of pentachlorophenol (PCP) and phenanthrene (PHE) in 24 h. Biosurfactants, including surfactin, sophorolipid, and rhamnolipid, were assessed for their aptitude to improve the removal of organic contaminants in wastewater. Biorefinery wastewater incubated with all surfactants enhanced PCP and PHE removal compared to the no-surfactant controls. Further, 1 μM rhamnolipid significantly amplified pentachlorophenol and phenanthrene removal to 81-93% for free laccase and CLLAs, respectively.
Collapse
Affiliation(s)
- Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur , 603203, Chengalpattu District, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Isita Singh
- Integrated Bioprocessing Laboratory, Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur , 603203, Chengalpattu District, Tamil Nadu, India
| | - Ishani Singh
- Integrated Bioprocessing Laboratory, Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur , 603203, Chengalpattu District, Tamil Nadu, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea.
| |
Collapse
|
10
|
Nadhilah D, Andriani A, Agustriana E, Nuryana I, Mubarik NR, Dewi KS, Rahmani N, Yanto DHY, Ismayati M, Perwitasari U, Laksmi FA, Wijaya H. Co-catalysis of melanin degradation by laccase-manganese peroxidase complex from Trametes hirsuta OK271075 for application in whitening cosmetics. BIOCATAL BIOTRANSFOR 2023. [DOI: 10.1080/10242422.2023.2188995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Dini Nadhilah
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
- Department of Biology, Bogor Agricultural University, Bogor, Indonesia
| | - Ade Andriani
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
- Research Collaboration Center for Biomass-Based nano Cosmetics, Samarinda, Indonesia
| | - Eva Agustriana
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| | - Isa Nuryana
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| | | | - Kartika Sari Dewi
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| | - Nanik Rahmani
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| | - Dede Heri Yuli Yanto
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
- Research Collaboration Center for Biomass-Based nano Cosmetics, Samarinda, Indonesia
| | - Maya Ismayati
- Research Center for Biomass and Bioproducts, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| | - Urip Perwitasari
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| | - Fina Amreta Laksmi
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| | - Hans Wijaya
- Research Centre for Applied Microbiology, National Agency for Research and Innovation, Cibinong, Bogor, Indonesia
| |
Collapse
|
11
|
Zhang LB, Deng ZQ, Qiu TT, Yang WWJ, Zhu F, Ye XY. Characterisation of a laccase isolated from Trametes hirsuta and its application in the oligomerisation of phenolic compounds. Fungal Biol 2023; 127:872-880. [PMID: 36746559 DOI: 10.1016/j.funbio.2022.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Phenolic compounds are widely distributed in nature and industrial environment, and their detoxification or bioactive enhancement is of great value to environmental protection and industrial development. Laccases are multicopper oxidases that catalyse the oligo- or polymerisation of phenolic compounds. Identifying new laccase producers and investigating their application potential are of great importance. In this study, a white-rot fungus, Trametes hirsuta EZ1, with significantly high laccase productivity was isolated. The optimum conditions were studied for the maximum fermentation of extracellular laccase, which was achieved at 150 U/mL with a medium containing 10% strain EZ1, 7% maltodextrin, 1.5% peptone, and 0.5 mM Cu2+, and incubation at initial pH 6.0, 32 °C, and 180 rpm for nine days. Subsequently, a 70-kDa laccase was purified that showed activity over a wide range of temperature and pH, sensitivity to many metal ions and sodium dodecyl sulphate, and high tolerance to organic solvents. Purified laccase showed a significant unreported effect by catalysing catechol or ferulic acid into dimers, trimers, and tetramers or caffeic acid into dimers, trimers, tetramers, and pentamers. The oligomeric mixtures exhibited increased antioxidative capacity compared to that of each parent monomer, except for caffeic acid derivatives. Our study offers a novel strain source for laccase production and broadens its application in the enhancement of bioactive compounds.
Collapse
Affiliation(s)
- Long-Bin Zhang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian, 350116, China.
| | - Zhi-Qiang Deng
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian, 350116, China
| | - Ting-Ting Qiu
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian, 350116, China
| | - Wu-Wei-Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian, 350116, China
| | - Fan Zhu
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian, 350116, China
| | - Xiu-Yun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian, 350116, China.
| |
Collapse
|
12
|
Li S, Liu Q, Liu J, Sun K, Yang W, Si Y, Li Y, Gao Y. Inhibition mechanisms of Fe 2+/Fe 3+ and Mn 2+ on fungal laccase-enabled bisphenol a polyreaction. CHEMOSPHERE 2022; 307:135685. [PMID: 35842042 DOI: 10.1016/j.chemosphere.2022.135685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/05/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is regarded as an endocrine disruptor associated with negative health effects in animals and humans. Laccase from white-rot fungus can enable BPA oxidation and auto-polymerization to circumvent its biotoxicity, but the work concerning the effect mechanisms of divalent and trivalent metal ions (MIs) on BPA polyreaction have rarely been reported. Herein, Trametes versicolor laccase-started BPA conversion within 1 h followed pseudo-first order kinetics, and the rate constant (kprcs) and half-life were respectively 0.61 h-1 and 1.14 h. The presence of Ca2+, Mg2+, Cu2+, Pb2+, Cd2+, Zn2+ and Al3+ exhibited insignificant impact on BPA removal, whereas Fe2+, Fe3+ and Mn2+ had a strong inhibiting effect. Compared with MI-free, the kprcs values of BPA respectively lowered 34.4%, 44.3% and 98.4% in the presence of Fe2+, Fe3+ and Mn2+. Enzymatic activity and differential absorption spectrum disclosed that the inhibitory actions were accomplished by two different mechanisms. One is Fe2+ was preferentially oxidized into Fe3+ that restrained laccase activity at the initial stage of reaction, and subsequently, the formed Fe3+ complex bound with laccase T1-Cu site and thus impeded the single-electron transfer system. The other is Mn2+ was instantly oxidized by laccase to generate Mn3+-citrate complex, which completely consumed the dissolved O2 in solution and consequently terminated BPA removal. Considering environmental bioremediation, T. versicolor laccase-enabled auto-polymerization is a simple and convenient candidate to eliminate BPA in enzymatic wastewater treatment, however the effects of Fe2+/Fe3+ and Mn2+ on BPA decontamination should be cautiously assessed.
Collapse
Affiliation(s)
- Shunyao Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China
| | - Qingzhu Liu
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jie Liu
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Kai Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Wei Yang
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China
| | - Youbin Si
- College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yucheng Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China
| | - Yanzheng Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
13
|
Kumar VV, Venkataraman S, Kumar PS, George J, Rajendran DS, Shaji A, Lawrence N, Saikia K, Rathankumar AK. Laccase production by Pleurotus ostreatus using cassava waste and its application in remediation of phenolic and polycyclic aromatic hydrocarbon-contaminated lignocellulosic biorefinery wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119729. [PMID: 35809710 DOI: 10.1016/j.envpol.2022.119729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The treatment of contaminants from lignocellulosic biorefinery effluent has recently been identified as a unique challenge. This study focuses on removing phenolic contaminants and polycyclic aromatic hydrocarbons (PAHs) from lignocellulosic biorefinery wastewater (BRW) applying a laccase-assisted approach. Cassava waste was used as a substrate to produce the maximum yield of laccase enzyme (3.9 U/g) from Pleurotus ostreatus. Among the different inducers supplemented, CuSO4 (0.5 mM) showed an eight-fold increase in enzyme production (30.8 U/g) after 240 h of incubation. The catalytic efficiency of laccase was observed as 128.7 ± 8.47 S-1mM-1 for syringaldazine oxidation at optimum pH 4.0 and 40 °C. Laccase activity was completely inhibited by lead (II) ion, mercury (II) ion, sodium dodecyl sulphate, sodium azide and 1,4 dithiothretiol and induced significantly by manganese (II) ion and rhamnolipid. After treating BRW with laccase, the concentrations of PAHs and phenolic contaminants of 1144 μg/L and 46160 μg/L were reduced to 96 μg/L and 16100 μg/L, respectively. The ability of laccase to effectively degrade PAHs in the presence of different phenolic compounds implies that phenolic contaminants may play a role in PAHs degradation. After 240 h, organic contaminants were removed from BRW in the following order: phenol >2,4-dinitrophenol > 2-methyl-4,6-dinitrophenol > 2,3,4,6-tetrachlorophenol > acenaphthene > fluorine > phenanthrene > fluoranthene > pyrene > anthracene > chrysene > naphthalene > benzo(a)anthracene > benzo(a)pyrene > benzo(b)fluoranthene > pentachlorophenol > indeno(1,2,3-cd)pyrene > benzo(j) fluoranthene > benzo[k]fluoranthène. The multiple contaminant remediation from the BRW by enzymatic method, clearly suggests that the laccase can be used as a bioremediation tool for the treatment of wastewater from various industries.
Collapse
Affiliation(s)
- Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamilnadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamilnadu, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - Jenet George
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India
| | - Anna Shaji
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India
| | - Nicole Lawrence
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India
| | - Kongkona Saikia
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India; Department of Biochemistry, Faculty of Arts, Science and Humanities, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641050, India
| | - Abiram Karanam Rathankumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India; Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641050, India
| |
Collapse
|
14
|
Mattoo AJ, Nonzom S. Endophytes in Lignin Valorization: A Novel Approach. Front Bioeng Biotechnol 2022; 10:895414. [PMID: 35928943 PMCID: PMC9343868 DOI: 10.3389/fbioe.2022.895414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lignin, one of the essential components of lignocellulosic biomass, comprises an abundant renewable aromatic resource on the planet earth. Although 15%––40% of lignocellulose pertains to lignin, its annual valorization rate is less than 2% which raises the concern to harness and/or develop effective technologies for its valorization. The basic hindrance lies in the structural heterogeneity, complexity, and stability of lignin that collectively makes it difficult to depolymerize and yield common products. Recently, microbial delignification, an eco-friendly and cheaper technique, has attracted the attention due to the diverse metabolisms of microbes that can channelize multiple lignin-based products into specific target compounds. Also, endophytes, a fascinating group of microbes residing asymptomatically within the plant tissues, exhibit marvellous lignin deconstruction potential. Apart from novel sources for potent and stable ligninases, endophytes share immense ability of depolymerizing lignin into desired valuable products. Despite their efficacy, ligninolytic studies on endophytes are meagre with incomplete understanding of the pathways involved at the molecular level. In the recent years, improvement of thermochemical methods has received much attention, however, we lagged in exploring the novel microbial groups for their delignification efficiency and optimization of this ability. This review summarizes the currently available knowledge about endophytic delignification potential with special emphasis on underlying mechanism of biological funnelling for the production of valuable products. It also highlights the recent advancements in developing the most intriguing methods to depolymerize lignin. Comparative account of thermochemical and biological techniques is accentuated with special emphasis on biological/microbial degradation. Exploring potent biological agents for delignification and focussing on the basic challenges in enhancing lignin valorization and overcoming them could make this renewable resource a promising tool to accomplish Sustainable Development Goals (SDG’s) which are supposed to be achieved by 2030.
Collapse
Affiliation(s)
| | - Skarma Nonzom
- *Correspondence: Skarma Nonzom, , orcid.org/0000-0001-9372-7900
| |
Collapse
|
15
|
Jia Y, Huang Q, Zhu L, Pan C. Characterization of a Recombinant Laccase B from Trametes hirsuta MX2 and Its Application for Decolorization of Dyes. Molecules 2022; 27:1581. [PMID: 35268682 PMCID: PMC8912056 DOI: 10.3390/molecules27051581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Trametes hirsuta is able to secrete laccase isoenzymes including constitutive and inducible forms, and has potential application for bioremediation of environmental pollutants. Here, an inducible group B laccase from T. hirsuta MX2 was heterologously expressed in Pichia pastoris, and its yield reached 2.59 U/mL after 5 days of methanol inducing culture. The optimal pH and temperature of recombinant laccase (rLac1) to 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) were 2.5 and 60 °C, respectively. Metal ions showed different effect on rLac1 which Mg2+, Cu2+, and K+ increased enzyme activity as their concentration increased, whereas Zn2+, Na+, and Fe2+ inhibited enzyme activity as their concentration increased. rLac1 showed good tolerance to organic solvents, and more than 42% of its initial activity remained in 10% organic solvents. Additionally, rLac1 exhibited a more efficient decolorization ability for remazol brilliant blue R (RBBR) than for acid red 1 (AR1), crystal violet (CV), and neutral red (NR). Molecular docking results showed RBBR has a stronger binding affinity with laccase than other dyes by interacting with substrate binding cavity of enzyme. The results indicated rLac1 may be a potential candidate for dye removal from textile wastewater.
Collapse
Affiliation(s)
- Yitong Jia
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.J.); (Q.H.)
| | - Qianqian Huang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.J.); (Q.H.)
| | - Lanlan Zhu
- Science and Technology Service Center of Lin’an, Hangzhou 311300, China
| | - Chengyuan Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.J.); (Q.H.)
| |
Collapse
|
16
|
Backes E, Kato CG, da Silva TBV, Uber TM, Pasquarelli DL, Bracht A, Peralta RM. Production of fungal laccase on pineapple waste and application in detoxification of malachite green. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:90-101. [PMID: 35103576 DOI: 10.1080/03601234.2022.2025739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The main purpose of this work was to use pineapple crowns as substrate for optimizing laccase production by Trametes versicolor in lab-scale experiments. One-factor-at-the-time analysis and response surface methodology were used to optimize production. A single laccase with molecular weight of 45 kDa was the main protein produced. A maximal laccase activity of 60.73 ± 1.01 U/g was obtained in 7-day cultures, representing a 6.7-fold increase compared to non-optimized conditions. The optimized conditions were temperature: 28 °C; initial moisture: 90%; glucose: 8.38%; yeast extract: 2.86%. Combining activity and stability, the best conditions for using this laccase during the long periods required by large-scale processes are pH 4.0-5.0 and temperature of 40-50 °C. Under these conditions, the crude laccase was efficient in detoxifying the dye malachite green with a KM of 14.33 ± 1.94 µM and a Vmax of 0.482 ± 0.029 µM/min with 0.1 units/mL. It can be concluded that pineapple crown leaves can be effectively used as substrate by T. versicolor for producing laccase under solid-state culture conditions. Laccase is an industrially relevant enzyme and its production with concomitant valorization of pineapple crowns as substrate offers highly interesting perspectives.
Collapse
Affiliation(s)
- Emanueli Backes
- Post-Graduate Program in Food Sciences, State University of Maringa, Maringá, Brazil
| | - Camila G Kato
- School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Tamires B V da Silva
- Post-Graduate Program in Food Sciences, State University of Maringa, Maringá, Brazil
| | - Thaís M Uber
- Post-Graduate Program in Biochemistry, State University of Maringá, Maringá, Brazil
| | | | - Adelar Bracht
- Post-Graduate Program in Food Sciences, State University of Maringa, Maringá, Brazil
- Post-Graduate Program in Biochemistry, State University of Maringá, Maringá, Brazil
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| | - Rosane M Peralta
- Post-Graduate Program in Food Sciences, State University of Maringa, Maringá, Brazil
- Post-Graduate Program in Biochemistry, State University of Maringá, Maringá, Brazil
- Department of Biochemistry, State University of Maringá, Maringá, Brazil
| |
Collapse
|
17
|
Li Q, Chai C, Zhao L. Biodegradation of Endocrine Disrupting Chemicals with Laccase Isozymes from Recombinant Pichia pastori. Catal Letters 2021. [DOI: 10.1007/s10562-021-03870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Cajnko MM, Oblak J, Grilc M, Likozar B. Enzymatic bioconversion process of lignin: mechanisms, reactions and kinetics. BIORESOURCE TECHNOLOGY 2021; 340:125655. [PMID: 34388661 DOI: 10.1016/j.biortech.2021.125655] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Lignin is a wasted renewable source of biomass-derived value-added chemicals. However, due to its material resistance to degradation, it remains highly underutilized. In order to develop new, catalysed and more environment friendly reaction processes for lignin valorization, science has turned a selective concentrated attention to microbial enzymes. This present work looks at the enzymes involved with the main reference focus on the different elementary mechanisms of action/conversion rate kinetics. Pathways, like with laccases/peroxidases, employ radicals, which more readily result in polymerization than de-polymerization. The β-etherase system interaction of proteins targets β-O-4 ether covalent bond, which targets lower molecular weight product species. Enzymatic activity is influenced by a wide variety of different factors which need to be considered in order to obtain the best functionality and synthesis yields.
Collapse
Affiliation(s)
- Miša Mojca Cajnko
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, NIC, Hajdrihova, 19, SI-1001 Ljubljana, Slovenia
| | - Jošt Oblak
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, NIC, Hajdrihova, 19, SI-1001 Ljubljana, Slovenia
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, NIC, Hajdrihova, 19, SI-1001 Ljubljana, Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, NIC, Hajdrihova, 19, SI-1001 Ljubljana, Slovenia.
| |
Collapse
|
19
|
Kumar A, Singh AK, Bilal M, Chandra R. Sustainable Production of Thermostable Laccase from Agro-Residues Waste by Bacillus aquimaris AKRC02. Catal Letters 2021. [DOI: 10.1007/s10562-021-03753-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|